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The quest for resolution
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The quest for resolution

Euclid (Visible-Infrared) Hubble (Infrared) Webb (Infrared)

https://science.nasa.gov/asset/webb/horsehead-nebula-euclid-hubble-and-webb-images/
Image processing by J.-C. Cuillandre (CEA Paris-Saclay) and G. Anselmi
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Learning based Super-Resolution

Clean (Ground Truth u)

f

f is a deep neural network or "any class” e.g.

e convolutional

e autoregressive (transformer)
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Non “trainable” regimes

Observed (Noisy d)

TV Reconstruction

ESA OPS-SAT
2022-2024
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Classical minimization approach

Observed (Noisy d)
TV Reconstruction

limitations
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Convex Variational Restoration with
Global Feature Statistics via
Probability Kernel (Measure) Lifting

Nikos Arvanitakis
Jean-Luc Starck
Jalal Fadili
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Concept

min, F(u)+ R(u)+ D(f(u),S)

—

Statistics S
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”Training Set”
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Measure Lifting and Mean-Relaxation

From Scalars to Distributions
Replace single-valued image u(x) with a kernel field {v,}.cq, where v, is a
probability distribution:

u() = By, 7] = / Y ()

Feature Lifting via Operators B,
For linear features vy = Byu (e.g., gradients, filters), enforce the mean-
preserving constraint:

E _ wlz] = (Bru)(y)

2y
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Encoding Global Statistics

Linearizing Global Statistics
In this lifted space, the global feature histogram pu; is the spatial average of local

kernels:
1

_ (k) g
Q| Ja, 7

Mk

Because ju, is now a linear function of the kernels (%) the statistical penalty
E(ui) becomes a convex term in the optimization problem.
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The Wasserstein-TV (WTV) Regularizer

Limitations of Standard TV
Standard TV regularizes only the mean image, allowing local kernels to ”spread”
erratically if the averages remain smooth.

The Wasserstein-TV (WTV) Regularizer
WTV regularizes the kernel field  — v¥ directly by penalizing differences be-
tween neighboring distributions measured by a Wasserstein distance.

WTV( )~ Y W)
(2,7)EN
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The Mean-Relaxed Restoration Problem

The final restoration problem is a large-scale convex program:

J(u) = /Qp(a:, u(x))de + TV (u) + Z E(Bru)

Key Technical Advantages

e Global Optimality: Convexity ensures convergence to a global minimum.

e Arbitrary Features: Can enforce statistics for intensities, filter responses,
or directional derivatives.
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Indicative results

Clean Observed Reference Reconstruction
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Multi-source data fusion: Astronomy

Prar=0.00
58774170834360243

Poar=0 25
58772892417241196

-

Prar=0.35
587726016161448090

Prer=0.43
588297863115374695

Poar=0 55
587738615414718507

-

Poar=0 65
587736586050207931

Prer=0.79
587724648184938507

SDSS
e Optical (u, g, r, i, z bands) .
 Moderate spatial resolution .
* Massive catalog with
spectroscopy

Poar=1 00
587728669874126911

ZTF
High-cadence optical
Light curves
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Exemplary fusion pipeline

Raw Data

o T

M ASTROPHYSICS

Convolution L1

PoolingL1  Convolution L2 Pooling L2

Convolution L1

I— 1D CNN
% %S
m WS

Pooling L1~ Convolution L2 Pooling L2

Features 1
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Multi-source data fusion: Earth Observation

In-situ Remote Sensing
+ High quality + Global coverage
+ High temporal + Modgrate temporal
. resolution
resolution _
. - Coarse-resolution
- Localized
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Numerical models

+ Capture physical laws

+ Flexible
spatial/temporal
resolution

- Expensive
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ML-based retrieval

* XGBoost: regularized (L1 & L2) Gradient Boosting

DDM
SNR
CLAY
ELEVATION o
Question  |[Mianswer [N
What is the Soil Moisture  0.02 cm3/cm3 o

How certain are you ?7?
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Probabilistic regression

* NGBoost: Natural gradient boosting for probabilistic prediction

RMSE [-m3/m3] ubRMSE [-m3/-m3]
—— Predicted mean [P b, VS
"""""" 95% prediction interval
" SMAP 0.103 (0.005) 0.151 (0.007)
(baseline)
CYGNSS 0.055 (0.002) 0.059 (0.001)
(XGBoost)
x CYGNSS 0.058 (0.003) 0.060 (0.001)
NGBoost
XGBoost NGBoost ( )
0.7 o7
X o:.‘ 06 H ;
06 . '
& 05 ) 5 2T 1
g 04 § 041
g 03 E 03
E 02 E, 02
011 01
00 1 00
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Data Assimilation (DA)

