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Context

= NDE team at CEA List : ~ 110 staff members * Three-fold R&D activity * Experimental & numerical platforms
including 25 PhD & post-doc

= Large industrial partnership in main sectors
concerned by NDE

= Strong academic collaborations : through CIVA
network, National, European and International
projects, ...

SIMULATION

Addressing the main NDE modalities:
Ultrasound, Electromag. (ET,...), X-Ray & CT, Guided
Waves, Thermography (IR), ...

ExpressIF
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Context

g Fred NGOLE

Empirical risk minimisation
Training and test data are drawn from the same
underlying probability distribution :

Ptrain(xay) = PteSt(X!y)

This implies that minimizing the empirical risk on the
training set leads to low expected risk on the test set :
n
1

. % i _ train train
argrcnelg f(x), where f(x) = - ZZ(C(X, )sYi ) )
i=1

= fest(X) = E(x )i [L(C(X), V)] is small.

Statistical learning tasks : Detection | Classification |
Characterization of defects.
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Context

But labeled defects data are scarce - fortunately.
And distributional shift happens.

m Hardware differences and control set up (excitation
signal, sensors topology, sensors drift...)

m Structure properties (geometry, density, conductivity,
etc.)

m Environmental factors (temperature, humidity,
(structured) noise...)

m Sim2Real gap

where is‘i'r'd.ness2?
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ConteXLtAPT cheat-sheet
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Source- [ regulartranstertr® T"":"ﬂmekrzﬂ:'slst::‘
TransferTreeClassifie
https://adapt-python.github.io/adapt Free RegularTransferLC* -
No

RegularTransferNN®
Tm FineTuning®

Get data
or model

Source
model?

PRED’
Linint”

TrAdaBoostR2®

(I TwoStageTrAdaBoostR2®

Source
DA

‘es, and | want to |
exploit this i ion |

ccsat ——
FADA!

Multiple
sources?

Source
data?

o, or I don’t
want to exploit
this information

>1000
labels?

Target
labels?

Hidden Covariate Shift
Toward features

'SDA : Supervised Domain
Adaptation

SSDA : Semi-Supervised Domain
Adaptation

UDA : Unsupervised Domain
Adaptation

* Covariate-shift is  generally
assumed when the support of the
target distribution is included in the
source support. If o transiation
between  source and  target
distributions is suspected, the hidden
covariate-shift assumption is rather
gssumed.

NearestNeighborsweighting!®
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Context

Dataset Optimal transport

++ Class 1
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Figure — Optimal Transport for Domain Adaption !

One leverages distribution level regularity.

1. N. COURTY et al., “Optimal transport for domain adaptation”, |EEE transactions on pattern analysis and machine intelligence, t. 39, n® 9
p. 1853-1865, 2016 .
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Background

Kantorovich Relaxation of Optimal transport

Problem Setup : Let us € A and p; € A™ be discrete probability measures supported on Xs = {Xf}fil and
Xt = {x/’}/n;1 The Kantorovich formulation of optimal transport solves :

min Zcﬂ,—j st Cj=x¥ —x|IP
i

YEM(ps,put)

The solution v* defines the optimal transport plan :

y* =arg min Z Ciips

YEN(ps,1it)

where  M(ps, ) = {7 > 0| yln, = ps, v 1ng = put}-

Remarks :

m Scales in O(n3log n) with the number of samples, not suitable for large scale adaptation tasks.
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Background

To improve computational efficiency and ensure smooth

transport plans, @ proposed a regularized optimal
transport :

Entropy-Regularized Optimal transpo

7v" =arg min (C,v)r —eH(v)
YEN(ps,put)

H(y) = Z 7;i(log ;)

is the entropy of v, and € > 0 controls the regularization
strength.

where

Advantages :

m Converges exponentially.

m Quadratic complexity in the number of samples.

