PIu%and Play Mass Mapping with
ncertainty Quanti catlon

Hubert Leterme
CosmosStat, IRFU / DAp, CEA Paris-Saclay
Joint work with Andreas Tersenov, Jalal Fadili and Jean-Luc Starck
CosmoStat Days, 12th February 2026, CEA Paris-Saclay

.. & '. .
consortiom



c
=
)
©
=)
£
)
c
]
3
o
>
L
&=
T
L od
)
@
=
c
=)
-
[}
[
L
<
=
B
o
&=
o
o
]
=
w
(7]
]
=
>
o
a
o
c
[
o
3
o

Context and objectives

Convergence map &
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* Relation between the noisy shear~ (observable) and the convergence & (qty of interest):

Noisy shear map « (real and imaginary parts)
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Sources: kTNG simulated dataset* and COSMOS shape catalog?

vy=Ak+mn, with n~N(0 %),

* Noise level (standard deviation per pixel): X[k, k|=0/ N .

* Objective: get a point estimate with error bars, with coverage guarantees.

1 K. Osato, J. Liu, and Z. Haiman, “KTNG: effect of baryonic processes on weak lensing with lllustrisTNG simulations,” MNRAS, 2021.
2T. Schrabback et al., “Evidence of the accelerated expansion of the Universe from weak lensing tomography with COSMOS,” A&A, 2010.

eg)c id



[=
.2
F=)
©
2)
=
=)
c
o
=]
(o4
>
i)
=
]
=
=
[}
(9)
[=
>
e
(%)
[}
L
=
=
H
[=)]
=
Q.
Q.
©
=
("]
(7]
©
=
>
o
&
©
[=
?
[=)]
=
o.

Related work and proposed approach

Accurate Flexible Fast rec. Fast UQ
End-to-end method ——» DeepMass! v X* v v
Sampling with denoising —» DeepPosterior? v v X X
score matching PnPMass (ours) v v v v

Notes. *Requires specific retraining for each new observation.

Proposed approach: Method based on plug-and-play (PnP) forward-backward splitting (FBS):

» Iterative method; at each iteration i € {1, ..., Nujer }:
- Forward step: &) = k(") + 7ATR /2 (7 _ An(i—l)) ;
(1) )

- Backward step: k' = Dy(ky', T).

« Training phase independent of the noise covariance matrix X' — flexibility.
with  n ~ N(0, X).

1 N. Jeffrey, F. Lanusse, O. Lahav, and J.-L. Starck, “Deep learning dark matter map reconstructions from DES SV weak lensing data,” MNRAS, 2020.
2 B. Remy et al., “Probabilistic mass-mapping with neural score estimation,” A&A, 2023.

vy=AK+n,

N
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Related work and proposed approach

Accurate Flexible Fast rec. Fast UQ
End-to-end method ——» DeepMass! v X* v v
Sampling with denoising —» DeepPosterior? v v X X
score matching PnPMass (ours) v v v v

Notes. *Requires specific retraining for each new observation.

Proposed approach: Method based on plug-and-play (PnP) forward-backward splitting (FBS):

« Iterative method; at each iteration i € {1, .... Ny -
- Forward step: &) =k~ + 7ATR /2 (7 _ An(i—l)) ;

- Backward step: k) = D@(méé), 7). L

Gradient descent step

« Training phase independent of the noise covariance matrix X' — flexibility.
~vy=Ak+mn, with n~N(0, %),

1 N. Jeffrey, F. Lanusse, O. Lahav, and J.-L. Starck, “Deep learning dark matter map reconstructions from DES SV weak lensing data,” MNRAS, 2020.
2 B. Remy et al., “Probabilistic mass-mapping with neural score estimation,” A&A, 2023.
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Related work and proposed approach

Accurate Flexible Fast rec. Fast UQ
End-to-end method ——» DeepMass! v X* v v
Sampling with denoising —» DeepPosterior? v v X X
score matching PnPMass (ours) v v v v

Notes. *Requires specific retraining for each new observation.

