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Component separation

X=AS+N

Blind Source Separation (

2. We don't know A

- /
. Problem —

- Prioron Aor S

. oparsity on o: GMCA

(

Bopin, Starck et al.

2007)
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BSS: X=AS+N

Sparsity-based algorithms
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Sparsity-based algorithms

BSS: X=AS+N

Two steps iterating algorithm
(i.e. GMCA):

1) msinuY—A-Su%

: - - 2
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- Impose sparsity on o
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Sparsity-based algorithms

BSS: X=AS+N
Two steps iterating algorithm
(i.e. GMCA):
1) min|lY-A-S|; - Impose sparsity on S
2) minfly™ - A N - With any denoiser:
Starlets (GMCA)
UNet
Transformers
SiafleESanc e =ns
L.earnlets
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< : Learnlets are trained priorly on each components i or global



What are learnlets?
(Ramzi et al., 2021, Bonjean et al., 2026)

An hybrid denoiser combining expressivity of deep learning
and mathematical properties of wavelets
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What are learnlets?
(Ramzi et al., 2021, Bonjean et al., 2026)

An hybrid denoiser combining expressivity of deep learning
and mathematical properties of wavelets

— Extension of wavelets (sparse)
— Filters are learned (CNN)

— Mathematical frame (component separation)
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lLearnlet network architecture: a denoiser

Analysis &  Threshold &  Synthesis &

/ nf+1 filters nf+1 filters

J\al/ * mjﬂ ..... ka(,- mjﬂ *

Starlet
/ transfgrgz * [[UU .3 » Z /

|f 0=O: 0(1

St

L 4 Output
Input / / de-
.n0|sy a3 noised
mage Image

J—1
Y=0a+ Z ST (A(a)), k; X o).
=1

]:

/ Function of the noise level / Bonjean et al., 2026 Y
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Training learnlets

10.000 images from ImageNet:
8.000 training

1.000 validation
1.000 test

18



Training learnlets
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Training learnlets

10.000 images from ImageNet:

8.000 training
1.000 validation
1.000 test

Significant lower
numbper of free

4= UNet-8 (239440)
UNet-64 (15319680)

-4 Learnlet (12800)

parameters

40
. Performance ot
= networks on the test set
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Training learnlets

10.000 images from ImageNet:

8.000 training
1.000 validation
1.000 test

Significant lower
numbper of free

-p-- UNet-8 (239440) pal’ametel’s
4= UNet-64 (15319680)
40 --4-= Learnlet (12800)
~ Performance of
35
= N\t networks on the test set
=
& ¥ ““L{
_— kg b i GitHub:
...... Rl . X X .
P g, .| https://github.com/vicbonj/

00 o A o p - learnlet.git
(PyTorch, pre-trained loaded Weigﬁts)
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Threshold value
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Training learnlets
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Training learnlets
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Learnlet Component Separator (LCS): results

Learnlets trained for each components i:
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Learnlets trained for each components i:

DTD texture dataset (Cimpoi et al, 2014), 120 images per 47 classes, here focused on

2 classes:
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Learnlet Component Separator (LCS): results

Learnlets trained for each components i:

DTD texture dataset (Cimpoi et al, 2014), 120 images per 47 classes, here focused on

2 classes:

§
— il

banded doﬁed

One training per class: &, j.q and &£ 4 eq With 119 images (transter learning from

L[

—
ImageNet)
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LCS on the sphere: application to CMB data



LCS on the sphere: application to CMB data

Analysis Threshold Synthesis &

nf+1 filters

Starlets transtorm computed on the _} mj

1+ 1 filters

sphere with alms at each iteration (or
not?




LCS on the sphere: application to CMB data

WebSky numerical simulations (Stein et al., 2020) of the millimetre sky in HEALPIX
at Nside=512 in 5 Planck HFIl Frequencies:

3 components: CMB, SZ, CIB  |nvalid linear model!



LCS on the sphere: application to CMB data

WebSky numerical simulations (Stein et al., 2020) of the millimetre sky in HEALPIX
at Nside=512 in 5 Planck HFIl Frequencies:

3 components: CMB, SZ, CIB  |nvalid linear model!

One training per class: L yp, g7 and £ (transfer learning from ImageNet)



— Websky CMB
— GMCA n=5
— 5LCS n=5

400 600 800 1000 1200 1400
2




— Websky SZ
— GMCA n=5
— 5LCS n=5
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— Websky SZ
— GMCA n=5
— 5LCS n=5
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Summary

e New BSS algorithm based on learnlets: LCS (combining expressivity of
deep learning and mathematical properties of wavelets)

e QOutperforms state-of-the-art BSS algorithms
 To the sphere

e Combined with deconvolution (Sia’s talk)

 Promising for SKA (HI extraction) and SO, Litebird (CMB, SZ, dust)

Next steps

® Frror estimation?

* |nclude beams, foregrounds and deconvolution in CMB data



