

Plug-and-Play Mass Mapping with Uncertainty Quantification

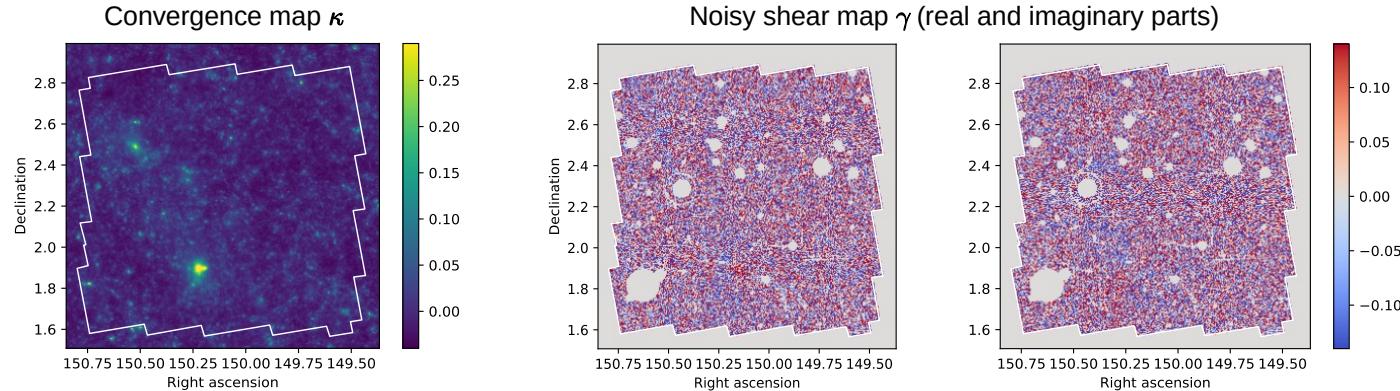
Hubert Leterme

CosmoStat, IRFU / DAp, CEA Paris-Saclay

Joint work with Andreas Tersenov, Jalal Fadili and Jean-Luc Starck

CosmoStat Days, 12th February 2026, CEA Paris-Saclay

Context and objectives



Sources: κ TNG simulated dataset¹ and COSMOS shape catalog²

- Relation between the noisy shear γ (observable) and the convergence κ (qty of interest):

$$\gamma = \mathbf{A}\kappa + \mathbf{n}, \quad \text{with} \quad \mathbf{n} \sim \mathcal{N}(\mathbf{0}, \Sigma).$$
- Noise level (standard deviation per pixel): $\Sigma[k, k] = \sigma / N_k$.
- **Objective:** get a point estimate with error bars, with coverage guarantees.

¹ K. Osato, J. Liu, and Z. Haiman, “ κ TNG: effect of baryonic processes on weak lensing with IllustrisTNG simulations,” MNRAS, 2021.

² T. Schrabback et al., “Evidence of the accelerated expansion of the Universe from weak lensing tomography with COSMOS,” A&A, 2010.

Related work and proposed approach

	Accurate	Flexible	Fast rec.	Fast UQ
End-to-end method → DeepMass ¹	✓	✗*	✓	✓
Sampling with denoising → DeepPosterior ²	✓	✓	✗	✗
PnPMass (ours)	✓	✓	✓	✓

Notes. *Requires specific retraining for each new observation.

Proposed approach: Method based on plug-and-play (PnP) forward-backward splitting (FBS):

- Iterative method; at each iteration $i \in \{1, \dots, N_{\text{niter}}\}$:
 - Forward step: $\kappa_0^{(i)} = \kappa^{(i-1)} + \tau \mathbf{A}^\top \Sigma^{-1/2} (\gamma - \mathbf{A} \kappa^{(i-1)})$;
 - Backward step: $\kappa^{(i)} = \mathcal{D}_{\hat{\theta}}(\kappa_0^{(i)}, \tau)$.
- Training phase independent of the noise covariance matrix $\Sigma \rightarrow \text{flexibility}$.

$$\gamma = \mathbf{A} \kappa + \mathbf{n}, \quad \text{with} \quad \mathbf{n} \sim \mathcal{N}(\mathbf{0}, \Sigma).$$

¹ N. Jeffrey, F. Lanusse, O. Lahav, and J.-L. Starck, “Deep learning dark matter map reconstructions from DES SV weak lensing data,” MNRAS, 2020.