Proposed approach: Method based on plug-and-play (PnP) forward-backward splitting (FBS):

» Iterative method; at each iteration i € {1, ..., Nujer }:
- Forward step: k| = k(™ HTIA T2 (7 _ An(l_U) ;
- ) P (1) ¥
Backward step: K Dy(ky’, T)- Step size, depends on |15

« Training phase independent of the noise covariance matrix X' — flexibility.
n ~ N(0, ).

1 N. Jeffrey, F. Lanusse, O. Lahav, and J.-L. Starck, “Deep learning dark matter map reconstructions from DES SV weak lensing data,” MNRAS, 2020.
2 B. Remy et al., “Probabilistic mass-mapping with neural score estimation,” A&A, 2023.

vy=AK+n, with
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Related work and proposed approach

Accurate Flexible Fast rec. Fast UQ
End-to-end method ——» DeepMass! v X* v v
Sampling with denoising —» DeepPosterior? v v X X
score matching PnPMass (ours) v v v v

Notes. *Requires specific retraining for each new observation.

Proposed approach: Method based on plug-and-play (PnP) forward-backward splitting (FBS):

» Iterative method; at each iteration i € {1, ..., Nujer }:

- Forward step: k)’ = (1) + AT 12
- Backward step: k(") =[Dy|k’, 7).
Y\

(’7 — Alﬁ',(i_l)) ;

“Noise-aware” deep denoiser, trained on a range of white noise levels

« Training phase independent of the noise covariance matrix X' — flexibility.

vy=AK+n,

2 B. Remy et al., “Probabilistic mass-mapping with neural score estimation,” A&A, 2023.

with

1 N. Jeffrey, F. Lanusse, O. Lahav, and J.-L. Starck, “Deep learning dark matter map reconstructions from DES SV weak lensing data,” MNRAS, 2020.

n ~ N (0, X).
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Related work and proposed approach

Accurate Flexible Fast rec. Fast UQ
End-to-end method ——» DeepMass! v X* v v
Sampling with denoising —» DeepPosterior? v v X X
score matching PnPMass (ours) v v v v

Notes. *Requires specific retraining for each new observation.

Proposed approach: Method based on plug-and-play (PnP) forward-backward splitting (FBS):

» Iterative method; at each iteration i € {1, ..., Nujer }:
- Forward step: k) = k(™! + TATS 12 (7 _ An(i—l)) ;
- Backward step: k' = D@(mg),.

v
\ Step size, also equal to the white noise standard deviation
« Training phase independent of the noise covariance matrix X' — flexibility.

with  n ~ N(0, X).

1 N. Jeffrey, F. Lanusse, O. Lahav, and J.-L. Starck, “Deep learning dark matter map reconstructions from DES SV weak lensing data,” MNRAS, 2020.
2 B. Remy et al., “Probabilistic mass-mapping with neural score estimation,” A&A, 2023.

vy=AK+n,
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PnPMass on residuals

* Main idea: include knowledge about underlying physics.
* Decompose & into Gaussian / non-Gaussian components.
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PnPMass on residuals

* Main idea: include knowledge about underlying physics.
* Decompose & into Gaussian / non-Gaussian components.
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Plug-and-Play Mass Mapp

PnPMass on residuals

* Main idea: include knowledge about underlying physics.

* Decompose & into Gaussian / non-Gaussian components.

lWiener filter

Gaussian component &,

Get residuals

Residual input ~,,

Residual ground truth &,
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PnPMass on residuals

Main idea: include knowledge about underlying physics.

Decompose « into Gaussian / non-Gaussian components.

lWiener filter

Get residuals

Gaussian component &,

Residual input ~,,

Residual ground truth &,

l PnPMass

Residual estimate
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PnPMass on residuals

Main idea: include knowledge about underlying physics.

Decompose « into Gaussian / non-Gaussian components.

