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Empirical risk minimisation
Training and test data are drawn from the same
underlying probability distribution :

Ptrain(x , y) = Ptest(x , y)

This implies that minimizing the empirical risk on the
training set leads to low expected risk on the test set :

arg min
c∈C

f̂ (x), where f̂ (x) =
1
n

n∑
i=1

ℓ
(

c(x train
i ), y train

i

)
,

=⇒ ftest(x) = E(X ,Y)∼Ptest

[
ℓ(c(X), Y )

]
is small.

Statistical learning tasks : Detection | Classification |
Characterization of defects.
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But labeled defects data are scarce - fortunately.
And distributional shift happens.

Hardware differences and control set up (excitation
signal, sensors topology, sensors drift...)
Structure properties (geometry, density, conductivity,
etc.)
Environmental factors (temperature, humidity,
(structured) noise...)
Sim2Real gap
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Figure – Optimal Transport for Domain Adaption 1

One leverages distribution level regularity.

1. N. Courty et al., “Optimal transport for domain adaptation”, IEEE transactions on pattern analysis and machine intelligence, t. 39, no 9,
p. 1853-1865, 2016 .

Fred NGOLE 13/02/2026 8 / 26

Context



1. Context

2. Background

3. Spectral Embedding of Optimal Transport Plan

4. Experimental results

5. Conclusion

Fred NGOLE 13/02/2026 9 / 26



Kantorovich Relaxation of Optimal transport

Problem Setup : Let µs ∈ ∆ns and µt ∈ ∆nt be discrete probability measures supported on Xs = {xs
i }ns

i=1 and
Xt = {x t

j }nt
j=1. The Kantorovich formulation of optimal transport solves :

min
γ∈Π(µs ,µt )

∑
i ,j

Cij γij s.t Cij = ∥xs
i − x t

j ∥p

The solution γ∗ defines the optimal transport plan :

γ∗ = arg min
γ∈Π(µs ,µt )

∑
i ,j

Cij γij ,

where Π(µs , µt ) = {γ ≥ 0 | γ1nt = µs , γ⊤1ns = µt }.

Remarks :
Scales in O(n3 log n) with the number of samples, not suitable for large scale adaptation tasks.
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To improve computational efficiency and ensure smooth
transport plans, a proposed a regularized optimal
transport :

Entropy-Regularized Optimal transport

γ∗ = arg min
γ∈Π(µs ,µt )

⟨C, γ⟩F − εH(γ)

where
H(γ) = −

∑
i ,j

γij (log γij )

is the entropy of γ, and ε > 0 controls the regularization
strength.

Advantages :
Converges exponentially.
Quadratic complexity in the number of samples.

a. M. Cuturi, “Sinkhorn distances: Lightspeed computation of optimal
transport”, Advances in neural information processing systems, t. 26, 2013 .

Figure – Visualization of the entropy regularized optimal transport.
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Dataset Dictionary Learning for domain
adaptation a, b

a. E. F. Montesuma et al., “Multi-source domain adaptation
through dataset dictionary learning in wasserstein space”, in ECAI
2023-European Conference on Artificial Intelligence, t. 372, 2023,
p. 1739-1746.
b. E. F. Montesuma et al., “Optimal Transport for Domain

Adaptation through Gaussian Mixture Models”, Transactions on
Machine Learning Research,

For a set of datasets Q = {Q̂ℓ}N
ℓ=1, atoms P = {P̂k }

and A {αℓ}N
ℓ=1,

∑
k αℓ,k = 1, we propose the Dataset

Dictionary Learning (DaDiL) framework through,

(P ⋆, A ⋆) = P , A
1
N

N∑
ℓ=1

L (Q̂ℓ,BP (αℓ)),

︸︷︷︸
Reconstruction

= B
(

[ αℓ1︸︷︷︸
Representation 1

, αℓ2, αℓ3]; {︸︷︷︸
Atom 1

, , }
)

L (Q̂ℓ,BP (αℓ)) = W2

(
︸ ︷︷ ︸

Dataset

,

︸ ︷︷ ︸
Reconstruction

)
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Entropy-Regularized Optimal transport

γ∗ = arg min
γ∈Π(µs ,µt )

⟨C, γ⟩F − εH(γ)

where
H(γ) = −

∑
i ,j

γij (log γij )

is the entropy of γ, and ε > 0 controls the regularization
strength.