² B. Remy et al., “Probabilistic mass-mapping with neural score estimation,” A&A, 2023.

Related work and proposed approach

	Accurate	Flexible	Fast rec.	Fast UQ
End-to-end method →	DeepMass ¹	✓	✗*	✓
Sampling with denoising →	DeepPosterior ²	✓	✓	✗
score matching	PnPMass (ours)	✓	✓	✓

Notes. *Requires specific retraining for each new observation.

Proposed approach: Method based on plug-and-play (PnP) forward-backward splitting (FBS):

- Iterative method; at each iteration $i \in \{1, \dots, N_{\text{niter}}\}$:
 - Forward step: $\kappa_0^{(i)} = \kappa^{(i-1)} + \tau \mathbf{A}^\top \Sigma^{-1/2} (\gamma - \mathbf{A} \kappa^{(i-1)})$;
 - Backward step: $\kappa^{(i)} = \mathcal{D}_{\hat{\theta}}(\kappa_0^{(i)}, \tau)$.
- Training phase independent of the noise covariance matrix $\Sigma \rightarrow \text{flexibility}$.

$$\gamma = \mathbf{A} \kappa + \mathbf{n}, \quad \text{with} \quad \mathbf{n} \sim \mathcal{N}(\mathbf{0}, \Sigma).$$

¹ N. Jeffrey, F. Lanusse, O. Lahav, and J.-L. Starck, “Deep learning dark matter map reconstructions from DES SV weak lensing data,” MNRAS, 2020.

² B. Remy et al., “Probabilistic mass-mapping with neural score estimation,” A&A, 2023.

Related work and proposed approach

	Accurate	Flexible	Fast rec.	Fast UQ
End-to-end method → DeepMass ¹	✓	✗*	✓	✓
Sampling with denoising → DeepPosterior ²	✓	✓	✗	✗
PnPMass (ours)	✓	✓	✓	✓

Notes. *Requires specific retraining for each new observation.

Proposed approach: Method based on plug-and-play (PnP) forward-backward splitting (FBS):

- Iterative method; at each iteration $i \in \{1, \dots, N_{\text{niter}}\}$:
 - Forward step: $\kappa_0^{(i)} = \kappa^{(i-1)} + \boxed{\tau} \mathbf{A}^\top \Sigma^{-1/2} (\gamma - \mathbf{A} \kappa^{(i-1)})$;
 - Backward step: $\kappa^{(i)} = \mathcal{D}_{\hat{\theta}}(\kappa_0^{(i)}, \tau)$. Step size, depends on $\|\Sigma\|$
- Training phase independent of the noise covariance matrix $\Sigma \rightarrow \text{flexibility.}$

$$\gamma = \mathbf{A} \kappa + \mathbf{n}, \quad \text{with} \quad \mathbf{n} \sim \mathcal{N}(\mathbf{0}, \Sigma).$$

¹ N. Jeffrey, F. Lanusse, O. Lahav, and J.-L. Starck, “Deep learning dark matter map reconstructions from DES SV weak lensing data,” MNRAS, 2020.

² B. Remy et al., “Probabilistic mass-mapping with neural score estimation,” A&A, 2023.

Related work and proposed approach

	Accurate	Flexible	Fast rec.	Fast UQ
End-to-end method →	DeepMass ¹	✓	✗*	✓
Sampling with denoising →	DeepPosterior ²	✓	✓	✗
score matching	PnPMass (ours)	✓	✓	✓

Notes. *Requires specific retraining for each new observation.