Input v

lWiener filter

Gaussian component &,

Get residuals

Residual input ~,,

Residual ground truth &,

y l PnPMass

Residual estimate

Denoiser specifically trained
on non-Gaussian residuals
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PnPMass on residuals™

* Main idea: include knowledge abg'ht underlying physics.
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euclid
Visual comparison with other methods

0.25
0.20
0.15
0.10
0.05
0.00
Iterative Wiener?! MCALens? DeepMass?® PnPMass PnPMass (residual)
NRMSE =0.886 NRMSE =0.874 NRMSE =0.853 NRMSE =0.864 NRMSE =0.858

1J. Bobin, J.-L. Starck, F. Sureau, and J. Fadili, “CMB Map Restoration,” Advances in Astronomy, 2012.
2J.-L. Starck, K. E. Themelis, N. Jeffrey, A. Peel, and F. Lanusse, “Weak-lensing mass reconstruction using sparsity and a Gaussian random field,” A&A, 2021.
3 N. Jeffrey, F. Lanusse, O. Lahav, and J.-L. Starck, “Deep learning dark matter map reconstructions from DES SV weak lensing data,” MNRAS, 2020. 23
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euclid
Visual comparison with other methods

0.25
0.20
0.15
0.10
0.05
0.00
Iterative Wiener?! MCALens? DeepMass?® PnPMass PnPMass (residual)
NRMSE =0.886 NRMSE =0.874 NRMSE =0.853 NRMSE =0.864 NRMSE =0.858

Classical (model-driven) methods

1J. Bobin, J.-L. Starck, F. Sureau, and J. Fadili, “CMB Map Restoration,” Advances in Astronomy, 2012.
2J.-L. Starck, K. E. Themelis, N. Jeffrey, A. Peel, and F. Lanusse, “Weak-lensing mass reconstruction using sparsity and a Gaussian random field,” A&A, 2021.
3 N. Jeffrey, F. Lanusse, O. Lahav, and J.-L. Starck, “Deep learning dark matter map reconstructions from DES SV weak lensing data,” MNRAS, 2020. 24
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euclid
Visual comparison with other methods

0.25

0.20

0.05

0.00

Iterative Wiener?! MCALens? DeepMass?® PnPMass PnPMass (residual)
NRMSE =0.886 NRMSE =0.874 NRMSE =0.853 NRMSE =0.864 NRMSE =0.858

Deep-learning-based (data driven) methods

1J. Bobin, J.-L. Starck, F. Sureau, and J. Fadili, “CMB Map Restoration,” Advances in Astronomy, 2012.
2J.-L. Starck, K. E. Themelis, N. Jeffrey, A. Peel, and F. Lanusse, “Weak-lensing mass reconstruction using sparsity and a Gaussian random field,” A&A, 2021.
3 N. Jeffrey, F. Lanusse, O. Lahav, and J.-L. Starck, “Deep learning dark matter map reconstructions from DES SV weak lensing data,” MNRAS, 2020. 25
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I b | euclid
Results - Accuracy vs Error bar size

c * Testset: 512 images from KTNG simulations;

& * Uncertainty quantification with calibration:

£ coverage guarantees for all methods; & <
H * Target miscoverage rate set to 4.6% (20- v >3] 4 &
2 confidence). @ & o o ¢

3 © 3.2 1 N N

b o R &

g S K @

£ Comments: £ S

g * PnPMass (residual version) slightly less = 317 ¢ Q\q;o‘°

s accurate than DeepMass, but much more S &

3 flexible; 3.01 ¢

§ * Smaller error bars for PnPMass than

3 DeepMass (in 100% of the test examples); 085 086 087 088  0.89
g * Possible explanation: DeepMass recovers Norm. RMSE

> more peaks, but also hallucinate more -

Eé bias / variance trade-off? Check with CHEM."

