HORN STUDIES FOR SPL-SUPERBEAM

Christoph Bobeth IPHC Strasbourg

Phone meeting - 15th April 2010

Christoph Bobeth

Phone meeting - WP2 - EURO ν

15th April 2010 1 / 17

- Energy deposition in target
 - ⇒ Study of integrated target as inner horn conductor (work in progress with Gérard Gaudiot and Benjamin Lepers)
- Shape optimisation
 - ⇒ NuFact-horn

Integrated target energy deposition

INTEGRATED TARGET

Idea put forward by Chris Densham:

Integrate the target as inner conductor inside the horn

Requirement

conducting target material

Advantages

- lower inner radius → higher magnetic field or lower horn current
- can use water cooling of inner horn conductor also for target cooling

TARGET & BEAM - PARAMETERS

GEOMETRY target length $L^{tg} = 78$ cm and radius $R^{tg} = 15$ mm

MATERIAL target: low-Z materials: Beryllium, Aluminium, AlBeMet, comparing to Carbon – high-Z materials perhaps interesting too, but give more neutrons

```
BEAM proton beam,
```

kinetic energy $E_{kin}^{bm} = 4.5 \text{ GeV}$, beam power 4 MW, frequency 50 Hz, pulse duration $\lesssim 5 \ \mu \text{s}$ gaussian beam profile $\sigma^{bm} = \{2, 4, 6\}$ mm

ENERGY DEPOSITION

Neglecting pulsed structure of beam = assuming continious energy deposition of proton beam @ 4 MW and $E_{kin}^{bm} = 4.5$ GeV.

material	density	σ^{bm}	max value power density	total power	
	[g/cm ³]	[mm]	[kW/cm ³]	[kW]	
Be	1.85	2	11.65	168.7	
		4	3.25	165.3	
		6	1.53	153.2	
С	1.85	2	13.22	200.0	
		4	3.57	196.5	
		6	1.72	182.2	
Al	2.70	2	19.26	285.6	
		4	5.36	279.1	
		6	2.73	257.4	
AlBeMet	2.1	2	14.11	204.4	
(Be 61%, Al 38%, O 1%)		4	3.92	200.1	
		6	1.86	185.2	

The maximal value of deposited power density and the total power deposited in the target at different values of the beam width.

Divide by 4 in the case of 4 target-horn stations.

Christoph Bobeth

Phone meeting - WP2 - EURO_V

ENERGY DEPOSITION - DISTRIBUTION

... in 1) z - R plane and 2) R for fixed values of z

ENERGY DEPOSITION - DISTRIBUTION

... in 3) for z and fixed $R \in [0.0, 0.5]$ mm = along "z-axis"

... to be continued with first estimates of final temperature by Benjamin Lepers

Christoph Bobeth

Shape optimisation NuFact-horn

HORN - SHAPE OPTIMISATION

... various ideas

PROBLEM: A GOOD CRITERIA FOR OPTIMISATION

- sensitivity of physics parameters (θ_{13}, δ_{CP}), BUT requires full simulation and also details on detector
- optimise
 ν spectrum in solid angle corresponding to detector → still too time consuming, requires full simulation of target, horn, decay tunnel and beam dump
- optimise π spectrum afer exiting horn

. . . OPTIMISE π SPECTRUM AFER EXITING HORN

- Using simple numerical Euler-integr. for fast π tracking through magnetic field
- Checked agreement with FLUKA, accuracy depends on stepwidth = compromise for smaller CPU time
- Could be improved using symplectic integr. algorithm. Has somebody experience? Suggestions and help are welcome.