®  Source Class 0 ®  Source Class | °

a. M. CUTURI,
transport”

Unlabeled Target

“Sinkhorn distances: Lightspeed computation of optimal
, Advances in neural information processing systems, t. 26, 2013 .

g Fred NGOLE

Figure — Visualization of the entropy regularized optimal transport.
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Background

Dataset Dictionary Learning for domain
adaptation ?, ©

For a set of datasets Q = {O[}Q’zl, atoms P = {Py}
and ﬂ{al}yzl, Zk oy =1, we propose the Dataset
Dictionary Learning (DaDil) framework through,

N
(P*,4*) =P, ﬂ% Z L(Qu, Br (o)),
=1

£

B :3([ Qo ,042,a43};{@’%’i})

a. E. F. MONTESUMA et al., “Multi-source domain adaptation

through dataset dictionary learning in wasserstein space”, in ECA/ S~ Representation 1 SN~
2023-European Conference on Artificial Intelligence, t. 372, 2023, Reconstruction Atom 1
p. 1739-1746.

b. E. F. MONTESUMA et al., “Optimal Transport for Domain
Adaptation through Gaussian Mixture Models", Transactions on

Machine Learning Research, N }1‘}% r-'{?"&
LQnBrte) =wo Ty TR )
L

—_—— ——
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3. Spectral Embedding of Optimal Transport Plan
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Motivation

Entropy-Regularized Optimal transport
1

7* = arg min <C! ’Y>F - EH(’Y) R
YEN(ps.pit)

Sinkhorn Transport: Couplings

where

H(v) = Z 7ji(log ) -

is the entropy of v, and € > 0 controls the regularization °
strength. 2

Entropic bias

m The entropic regularization biases the domain

alignment.
m The weaker the regularization, to lower its numerical -2

benefits. - ’ o ¢ )
m There is no simple rule to set e. ©  Source Class 0 @ Source Class | ©  Unlabeled Target

Can we mitigate the bias and keep the computational
benefit of the entropic regu|arization ? Figure — Visualization of the entropy regularized optimal transport.
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Spectral Embedding of Graphs

m Graph G = (V, E, W) with adjacency matrix :

0, otherwise.

m Normalized Laplacian :

Loym = | — D_1/2AD_1/2, where D : degree matrix Spoctral cnﬂbcddi:g of € vertices
m Spectral embedding F € IR"K obtained by : N .! -
.
F* = arg min Tr(FTLsymF)
FTF=I = oo
using eigenvectors corresponding to the k smallest "
eigenvalues 0 = A1 < A2 < -+ < Ay R ...9.'
m Embedding — well-separated clusters (nodes of the same 5 o 5 I =
class group together). i

Figure — Spectral embedding intuition
Fred NGOLE 13/02/2026 15 / 26



m Consider a labeled source domain Ds = (Xs, us), and
an unlabeled target domain D¢ = (X¢, put), we solve
the entropy regularized OT problem to obtain v* :

Si Si Si
M1 Mz o Ty
Si ~Si Si N
* |21 Y22 o ’Y;,,rs
Vst =
Aml Ynp2 Ynsny

m The corresponding adjacency matrix of the bipartite
graph is :

4% = [ 0 ’Y;HI:| A
(’V;Ht)—r
m The Resulting spectral embedding i.e, by computing
Lsym and solving for F*, produces a domain-invariant
and discriminative representation for classifier
training.

Fred NGOLE
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Dy, thus A* will be :

Spectral Embedding of Optimal Transport Plan - Multisouréé

) B
m Represent multiple domains {@5’} and D; as a star graph by connecting them via a Wasserstein barycenter

* * *
0 ’ybasl ’YbasNS Vot
* T
(’yb—)Sl ) 0 0
54* _ .
* T
(’Yb%s,vs) 0 0 0
* T
(i, 0 . 0 0
m Spectral embedding F* represents the nodes of the graph onto an euclidean space suitable for classification
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4. Experimental results
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Experiments

m MSD (Music-Speech Discrimination)

m Domain shifts : noise conditions

m Samples : 128 excerpts (64 music + 64 speech)
m Features : 56

m Task : Classification (2 classes)

m MGR (Music Genre Recognition)

m Domain shifts : varying noise conditions

m Samples : 1,000 recordings

m Features : 56

m Task : multi-class classification (10 genres)

m CS-RT (Cable fault diagnosis)

m Domain shifts : 3 compression factors + different physical
caracteristics

m Samples : 200 signals per domain

Features : 512

m Task : 4-class classification (no fault, soft fault, short,
open circuit)

