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How to constrain cosmological parameters?

For which we have/assume an
analytical likelihood function

p(t=ty|0)

[ikelihood — connects our

compressed observations to the
cosmological parameters

Tl B

. t=f(2) N

S b e N p (9 | t = tO) XP (t = 1o ‘ 9)29(9)
b e N —_— T
I o I\ posterior likelihood  prior
o o Wavjr?:mber k [h 1\/111)0-1 ] o

Credit: Justine Zeghal

ARGOS-TITAN-TOSCA workshops
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2pt vs higher-order statistics

Using Power Spectra for constraining
cosmological parameters misses the
non-Gaussian information in the field.

Py (k) [(h~'Mpc)?]

Credit: Justine Zeghal
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2pt vs higher-order statistics

Using Power Spectra for constraining
cosmological parameters misses the
non-Gaussian information in the field.

30

107 -

P(k) [h~3 Mpc?]

102 -

101 -

1071 10°
k [h Mpc~1]

Cosmic web Gaussian random field

Credit: Justine Zeghal
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2pt vs higher-order statistics

B Map-level DES Y3: C;, x CNN
Power spectra DES Y3: ¢

—— Peaks & power DES Y3: C; x Peaks

Using Power Spectra
cosmological paramet

non-Gaussian inform:
e T -
v : 1045‘
2 103 _ IE L ]
Soante - Y
VN " - " 1025- t J— f(x) F{ﬁ{
| E e N
B 10! 3 - Planck ¢é l l' ;
. ++ SDSS DR7 LRG I\
- : ++ BOSS DR9 Ly-a forest ;
| ! ! | I 0' N l___l[_)IESY}C“’anlicusﬁfar S |
0.6 0.7 0.8 0.9 —-0.8 -0.6 -04 007 107 102 10 10°
. Wavenumber k [h Mpc ™!
Cosmic web Gau S, w fiipe]

DES Y3 Results

Credit: Justine Zeghal
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Baryonic etfects

o Effects that stem from astrophysical processes involving ordinary matter (gas
cooling, star formation, AGN feedback)
e They modify the matter distribution by redistributing gas and stars within halos.

e Suppress matter clustering on
small scales

« Depend on the cosmic baryon
fraction and cosmological
parameters.

e Must be
cut/ modeled / marginalized over
to avoid biases in cosmological
inferences from WL.
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Baryonic impact on L5S statistics

Jﬂ.-ﬂ[':ﬁ OF THE -.[JJ'ST.ﬂNlI GALAXIES LENSED BY THE DARK Mi."TLF;‘ r.:'.';b THE' UNIVERSE
» N & - —_ . % . . -

Far Large Scale Structure: DM + IS —
galaxies baryons Observer Courtesy of NYC group, S.Colombi
10~
o 10-?
Correlation of galaxy 10-°
shapes due to LSS gravity & bl v 1077
g PRl ‘Jl'l'ﬂmi”*_ﬂ"bié 0
1 2
Cyi’yj(f) _ X 85()()81-()() P f 20 dy glo(arcmhso DES 5022

0 xX° X

Credit: Giovanni Arico
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Baryonic impact on L5S statistics
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. & - % . - -

i 5

Far Large Scale Structure: DM + Observer
gaIaXIeS baryons
b
Correlation of galaxy
shapes due to LSS gravity & bl v 1077
~~ ¢ -
1 **+*’*+++“"‘”_++'+*§ ’
llllllll 1 Illlllll 1]
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baryonic effects in P(k)

Credit: Giovanni Arico
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. N-body sims, providing DMO & baryonified full-sky x-maps.
cosmoGRID:

Baryonic effects are incorporated using a shell-based Baryon Correction Model.
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Density Estimation

. o : Model ( )

Training Samples  Ltrain Pop\ L

o FoXee %cg@o%oogc%)o %

o © ° Rl |
)" Y

g ° > 8% %
Og % %}g (o] m
Sor o e So 2
Q%‘ag% 4, oo%f
m§o‘*§’ 3

L1
Maximize the likelihood of the training samples

A

¢ = arg max [log py(Tirain)]



Normalizing Flows for
Density Estimation

Normalizing Flows (NF) are based on mapping functions f:R"—= R"

Those functions enable us to map a latent variable z~pz(z) to a variable x~px(x).

