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Context and objectives

● Relation between the noisy shear γ (observable) and the convergence κ (qty of interest):

● Noise level (standard deviation per pixel): Σ[k,  k] = σ / Nk .

● Objective: get a point estimate with error bars, with coverage guarantees. 
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Convergence map κ Noisy shear map γ  (real and imaginary parts)

Sources: κTNG simulated dataset1 and COSMOS shape catalog2

1 K. Osato, J. Liu, and Z. Haiman, “κTNG: effect of baryonic processes on weak lensing with IllustrisTNG simulations,” MNRAS, 2021.
2 T. Schrabback et al., “Evidence of the accelerated expansion of the Universe from weak lensing tomography with COSMOS,” A&A, 2010.



Proposed approach: Method based on plug-and-play (PnP) forward-backward splitting (FBS):

● Iterative method; at each iteration i ∈ {1,  ...,  Nniter}:
– Forward step: 
– Backward step:

● Training phase independent of the noise covariance matrix Σ → flexibility.

Related work and proposed approach
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1 N. Jeffrey, F. Lanusse, O. Lahav, and J.-L. Starck, “Deep learning dark matter map reconstructions from DES SV weak lensing data,” MNRAS, 2020.
2 B. Remy et al., “Probabilistic mass-mapping with neural score estimation,” A&A, 2023.

End-to-end method

Sampling with denoising 
score matching



Proposed approach: Method based on plug-and-play (PnP) forward-backward splitting (FBS):

● Iterative method; at each iteration i ∈ {1,  ...,  Nniter}:
– Forward step: 
– Backward step:

● Training phase independent of the noise covariance matrix Σ → flexibility.
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1 N. Jeffrey, F. Lanusse, O. Lahav, and J.-L. Starck, “Deep learning dark matter map reconstructions from DES SV weak lensing data,” MNRAS, 2020.
2 B. Remy et al., “Probabilistic mass-mapping with neural score estimation,” A&A, 2023.

Gradient descent step

End-to-end method

Sampling with denoising 
score matching



Proposed approach: Method based on plug-and-play (PnP) forward-backward splitting (FBS):

● Iterative method; at each iteration i ∈ {1,  ...,  Nniter}:
– Forward step: 
– Backward step:

● Training phase independent of the noise covariance matrix Σ → flexibility.

Related work and proposed approach
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1 N. Jeffrey, F. Lanusse, O. Lahav, and J.-L. Starck, “Deep learning dark matter map reconstructions from DES SV weak lensing data,” MNRAS, 2020.
2 B. Remy et al., “Probabilistic mass-mapping with neural score estimation,” A&A, 2023.

Step size, depends on ‖Σ‖

End-to-end method

Sampling with denoising 
score matching



Proposed approach: Method based on plug-and-play (PnP) forward-backward splitting (FBS):

● Iterative method; at each iteration i ∈ {1,  ...,  Nniter}:
– Forward step: 
– Backward step:

● Training phase independent of the noise covariance matrix Σ → flexibility.
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1 N. Jeffrey, F. Lanusse, O. Lahav, and J.-L. Starck, “Deep learning dark matter map reconstructions from DES SV weak lensing data,” MNRAS, 2020.
2 B. Remy et al., “Probabilistic mass-mapping with neural score estimation,” A&A, 2023.

“Noise-aware” deep denoiser, trained on a range of white noise levels

End-to-end method

Sampling with denoising 
score matching



Proposed approach: Method based on plug-and-play (PnP) forward-backward splitting (FBS):

● Iterative method; at each iteration i ∈ {1,  ...,  Nniter}:
– Forward step: 
– Backward step:

● Training phase independent of the noise covariance matrix Σ → flexibility.

Related work and proposed approach
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1 N. Jeffrey, F. Lanusse, O. Lahav, and J.-L. Starck, “Deep learning dark matter map reconstructions from DES SV weak lensing data,” MNRAS, 2020.
2 B. Remy et al., “Probabilistic mass-mapping with neural score estimation,” A&A, 2023.