π decay kinematics

Probability of ν_{μ} hitting detector depends on π -momentum and angle ($\delta = -\alpha$) \rightarrow more important to focus π 's with large momentum

$$P(\alpha, L) = \frac{1}{4\pi} \frac{A}{L^2} \frac{1 - \beta^2}{(1 - \beta \cos \alpha)^2}$$
 for dim(decay tunnel) $\ll L$

Accept π as "good" (or "background" for opposite charge), if α such that

 $P(\alpha) > 1/2 \times P(0)$

Christoph Bobeth

REOPTIMISING NUFACT HORN - PARAMETERS

- optimizing for longer Carbon target $L^{tg} = 78$ cm (previous Hg $L^{tg} = 30$ cm)
- removing reflector with current *I* = 600 kA introduced by Campagne/Cazes

Christoph Bobeth

Reoptimising NuFact Horn - Scan

- use π sample generated with FLUKA for C-target 10⁶ pot yielding 759914 π^+ and 498397 π^- at target exit (position, momentum)
- optimise horn for π^- focusing, since background suppression more important for $\bar{\nu}_{\mu}$ -run
- Iook for optimal ratio

 $R(\pi^{-}/\pi^{+}) = (\text{# of "good" } \pi^{-} \text{ with } p \in [0.5, 0.7] \text{ GeV})/(\text{# of "background" } \pi^{+})$

 π 's are counted when exiting the horn within a circular plane of R = 1 m

selection in plots:

red = ($R(\pi^-/\pi^+)$ < 20) && (18000 < # of "good" π^- with $p \in [0.5, 0.7]$ GeV) green = ($R(\pi^-/\pi^+)$ < 30) && (20000 < # of "good" π^- with $p \in [0.5, 0.7]$ GeV) ● sample contains 116689 π^+ and 77392 π^- with $p \in [0.5, 0.7]$ GeV

PARAMETERS VS $R(\pi^-/\pi^+)$

Christoph Bobeth

Phone meeting - WP2 - EURO ν

15th April 2010 14 / 17

Parameters VS (# of "good" π^- with p > 0.5 GeV)

Christoph Bobeth

Phone meeting - WP2 - EURO $\!\nu$

15th April 2010 15 / 17

"Best" 13 horns

z_0^{hn}	L ₁	L_2	R_1	R_2	R_3		$R(\pi^{-}/\pi^{+})$	# of π^-	# of π^+
[<i>cm</i>]	[<i>cm</i>]	[<i>cm</i>]	[<i>cm</i>]	[<i>cm</i>]	[<i>cm</i>]	[A]			
9.5	132.9	148.9	1.22	38.8	8.9	-290363	48.1	20832	433
16.6	149.5	136.2	1.60	65.6	7.8	-260182	48.5	20849	430
19.8	140.4	125.0	1.45	70.4	8.8	-284804	49.3	20359	413
-3.17	147.0	133.0	1.20	51.8	7.3	-252144	49.7	21316	429
16.8	135.6	148.2	1.37	80.7	6.7	-297522	51.1	21277	416
19.5	132.5	118.4	1.23	57.6	8.5	-265272	51.9	20147	388
13.0	149.5	124.4	1.46	46.4	9.2	-284583	52.2	21002	402
13.1	145.7	145.3	1.43	52.0	6.4	-295798	52.3	21667	414
1.31	148.9	122.2	1.24	68.5	5.5	-270165	54.0	21269	394
4.21	147.2	131.4	1.31	61.7	5.1	-294389	55.0	22608	411
12.6	142.4	139.2	1.22	43.9	5.8	-297794	57.8	20984	363
15.0	140.4	138.3	1.20	71.6	4.4	-278077	58.9	21142	359
15.8	141.0	98.34	1.22	49.3	9.3	-296638	60.2	21369	355
0.0	40.0	100.0	3.70	12.6	4.0	-300000	0.7	12979	17402

last line: Campagne/Cazes (no reflector), optimised for p = 600 MeV and Hg target L = 30 cm

Horns become large $L \sim 3$ m and $R \sim (0.5...1)$ m – even larger? To be done:

- check stability of results for small parameter variations
- check final $\sin^2(2\theta_{13})$ and δ_{CP} sensitivities
- check material effects (horn, decay tunnel)

"Best" 13 horns

Christoph Bobeth