Proposed approach: Method based on plug-and-play (PnP) forward-backward splitting (FBS):

- Iterative method; at each iteration $i \in \{1, \dots, N_{\text{niter}}\}$:
 - Forward step: $\kappa_0^{(i)} = \kappa^{(i-1)} + \tau \mathbf{A}^\top \Sigma^{-1/2} (\gamma - \mathbf{A} \kappa^{(i-1)})$;
 - Backward step: $\kappa^{(i)} = \boxed{\mathcal{D}_{\hat{\theta}}(\kappa_0^{(i)}, \tau)}$.
- “Noise-aware” deep denoiser, trained on a range of white noise levels
- Training phase independent of the noise covariance matrix $\Sigma \rightarrow \text{flexibility}$.

$$\gamma = \mathbf{A} \kappa + \mathbf{n}, \quad \text{with} \quad \mathbf{n} \sim \mathcal{N}(\mathbf{0}, \Sigma).$$

¹ N. Jeffrey, F. Lanusse, O. Lahav, and J.-L. Starck, “Deep learning dark matter map reconstructions from DES SV weak lensing data,” MNRAS, 2020.

² B. Remy et al., “Probabilistic mass-mapping with neural score estimation,” A&A, 2023.

Related work and proposed approach

	Accurate	Flexible	Fast rec.	Fast UQ
End-to-end method	DeepMass ¹	✓	✗*	✓
Sampling with denoising score matching	DeepPosterior ²	✓	✓	✗
	PnPMass (ours)	✓	✓	✓

Notes. *Requires specific retraining for each new observation.

Proposed approach: Method based on plug-and-play (PnP) forward-backward splitting (FBS):

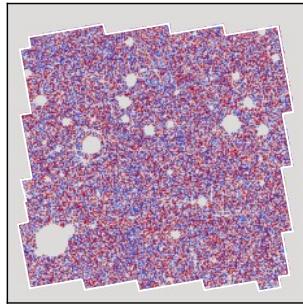
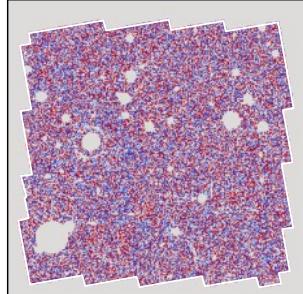
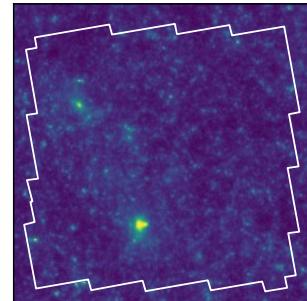
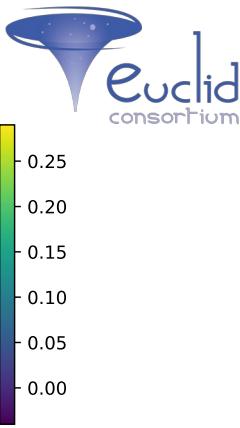
- Iterative method; at each iteration $i \in \{1, \dots, N_{\text{niter}}\}$:
 - Forward step: $\kappa_0^{(i)} = \kappa^{(i-1)} + \tau \mathbf{A}^\top \Sigma^{-1/2} (\gamma - \mathbf{A} \kappa^{(i-1)})$;
 - Backward step: $\kappa^{(i)} = \mathcal{D}_{\hat{\theta}}(\kappa_0^{(i)}, \boxed{\tau})$.
- Training phase independent of the noise covariance matrix $\Sigma \rightarrow \text{flexibility}$.

$$\gamma = \mathbf{A} \kappa + \mathbf{n}, \quad \text{with} \quad \mathbf{n} \sim \mathcal{N}(\mathbf{0}, \Sigma).$$