B Fencole 13/02/2026 19/ 26



Results

Benchmark MSD MGR

Domains Noiseless Buccaneer2 Destroyerengine F16 Factory2 Average Buccaneer2 Destroyerengine F16 Factory2 Average
Sourceonly * | 67.99:562 82431175 51571055 88891270 50025122 | 68181347 | 22901004 38251001 51571111 47805034 | 401311107
KMM * 74.64.670  87.121570 52.35 0.0 74861555 5041217 | 67.881400 | 21.75:000 39.25 0,66 49811160 4737107 | 395411000
TCA * 50014053 90431140 87141400 0512400  84.764330 | 81494575 60.674207 68.754011  59.824050 | 62.04130
OT-IT * 89.464120 89261156 82.84,4575 84.974300 91214008 | 89.764234 61.92.1 64 66724185 61771165 | 61.69.367
OT-Laplace * | 90.44513; 8728127 84.3811 76 86141070  90.61i1gs | 87.27:211 60471175 66551160  63.87415 | 62.231320
JCPOT * 65.66.571  92.55i211 87.89,1 30 88.67.1167  82.41i22 | 83.44106 48474097 512,355 51954175 | 47.051660
JCPOT-LP * | 12.89.,6;  89.06:138 8497303 0024417, 86134185 | 72.66:107 52.92,1 3 56.304057  51.52:205 | 49.28476>
WBT * 52.74138 56.889.54 56.6316.88 56.6316.56 59.381261 58.564.80 24.301271 25.3016.02 22.701225 23.411150
WBT e * 94344755 96.27.1.60 92.984138 94.92:068 96.8710.94 95.081143 . 83.0510.07 84401171 90.171046 82.0517.13
Target-only * 96.8815.97 90.51+3.03 93.074381 89.23. 425 92304362 92404373 67.4311.43 67.9612.01 66.86-2.00 68.3711.87 67.411056
SPOT? 99.22,.9.00 96.61.0.97 97.40.0.37 95.31:9.00 98.70.0.37 97.4510.34 45.5310.12 61.6310.31 58.1710.12 70.77+0.19 59.0340.19

Table — Classification results on the MSD and MGR benchmarks. * denotes results reported from*, except for the Noiseless
domain and the overall average across all domains for MSD. Each column shows results with that domain as target, with values
reported as mean accuracy =+ standard deviation, averaged over three independent runs.

2. A. D. S. SA0UD et al., “Beyond Mapping: Domain-Invariant Representations via Spectral Embedding of Optimal Transport Plans”, arXiv preprint
arXiv:2601.13350, 2026 .

3. E. F. MonTEsuMA et F. M. N. MBoULA, “Wasserstein barycenter for multi-source domain adaptation”, in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021, p. 16 785-16 793.

4. E. F. MONTESUMA et F. M. N. MBOULA, “Wasserstein barycenter for multi-source domain adaptation”, in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021, p. 16 785-16 793.
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Results

Benchmark CS-RT

Algorithm CFig CF4 CFs Phys. Average
Sou rce—only 23-00i0.00 28.0010_00 51-00i0.00 47.0010_00 37.2510_00
KMM 23.001000 25.004000 45.004000 44.501000 | 34.384000
OT-La pIace 18.00:|:0_00 25.50:|:0_00 46.50:|:0_00 54.50:|:0_00 36.12:|:0_00
JCPOT 29.504000 30.0040p00 30.50+900 41.004000 | 32.75+0.00
JCPOT-LP | 24504000 25.004000 26.001000 4.504000 | 20.0040.00
WBT 20.004071 19.6711s5 31.0041086 30.004645 | 23.751230
WBT reg 28.834024 16.171024 52.174383 38.504055 | 33.924173
SPOT 49.90:1:3.72 62.88:|:1.17 65-90:|:0.64 69.5915_70 62.07;&2_25

Table — Results for Compressed Sensing Reflectometry Dataset. Each column shows results with that domain as target.

g Fred NGOLE
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2

Sensitivity to Hyperparameters
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How to choose k and €?

Observations :

m As k 1, accuracy and spectral gap 1.

m Maximum Spectral gap at N; indicates well-separated
connected component.

m More descriminative embedding.

m Provides a way to select e.

16 factory2

B0 1ms 0 25 50 75 0o 123 150 17T 200
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5. Conclusion
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Conclusion

m We proposed SPOT a domain adaptation method for addressing distributional shifts, our contributions are as
follow :

m A novel perspective on the optimal transport plan, using it to construct a graph that connects domains, later
embedded into a discriminant and domain invariant representation rather than explicit mapping.

m We propose a multisource domain adaptation algorithm in this framework.

m We evaluate and compare SPOT with the SOTA methods on benchmarks datasets + a cable defects
diagnosis use case based on time domain reflectometry, Achieving the best penformance on most benchmarks.

m Ongoing work : estimating eigenfunctions of a space continuous transfer operator, which will provide
out-of-sample embeddings + end-to-end optimization.
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