Entropic bias
The entropic regularization biases the domain
alignment.
The weaker the regularization, to lower its numerical
benefits.
There is no simple rule to set ϵ.

Can we mitigate the bias and keep the computational
benefit of the entropic regularization ? Figure – Visualization of the entropy regularized optimal transport.
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From Graph to Spectral Embedding
Graph G = (V , E , W ) with adjacency matrix :

Aij =
{

wij , (i , j) ∈ E ,
0, otherwise.

Normalized Laplacian :

Lsym = I − D−1/2AD−1/2, where D : degree matrix

Spectral embedding F ∈ Rn×k obtained by :

F ∗ = arg min
F⊤F=I

Tr(F ⊤LsymF )

using eigenvectors corresponding to the k smallest
eigenvalues 0 = λ1 ≤ λ2 ≤ · · · ≤ λk .
Embedding → well-separated clusters (nodes of the same
class group together).

Figure – Spectral embedding intuition
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Consider a labeled source domain Ds = (X s , µs), and
an unlabeled target domain Dt = (X t , µt ), we solve
the entropy regularized OT problem to obtain γ∗ :

γ∗
s→t =


γ

si
11 γ

si
12 ... γ

si
1ni

s
γ

si
21 γ

si
22 ... γ

si
2ni

s
...

...
. . .

...
γnt 1 γnt 2 ... γnsnt


The corresponding adjacency matrix of the bipartite
graph is :

A ∗ =
[

0 γ∗
s→t

(γ∗
s→t )

⊤ 0

]
.

The Resulting spectral embedding i.e, by computing
Lsym and solving for F ∗, produces a domain-invariant
and discriminative representation for classifier
training.
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Represent multiple domains {D i
s} and Dt as a star graph by connecting them via a Wasserstein barycenter

Db, thus A ∗ will be :

A ∗ =


0 γ∗

b→s1
... γ∗

b→sNs
γ∗

b→t

(γ∗
b→s1

)⊤ 0 ... 0 0
...

...
. . .

...
...

(γ∗
b→sNs

)⊤ 0 ... 0 0
(γ∗

b→t )
⊤ 0 ... 0 0


Spectral embedding F ∗ represents the nodes of the graph onto an euclidean space suitable for classification.

Figure – SEWP approach
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Datasets
MSD (Music-Speech Discrimination)

Domain shifts : noise conditions
Samples : 128 excerpts (64 music + 64 speech)
Features : 56
Task : Classification (2 classes)

MGR (Music Genre Recognition)
Domain shifts : varying noise conditions
Samples : 1,000 recordings
Features : 56
Task : multi-class classification (10 genres)

CS-RT (Cable fault diagnosis)
Domain shifts : 3 compression factors + different physical
caracteristics
Samples : 200 signals per domain
Features : 512
Task : 4-class classification (no fault, soft fault, short,
open circuit)
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Benchmark MSD MGR
Domains Noiseless Buccaneer2 Destroyerengine F16 Factory2 Average Buccaneer2 Destroyerengine F16 Factory2 Average
Source-only ∗ 67.99±8.62 82.43±1.75 51.57±2.56 88.89±2.72 50.02±2.21 68.18±3.47 22.90±0.84 38.25±0.91 51.57±1.11 47.80±0.34 40.13±11.07
KMM ∗ 74.64±6.70 87.12±2.79 52.35±2.94 74.86±5.58 50.41±2.17 67.88±4.04 21.75±0.99 39.25±0.66 49.81±1.69 47.37±0.71 39.54±10.99
TCA ∗ 50.01±2.53 90.43±1.40 87.14±4.99 95.12±2.02 84.76±3.30 81.49±2.75 58.95±1.27 60.67±2.07 68.75±2.11 59.82±0.50 62.04±3.91
OT-IT ∗ 89.46±1.22 89.26±1.56 82.84±2.78 84.97±3.09 91.21±2.04 89.76±2.34 56.35±0.84 61.92±1.64 66.72±1.86 61.77±1.65 61.69±3.67
OT-Laplace ∗ 90.44±1.37 87.28±2.97 84.38±1.76 86.14±2.79 90.61±1.68 87.27±2.11 58.02±1.45 60.47±1.75 66.55±1.60 63.87±1.51 62.23±3.24
JCPOT ∗ 65.66±5.71 92.55±2.11 87.89±1.39 88.67±1.67 82.41±2.22 83.44±2.62 35.87±0.41 48.47±2.97 51.92±3.25 51.95±1.75 47.05±6.60
JCPOT-LP ∗ 12.89±1.67 89.06±1.38 84.97±3.23 90.24±1.71 86.13±1.88 72.66±1.97 36.40±0.39 52.92±1.32 56.30±0.37 51.52±2.28 49.28±7.62
WBT ∗ 52.74±3.82 56.88±9.54 56.63±6.88 56.63±6.56 59.38±2.61 58.56±4.80 21.37±2.25 24.30±2.71 25.30±6.02 22.70±2.25 23.41±1.50
WBTreg ∗ 94.34±2.55 96.27±1.60 92.98±1.38 94.92±0.68 96.87±0.94 95.08±1.43 70.60±1.27 83.05±0.97 84.40±1.71 90.17±0.46 82.05±7.13
Target-only ∗ 96.88±2.97 90.51±3.98 93.07±3.81 89.23±4.25 92.30±3.62 92.40±3.73 67.43±1.43 67.96±2.91 66.86±2.00 68.37±1.87 67.41±0.56
SPOT 2 99.22±0.00 96.61±0.97 97.40±0.37 95.31±0.00 98.70±0.37 97.45±0.34 45.53±0.12 61.63±0.31 58.17±0.12 70.77±0.19 59.03±0.19