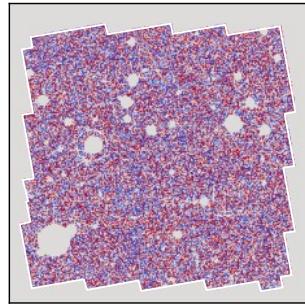
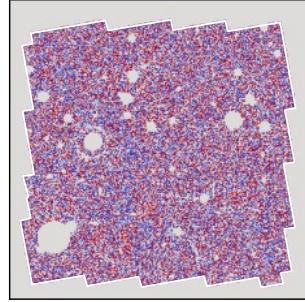
¹ N. Jeffrey, F. Lanusse, O. Lahav, and J.-L. Starck, "Deep learning dark matter map reconstructions from DES SV weak lensing data," MNRAS, 2020.

² B. Remy et al., "Probabilistic mass-mapping with neural score estimation," A&A, 2023.

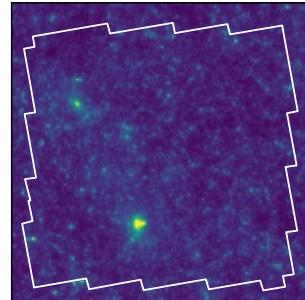
PnPMass step by step

Input γ Ground truth κ 

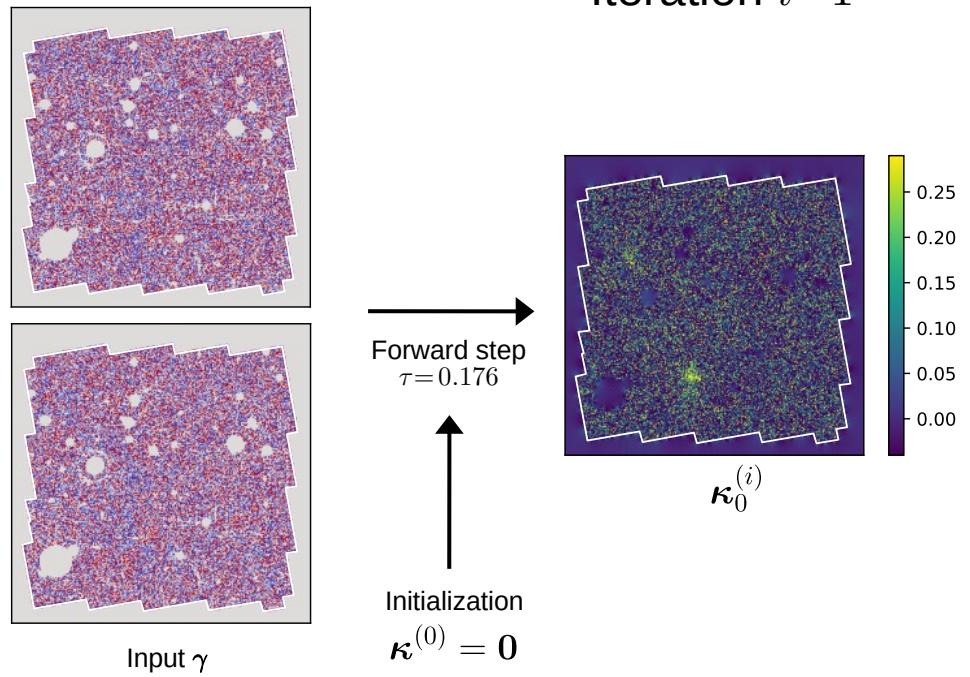
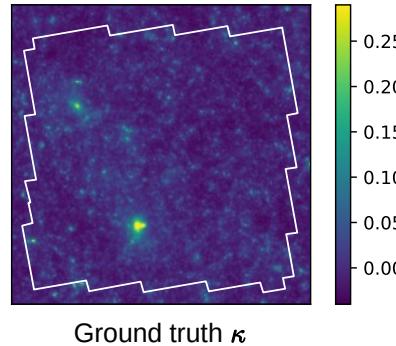
PnPMass step by step