Step size, also equal to the white noise standard deviation

End-to-end method

Sampling with denoising 
score matching



PnPMass step by step
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Ground truth κ

Input γ



PnPMass step by step
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Ground truth κ

Input γ

Iteration i=1

Initialization



PnPMass step by step
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Ground truth κ

Input γ

Iteration i=1

Forward step
τ = 0.176

Initialization



PnPMass step by step

11Pl
ug

-a
nd

-P
la

y 
M

as
s 

M
ap

pi
ng

 w
it

h 
Fa

st
 U

nc
er

ta
in

ty
 Q

ua
nt

ifi
ca

ti
on

Ground truth κ

Input γ

Iteration i=1

Forward step
τ = 0.176

Backward step

Initialization



PnPMass step by step
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Ground truth κ

Input γ

Iteration i=1

Forward step
τ = 0.176

Backward step

Initialization

Noise standard deviation set to the step size τ



PnPMass step by step
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Ground truth κ

Input γ

Forward step
τ = 0.176

Backward step

Iteration i=2



PnPMass step by step
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Ground truth κ

Input γ

Forward step
τ = 0.176

Backward step

Iteration i=2



PnPMass step by step
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Ground truth κ

Input γ

Forward step
τ = 0.176

Backward step

Iteration i=3



PnPMass step by step
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Ground truth κ

Input γ

Forward step
τ = 0.176

Backward step

Iteration i=4



Ground truth κ

PnPMass on residuals
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• Main idea: include knowledge about underlying physics.
• Decompose κ into Gaussian / non-Gaussian components.

Input γ



Ground truth κ

PnPMass on residuals
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• Main idea: include knowledge about underlying physics.
• Decompose κ into Gaussian / non-Gaussian components.

Input γ



Residual ground truth κng 

PnPMass on residuals
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• Main idea: include knowledge about underlying physics.
• Decompose κ into Gaussian / non-Gaussian components.

Input γ Residual input γng 



Residual ground truth κng 

PnPMass on residuals
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Gaussian component κg Residual estimate
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• Main idea: include knowledge about underlying physics.
• Decompose κ into Gaussian / non-Gaussian components.

Input γ Residual input γng 



Residual ground truth κng 

PnPMass on residuals
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Gaussian component κg Residual estimate
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• Main idea: include knowledge about underlying physics.
• Decompose κ into Gaussian / non-Gaussian components.

Input γ Residual input γng 

Denoiser specifically trained 
on non-Gaussian residuals



Final estimate

Ground truth κ

PnPMass on residuals
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• Main idea: include knowledge about underlying physics.
• Decompose κ into Gaussian / non-Gaussian components.

Input γ Residual input γng 
Add κg to residual ground 

truth and estimate



Visual comparison with other methods
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Iterative Wiener1

NRMSE = 0.886
MCALens2

NRMSE = 0.874
DeepMass3

NRMSE = 0.853
PnPMass

NRMSE = 0.864
PnPMass (residual)

NRMSE = 0.858

1 J. Bobin, J.-L. Starck, F. Sureau, and J. Fadili, “CMB Map Restoration,” Advances in Astronomy, 2012.
2 J.-L. Starck, K. E. Themelis, N. Jeffrey, A. Peel, and F. Lanusse, “Weak-lensing mass reconstruction using sparsity and a Gaussian random field,” A&A, 2021.
3 N. Jeffrey, F. Lanusse, O. Lahav, and J.-L. Starck, “Deep learning dark matter map reconstructions from DES SV weak lensing data,” MNRAS, 2020.



Visual comparison with other methods
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Iterative Wiener1

NRMSE = 0.886
MCALens2

NRMSE = 0.874
DeepMass3

NRMSE = 0.853
PnPMass

NRMSE = 0.864
PnPMass (residual)

NRMSE = 0.858

1 J. Bobin, J.-L. Starck, F. Sureau, and J. Fadili, “CMB Map Restoration,” Advances in Astronomy, 2012.
2 J.-L. Starck, K. E. Themelis, N. Jeffrey, A. Peel, and F. Lanusse, “Weak-lensing mass reconstruction using sparsity and a Gaussian random field,” A&A, 2021.
3 N. Jeffrey, F. Lanusse, O. Lahav, and J.-L. Starck, “Deep learning dark matter map reconstructions from DES SV weak lensing data,” MNRAS, 2020.