Table – Classification results on the MSD and MGR benchmarks. ∗ denotes results reported from 4, except for the Noiseless
domain and the overall average across all domains for MSD. Each column shows results with that domain as target, with values
reported as mean accuracy ± standard deviation, averaged over three independent runs.

2. A. D. S. Saoud et al., “Beyond Mapping: Domain-Invariant Representations via Spectral Embedding of Optimal Transport Plans”, arXiv preprint
arXiv:2601.13350, 2026 .
3. E. F. Montesuma et F. M. N. Mboula, “Wasserstein barycenter for multi-source domain adaptation”, in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2021, p. 16 785-16 793.
4. E. F. Montesuma et F. M. N. Mboula, “Wasserstein barycenter for multi-source domain adaptation”, in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2021, p. 16 785-16 793.
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Benchmark CS-RT
Algorithm CF16 CF4 CF2 Phys. Average
Source-only 23.00±0.00 28.00±0.00 51.00±0.00 47.00±0.00 37.25±0.00
KMM 23.00±0.00 25.00±0.00 45.00±0.00 44.50±0.00 34.38±0.00
OT-Laplace 18.00±0.00 25.50±0.00 46.50±0.00 54.50±0.00 36.12±0.00
JCPOT 29.50±0.00 30.00±0.00 30.50±0.00 41.00±0.00 32.75±0.00
JCPOT-LP 24.50±0.00 25.00±0.00 26.00±0.00 4.50±0.00 20.00±0.00
WBT 20.00±0.71 19.67±1.55 31.00±2.86 30.00±6.48 23.75±2.32
WBTreg 28.83±0.24 16.17±0.24 52.17±3.88 38.50±2.55 33.92±1.73
SPOT 49.90±3.72 62.88±1.17 65.90±0.64 69.59±5.70 62.07±2.25

Table – Results for Compressed Sensing Reflectometry Dataset. Each column shows results with that domain as target.
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Observations : How to choose k and ϵ ?
As k ↑, accuracy and spectral gap ↑.
Maximum Spectral gap at Nc indicates well-separated
connected component.
More descriminative embedding.
Provides a way to select ϵ.
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We proposed SPOT a domain adaptation method for addressing distributional shifts, our contributions are as
follow :

A novel perspective on the optimal transport plan, using it to construct a graph that connects domains, later
embedded into a discriminant and domain invariant representation rather than explicit mapping.

We propose a multisource domain adaptation algorithm in this framework.

We evaluate and compare SPOT with the SOTA methods on benchmarks datasets + a cable defects
diagnosis use case based on time domain reflectometry, Achieving the best penformance on most benchmarks.

Ongoing work : estimating eigenfunctions of a space continuous transfer operator, which will provide
out-of-sample embeddings + end-to-end optimization.
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