Input γ

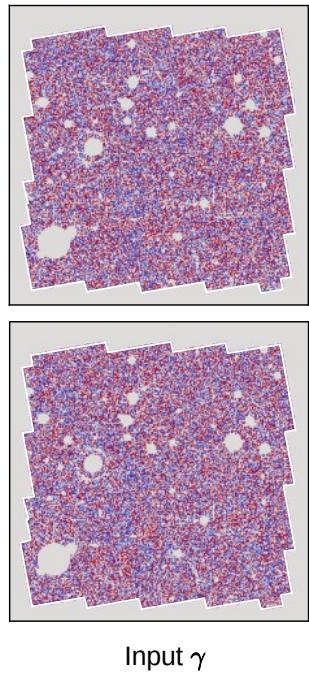
$$\kappa^{(0)} = \mathbf{0}$$

Iteration $i=1$ 

PnPMass step by step



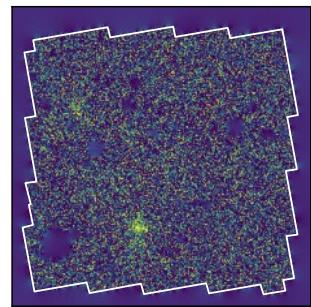
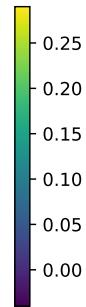
PnPMass step by step



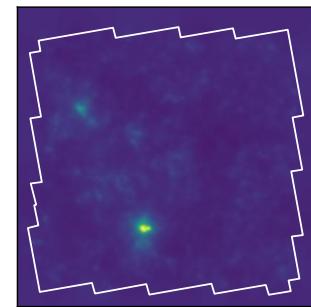
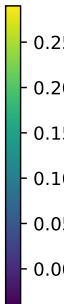
Iteration $i=1$

Forward step
 $\tau = 0.176$

Initialization
 $\kappa^{(0)} = \mathbf{0}$

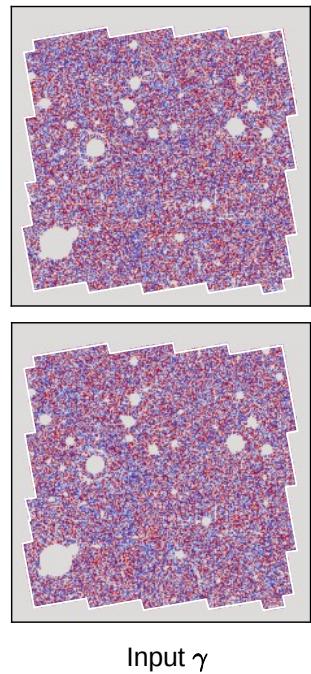
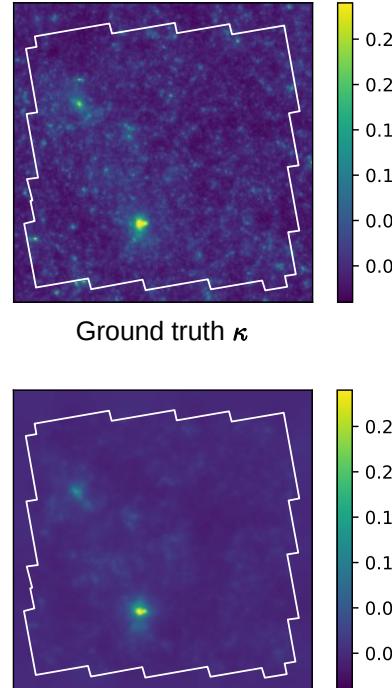


Backward step
 $\mathcal{D}_{\hat{\theta}}(\kappa_0^{(i)}, \tau)$.