Classical (model-driven) methods



Visual comparison with other methods
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Iterative Wiener1

NRMSE = 0.886
MCALens2

NRMSE = 0.874
DeepMass3

NRMSE = 0.853
PnPMass

NRMSE = 0.864
PnPMass (residual)

NRMSE = 0.858

1 J. Bobin, J.-L. Starck, F. Sureau, and J. Fadili, “CMB Map Restoration,” Advances in Astronomy, 2012.
2 J.-L. Starck, K. E. Themelis, N. Jeffrey, A. Peel, and F. Lanusse, “Weak-lensing mass reconstruction using sparsity and a Gaussian random field,” A&A, 2021.
3 N. Jeffrey, F. Lanusse, O. Lahav, and J.-L. Starck, “Deep learning dark matter map reconstructions from DES SV weak lensing data,” MNRAS, 2020.

Deep-learning-based (data driven) methods



Results – Accuracy vs Error bar size
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• Test set: 512 images from κTNG simulations;
• Uncertainty quantification with calibration: 

coverage guarantees for all methods;
• Target miscoverage rate set to 4.6% (2σ-

confidence).

Comments:
• PnPMass (residual version) slightly less 

accurate than DeepMass, but much more 
flexible;

• Smaller error bars for PnPMass than 
DeepMass (in 100% of the test examples);

• Possible explanation: DeepMass recovers 
more peaks, but also hallucinate more  →
bias / variance trade-off? Check with CHEM.1

1J. Li, I. Rosellon-Inclan, G. Kutyniok, and J.-L. Starck, “CHEM: Estimating and Understanding Hallucinations in Deep Learning for Image Processing,” arXiv, 2025



Toward tomographic mass mapping
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● So far, source galaxies from all redshifts:

Toward tomographic mass mapping
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● So far, source galaxies from all redshifts:

Toward tomographic mass mapping
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Convergence at a given source redshift



● So far, source galaxies from all redshifts:

Toward tomographic mass mapping
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Source distribution



● So far, source galaxies from all redshifts:

● New objective: perform mass mapping per redshift bin → lower SNR!

Toward tomographic mass mapping
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● So far, source galaxies from all redshifts:

● New objective: perform mass mapping per redshift bin → lower SNR!

Toward tomographic mass mapping
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Integrate over the i-th redshift bin



● So far, source galaxies from all redshifts:

● New objective: perform mass mapping per redshift bin → lower SNR!

● Each binned convergence map is a line-of-sight integration:

Toward tomographic mass mapping
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● So far, source galaxies from all redshifts:

● New objective: perform mass mapping per redshift bin → lower SNR!

● Each binned convergence map is a line-of-sight integration:

Toward tomographic mass mapping
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Matter (over)density field



● So far, source galaxies from all redshifts:

● New objective: perform mass mapping per redshift bin → lower SNR!

● Each binned convergence map is a line-of-sight integration:

Toward tomographic mass mapping
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Lensing kernel for the i-th redshift bin



● So far, source galaxies from all redshifts:

● New objective: perform mass mapping per redshift bin → lower SNR!

● Each binned convergence map is a line-of-sight integration:

Toward tomographic mass mapping
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Foreground mass taken into account 
→ correlations between bins



● So far, source galaxies from all redshifts:

● New objective: perform mass mapping per redshift bin → lower SNR!

● Each binned convergence map is a line-of-sight integration:

● Linear combination of bins to get projected mass in each bin:1

Toward tomographic mass mapping
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1F. Bernardeau, T. Nishimichi, and A. Taruya, “Cosmic shear full nulling: sorting out dynamics, geometry and systematics,” MNRAS, Dec. 2014. 



● So far, source galaxies from all redshifts:

● New objective: perform mass mapping per redshift bin → lower SNR!

● Each binned convergence map is a line-of-sight integration:

● Linear combination of bins to get projected mass in each bin:1

Toward tomographic mass mapping
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BNT weights, depend on the source 
distribution AND on the cosmology

1F. Bernardeau, T. Nishimichi, and A. Taruya, “Cosmic shear full nulling: sorting out dynamics, geometry and systematics,” MNRAS, Dec. 2014. 