Data assimilation determines how much model states should be updated based

on the observed model output.

y: = Hixy + vy,

X = Myxp_1 + wy,

Vi v Nmt (Oa Rt)a
Wi Nn(oa Qt)ﬂ

y; is the observed data vector, x; is the unobserved state vector

update ansamba
EnKF| rnF:jrnbms xi
Lol observation
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X o
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Multi-Source Uncertainty Aware
Fusion for Soil Moisture
Estimation

L. Polychronakis
M. Moghaddam (USC)
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Proposed approach
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Observations
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Applications in astrophysics

Light curves

Fiaw hght cure &
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Gaussian fusion

Retrieval Forecasting
e x;” € R%: remote sensing observations e Input yg_),r 11.4: OM over a window of size 7.
() d, . . . :
o 7, € R%: ancillary observations e Output ?J&)At c R: SM at t + At
o ygi) c R: surface soil moisture value at time ¢.
N o/ N o/ .
Eretrieval — Z (ﬁ(y(z) - I«L)2 + 10g O’) ﬁforecasting — Z (ﬁ(ygﬂAt — /«5)2 + log 0) .
i=1 i=1
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Case study: soil moisture

I Direct
GPS Signal
Satellite

SoilSCAPE Sites
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Performance metrics

ubRMSE
Site Retrieval Forecast Combined
JR-1 0.0281 0.0318 0.0282
JR-2 0.0197 0.0242 0.0203
JR-3 0.0248 0.0310 0.0247
Kendall 0.0411 0.0462 0.0387
Lucky Hills 0.0357 0.0450 0.0356
Z1 0.0442 0.0608 0.0522
74 0.0322 0.0404 0.0309
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Expected Calibration Error

ECE Metrics Comparison Across Sites

ECE Values
=

B ECE Retrieval
W ECE Forecast
ECE Combined

z4

jrl jr2 jr3 kendall lucky_hills z1
Sites
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Limitations

e Gaussianity: each expert is reduced to (u, 0?); skew /heavy-tailed errors
are not represented.

e Variance-sensitive: Inverse-variance fusion always reduces o; if assump-
tions fail, the reduction is too aggressive — overconfidence.

e No quality gating: intermittent/low-quality retrievals can dominate if
they report small 0.
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Fusing predictive distributions
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T

e We combine pet (y:) and peest (3¢ ) into a single prusea(ye)-

e Wasserstein-2 barycenter: minimizes the (weighted) sum of squared
Wasserstein distances to the experts.

Funded by
the European Union

. TITAN F 'I'
l@ ARTIFICIAL INTELLIGENCE '-'!-"._'f'-:;.'_-'-‘-: 0 H H I l |
= N ASTROPHYSICS NSTITUTE OF COMPUTER SCIENCE

| Sy ® & CosmoSTaT CR2




Distances between distributions

e Standard L, distance (between densities):

b=l = ([ () - q(w>>2da:)1/2

e Wasserstein-2 distance (“earth mover”):

W2(p.g) = inf / (@ 9)? dn(ay)

mell(p,q)

where II(p, q) is the set of couplings with marginals p and gq.
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Wasserstein path
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Wasserstein Barycenter fusion (1D)

e We fuse retrieval and forecast by minimizing W3 distances:

Pfused = arg Hgl’l w I/VZ2 (papret) + (1 - ’LU) VVQ2 (pvpfcst)

e In 1D, W5 has a closed form via quantiles:
! 2
Wi.0) = | (Qulr) = Qulr))’ ar

e And the barycenter is quantile averaging:

qused (T) — W Qret (T) + (1 — w) chst (T)

TTAN .. SFORTH o | ® & CosmoSTaT C22
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Indicative behavior
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State-space models

The Forecast Backbone: State-Space ARIMA

Ty = Are g +we,  wy ~N(0,Q)
ye = Hry + vy, v ~ N(0,R)

Kalman Filtering for Gaps and Latency: If data is missing or delayed, the
?Update” step is skipped, but the ”"Predict” step still valid:

Tjp—1 = AT qp—1, P11 = APt—1|t—1AT +Q

Adaptive Weighting with Forgetting

min 34Ky — (wm (k) + (1 = w)my (k)))’

e wel0,1] k<t
5 ;rlsg_\?g;m FOHTH |||| ‘ f;gbliir::essing m @ EDSMDSTAT %% Funded by
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Results

d‘@ ® Retrieval
@ Forecast
0.16 - ® Combined W2
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