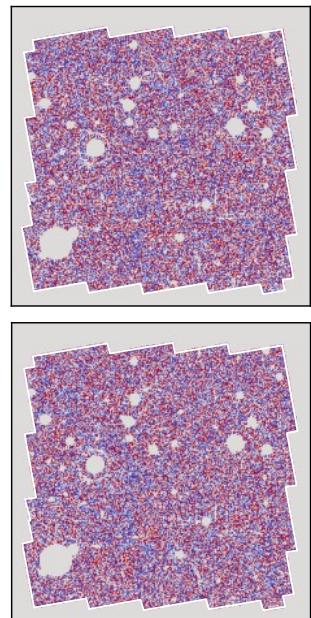


Ground truth κ

PnPMass step by step

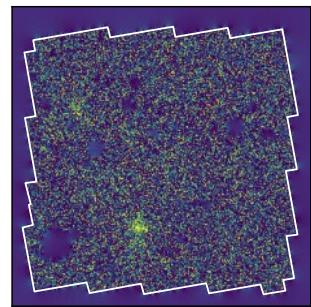


PnPMass step by step



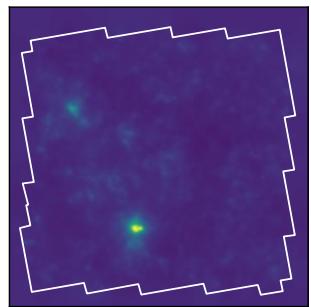
Iteration $i=2$

Forward step
 $\tau=0.176$

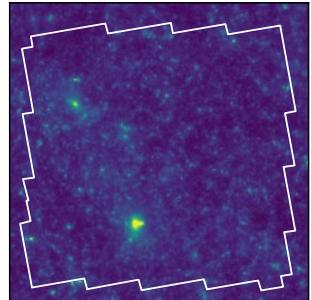


$\kappa_0^{(i)}$

Backward step
 $\mathcal{D}_{\hat{\theta}}(\kappa_0^{(i)}, \tau)$.

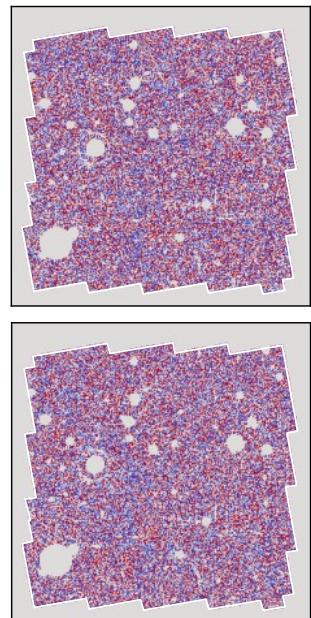


$\kappa^{(i)}$

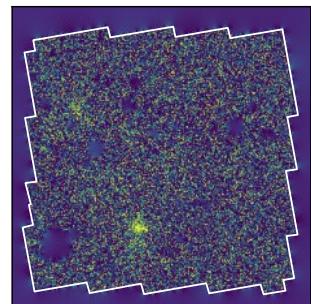


Ground truth κ

PnPMass step by step



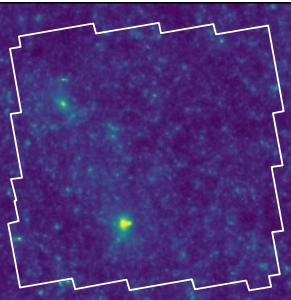
Iteration $i=2$



Forward step
 $\tau=0.176$

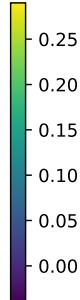
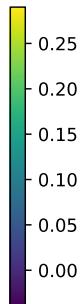
$\kappa_0^{(i)}$

Backward step
 $\mathcal{D}_{\hat{\theta}}(\kappa_0^{(i)}, \tau)$.