‘F

g 1J. Li, I. Rosellon-Inclan, G. Kutyniok, and J.-L. Starck, “CHEM: Estimating and Understanding Hallucinations in Deep Learning for Image Processing,” arXiv, 2025 26
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Toward tomographic mass mapping
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euclid
Toward tomographic mass mapping

So far, source galaxies from all redshifts:

K = /Ozmax Ks(zs)n(zs) dzs.
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euclid
Toward tomographic mass mapping

. . Convergence at a given source redshift
So far, source galaxies from all redshifts: s

K = /Ozmax Ks(zs)n(2s) dzs.
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euclid
Toward tomographic mass mapping

. . Source distribution
So far, source galaxies from all redshifts: /
X

K = /Ozmax Ks(zs)n(zs) dzs.
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euclic]
Toward tomographic mass mapping

So far, source galaxies from all redshifts:

K = /Ozmax Ks(zs)n(zs) dzs.

New objective: perform mass mapping per redshift bin — lower SNR!
Zq

Ki ::/Z Ks(zs)n(zs) dzs.

1—1
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euclic]
Toward tomographic mass mapping

* So far, source galaxies from all redshifts:

K = /Ozmax Ks(zs)n(zs) dzs.

* New objective: perform mass mapping per redshift bin — lower SNR!
Zq

Ki ::/Z Ks(zs)n(zs) dzs.

i—1
™
Integrate over the i-th redshift bin
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' euclic]
Toward tomographic mass mapping

So far, source galaxies from all redshifts:

K = /Ozmax Ks(zs)n(zs) dzs.

New objective: perform mass mapping per redshift bin — lower SNR!

Ki = /Zl Ks(zs)n(zs) dzs.

Each binned convergence map is a line-of-sight integration:

K; X  wil2) z)dz
g O
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euclic]
Toward tomographic mass mapping

* So far, source galaxies from all redshifts:

K = /Ozmax Ks(zs)n(zs) dzs.

* New objective: perform mass mapping per redshift bin — lower SNR!
Zq

Ki ::/ Ks(zs)n(zs) dzs.

Zi—1
* Each binned convergence map is a line-of-sight integration:

KR; X - wz(z) z)az
! /0 CL(Z) 5r( )d

N\

Matter (over)density field
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Toward tomographic mass mapping

* So far, source galaxies from all redshifts:

K = /Ozmax Ks(zs)n(zs) dzs.

* New objective: perform mass mapping per redshift bin — lower SNR!
Zq

Ki ::/ Ks(zs)n(zs) dzs.

Zi—1
* Each binned convergence map is a line-of-sight integration:

z wi(2)
K; X VW (2)dz

Lensing kernel for the i-th redshift bin
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Toward tomographic mass mapping

* So far, source galaxies from all redshifts:

K = /Ozmax Ks(zs)n(zs) dzs.

* New objective: perform mass mapping per redshift bin — lower SNR!
Zq

Ki ::/ Ks(zs)n(zs) dzs.

Zi—1
* Each binned convergence map is a line-of-sight integration:

%, age) O

a

N\

Foreground mass taken into account
- correlations between bins
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Toward tomographic mass mapping

* So far, source galaxies from all redshifts:

K = /Ozmax Ks(zs)n(2s) dzs.

* New objective: perform mass mapping per redshift bin — lower SNR!
Zq

Ki ::/Z Ks(zs)n(zs) dzs.

1—1
* Each binned convergence map is a line-of-sight integration:

Zi Wil 2
Iﬂ‘,iOC/O CL(Z)5(z)dz

* Linear combination of bins to get projected mass in each bin:*

KRy, - — Z bij I’{,j.
j=(i—
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Toward tomographic mass mapping

* So far, source galaxies from all redshifts:

K = /Ozmax Ks(zs)n(2s) dzs.

* New objective: perform mass mapping per redshift bin — lower SNR!
Zq

Ki ::/ Ks(zs)n(zs) dzs.

Zi—1
* Each binned convergence map is a line-of-sight integration:

* Linear combination of bins to get projected mass in each bin:*
1
KRy, - — Z bij I’{,j.

7 Y
j=(i=2) T BNT weights, depend on the source
distribution AND on the cosmology
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Toward tomographic mass mapping

* So far, source galaxies from all redshifts:

K = /Ozmax Ks(zs)n(2s) dzs.