We can approximate distributions with NFs by
learning this function

(discretize the problem into learning the
parameters of a series of bijections)
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Inference method: SBI

Gaussian Density estimator Posterior
A(0,1) (Conditional MAF) p(@|x)
Training objective

A A
_ L= —logp¢(0\w)

A

O

| ol

cosmoGRID ERELELS g o Stat. 1 =

K-maps EECEEE: Stat. 2 — >
S transform , Otat. 3
Stat. 4 —

* https:/ / github.com /sachaguer/jaxili

Made with Slides.com



The Scaling of Baryonic Bias
with Survey Area

B /1, 2000sqgdeg
B /,, 14000sqdeg
B /4, 28000sqgdeg
B /., full sky

B C,, 2000sqdeg
B C,, 14000sqdeg
Bl C,, 28000sqgdeg
B C,, full sky

Significance at /ax = 1024
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Results
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Significance (ng)
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Area = 2000 deg?

Results

Determining Robust Scale Cuts

Area = 5000 deg?

y

[
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Results

Information Content at Large Scales

- Cf, Emax = 400
B peaks, scales [2,3,4,5]
B /., scales [2,3.,4,5]

Area = 2000 deg?

Significance (ng)

400 600 800

0.22 0.26 0.30 . . —-1.25 -1.00
Qm Wo
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Weak lensing tomography

Credit: Justine Zeghal




Weak lensing tomography

Credit: Justine Zeghal




Weak lensing tomography

Credit: Justine Zeghal




Weak lensing tomography

Credit: Justine Zeghal
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Weak lensing tomography

Credit: Justine Zeghal
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Weak lensing tomography

Credit: Justine Zeghal
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Weak lensing tomography

Credit: Justine Zeghal
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BNT transform

When we observe shear, contributions come from mass at different redshifts.
BNT Transform: method to “null” contributions from unwanted redshift ranges.
[t reorganizes weak-lensing data so that only specific redshift ranges contribute to
the signal.

BNT aligns angular (£) and physical (k) scales.

This could help mitigate baryonic effects by optimally removing sensitivity to
poorly modeled small scales and controlling scale leakage.

- Nzl
nz2

- Nzl
nz2

?C) 6 == nz3 FC) 157 - = nz3
T —= nzd O == nz4
~ —— kernel 0 ~ —— BNT kernel 0
g kernel 1 g 10 - BNT kernel 1
@ 47 —— kernel 2 m —— BNT kernel 2
I — kernel 3 > 5 —— BNT kernel 3
S 2- S 5-
N N
(- (- o
OMt=——=— 0 = . -~
0.00 0.25 0.50 0.75 1.00 1.25 1.50 0.00 0.25 0.50 0.75 1.00 1.25 1.50
redshift redshift



BNT maps

no BNT BNT
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no BNT

Bin 1
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BNT maps
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BNT maps
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BNT maps
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How are statistics impacted?
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How are statistics impacted?

Power Spectrum IT-norm
—— PS, bin 1 —— PS, bin 1
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How are statistics impacted?

Power Spectrum
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How are statistics impacted?

Power Spectrum
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How are statistics impacted?

Power Spectrum IT-norm
0.04 - —— PS, bin 4 2 -
PS, bin 4, BNT

. 0.02- 1
S) =
= 0.00 f--=s==mmm e - = AN Y A

~0.02-

—1 —— PS, bin 4
—0.04 - PS, bin 4, BNT
0 200 400 600 800 _5 0 5 10
/ SNR

G Made with Slides.com



How are statistics impacted?

Power Spectrum IT-norm
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* This could help mitigate baryonic effects by optimally removing sensitivity
to poorly modeled small scales and controlling scale leakage?
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Take a look at the maps again..
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Take a look at the maps again..
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BNT vs Standard contours

Peaks
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