● So far, source galaxies from all redshifts:

● New objective: perform mass mapping per redshift bin → lower SNR!

● Each binned convergence map is a line-of-sight integration:

● Linear combination of bins to get projected mass in each bin:1

Toward tomographic mass mapping
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Decorrelated maps; mass distribution 
averaged over each redshift bin

1F. Bernardeau, T. Nishimichi, and A. Taruya, “Cosmic shear full nulling: sorting out dynamics, geometry and systematics,” MNRAS, Dec. 2014. 



Toward tomographic mass mapping
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Plot from: A. Barthelemy et al., “Numerical complexity of the joint nulled weak-lensing probability distribution function,” Phys. Rev. D, Feb. 2022



Toward tomographic mass mapping
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Plot from: A. Barthelemy et al., “Numerical complexity of the joint nulled weak-lensing probability distribution function,” Phys. Rev. D, Feb. 2022

Lensing kernels before BNT



Toward tomographic mass mapping
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Plot from: A. Barthelemy et al., “Numerical complexity of the joint nulled weak-lensing probability distribution function,” Phys. Rev. D, Feb. 2022

Lensing kernels after BNT



Toward tomographic mass mapping
Proposed solutions
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● Option 1: Joint reconstruction of κi , then BNT. Corresponding inverse problem:

with:

– Model trained for joint denoising across redshift bins;

– PnPMass applied to this new problem;

– Then, apply BNT to the joint estimate.
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● Option 2: BNT directly embedded in the inverse problem:

– New forward operator:

– Apply PnPMass on this new problem.

– New model trained on BNT convergence maps:

● Clean maps are (almost) uncorrelated along zbins;

● However the noise is correlated → joint denoising.

Toward tomographic mass mapping
Proposed solutions
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● Option 2: BNT directly embedded in the inverse problem:

– New forward operator:

– Apply PnPMass on this new problem.

– New model trained on BNT convergence maps:

● Clean maps are (almost) uncorrelated along zbins;

● However the noise is correlated → joint denoising.

Decorrelated maps to estimate

Toward tomographic mass mapping
Proposed solutions



46Pl
ug

-a
nd

-P
la

y 
M

as
s 

M
ap

pi
ng

 w
it

h 
Fa

st
 U

nc
er

ta
in

ty
 Q

ua
nt

ifi
ca

ti
on

● Option 2: BNT directly embedded in the inverse problem:

– New forward operator:

– Apply PnPMass on this new problem.

– New model trained on BNT convergence maps:

● Clean maps are (almost) uncorrelated along zbins;

● However the noise is correlated → joint denoising.

Inverse BNT transform

Toward tomographic mass mapping
Proposed solutions
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● Option 2: BNT directly embedded in the inverse problem:

– New forward operator:

– Apply PnPMass on this new problem.

– New model trained on BNT convergence maps:

● Clean maps are (almost) uncorrelated along zbins;

● However the noise is correlated → joint denoising.

Toward tomographic mass mapping
Proposed solutions
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● Option 2: BNT directly embedded in the inverse problem:

– New forward operator:

– Apply PnPMass on this new problem.

– New model trained on BNT convergence maps:

● Clean maps are (almost) uncorrelated along zbins;

● However the noise is correlated → joint denoising.

Correlates the noise 
across redshift bins!

Toward tomographic mass mapping
Proposed solutions



Conclusion and future work
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• Take-home messages:
• PnPMass: iterative method based on deep-learning denoising, fast 

and flexible;
• Near state-of-the-art accuracy, with smaller error bars than existing 

methods;
• Tomographic mass mapping with BNT transform (implementation in 

progress): take advantage of the correlations across redshift bins 
(either in the signal, or in the noise).

• Next steps:
• Use PnPMass for cosmological parameter inference: size of 

contours? Bias? Benchmark against Kaiser-Squires and MCALens 
(paper Andreas1).

• Extend the method to spherical data;
• Integrate PnPMass into Euclid’s Science Ground Segment.

1A. Tersenov, L. Baumont, J.-L. Starck, and M. Kilbinger, A&A, vol. 698, p. A25, Jun. 2025.

Visit our GitHub 
repository
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