* New objective: perform mass mapping per redshift bin — lower SNR!

K = /ZZ Ks(zs)n(zs) dzs.

Zi—1
* Each binned convergence map is a line-of-sight integration:

* Linear combination of bins to get projected mass in each bin:*

1
yRL; - — Z bij I’{,j.
. j=(i-2)

Decorrelated maps; mass distribution
averaged over each redshift bin
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Toward tomographic mass mapping
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Plot from: A. Barthelemy et al., “Numerical complexity of the joint nulled weak-lensing probability distribution function,” Phys. Rev. D, Feb. 2022 40
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Toward tomographic mass mapping

15 Lensing kernels before BNT
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Toward tomographic mass mapping
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Toward tomographic mass mapping
B Proposed solutions
S
% * Option 1: Joint reconstruction of k; , then BNT. Corresponding inverse problem:
7 ~ = Ak +n,
‘g with:
; Y1 K1 A0 -~ 0 > 0 --- 0
S _ 0O A --- 0 _ _ 0o > --- 0
g = 7:2; K = K?Q; A=\ n~N(0,X), with X:= : :2 L
g Y KJ O 0 --- A 0o 0 --- X%
=
g — Model trained for joint denoising across redshift bins;
f—f - PnPMass applied to this new problem;
§, — Then, apply BNT to the joint estimate.
E 43
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Toward tomographic mass mapping
Proposed solutions

* Option 2: BNT directly embedded in the inverse problem:
~=AB 'k, +n,

- New forward operator: A;, := AB™.
—  Apply PnPMass on this new problem.

- New model trained on BNT convergence maps:
* Clean maps are (almost) uncorrelated along zbins;

* However the noise is correlated — joint denoising.
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B Proposed solutions
S
% * Option 2: BNT directly embedded in the inverse problem:
3 -~ _ APl —
S ~=AB /fjub +n,
E Decorrelated maps to estimate
% - New forward operator: A}, := AB™'.
g —  Apply PnPMass on this new problem.
g — New model trained on BNT convergence maps:
% * Clean maps are (almost) uncorrelated along zbins;
%, * However the noise is correlated — joint denoising.
: 45
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Toward tomographic mass mapping
Proposed solutions

* Option 2: BNT directly embedded in the inverse problem:
~=AB 'k, +n,
/

Inverse BNT transform

- New forward operator: A;, := AB™.
—  Apply PnPMass on this new problem.

- New model trained on BNT convergence maps:
* Clean maps are (almost) uncorrelated along zbins;

* However the noise is correlated — joint denoising.
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Toward tomographic mass mapping
Proposed solutions

* Option 2: BNT directly embedded in the inverse problem:
~ = AB k|+ n,

K

- New forward operator: A;, := AB™.
—  Apply PnPMass on this new problem.

- New model trained on BNT convergence maps:
* Clean maps are (almost) uncorrelated along zbins;

* However the noise is correlated — joint denoising.
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B Proposed solutions
S
% * Option 2: BNT directly embedded in the inverse problem:
3 -~ _ APl —
4 Correlates the noise T = AB "ky + 1,
£ across redshift bins!
5 - New forward operator: A}, := AB™'.
g —  Apply PnPMass on this new problem.
§ — New model trained on BNT convergence maps:
% * Clean maps are (almost) uncorrelated along zbins;
%, * However the noise is correlated — joint denoising.
- 48
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Conclusion and future work

* Take-home messages:

Visit our GitHub
repository

*  PnPMass: iterative method based on deep-learning denoising, fast
and flexible;

*  Near state-of-the-art accuracy, with smaller error bars than existing
methods;

*  Tomographic mass mapping with BNT transform (implementation in
progress): take advantage of the correlations across redshift bins
(either in the signal, or in the noise).

* Next steps:

*  Use PnPMass for cosmological parameter inference: size of
contours? Bias? Benchmark against Kaiser-Squires and MCALens

(paper Andreas?). 7%8

*  Extend the method to spherical data;
* Integrate PnPMass into Euclid’s Science Ground Segment.
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