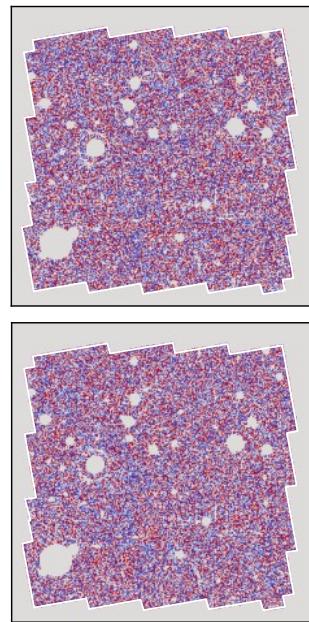
Ground truth κ

$\kappa^{(i)}$

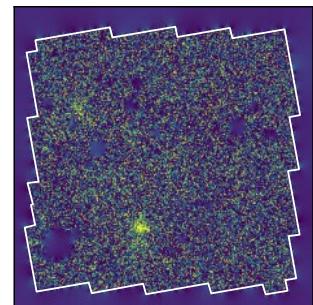


Input γ

PnPMass step by step

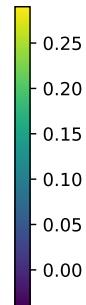
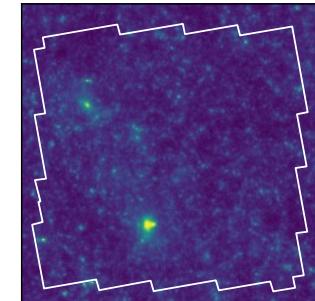


Iteration $i=3$



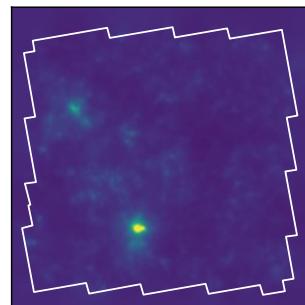
Forward step
 $\tau=0.176$

$\kappa_0^{(i)}$

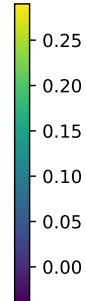


Ground truth κ

Backward step
 $\mathcal{D}_{\hat{\theta}}(\kappa_0^{(i)}, \tau)$.

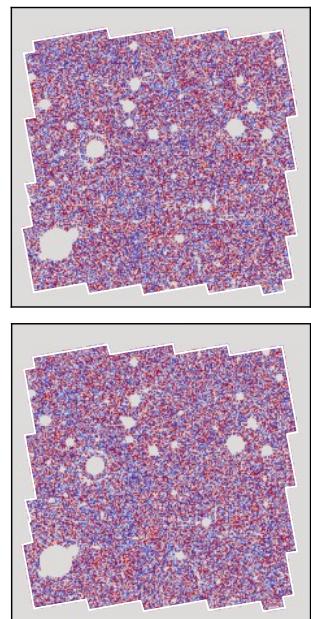


$\kappa^{(i)}$

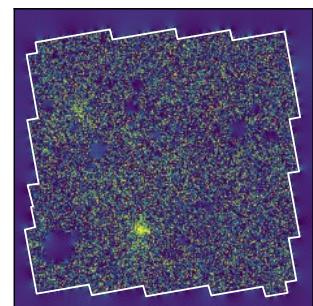


Input γ

PnPMass step by step

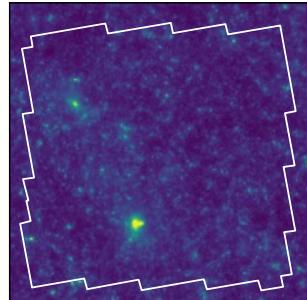


Iteration $i=4$

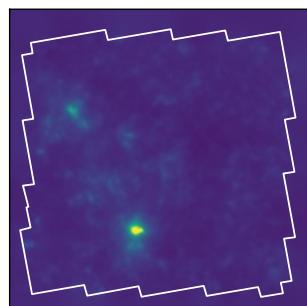


Forward step
 $\tau=0.176$

Backward step
 $\mathcal{D}_{\hat{\theta}}(\kappa_0^{(i)}, \tau)$.



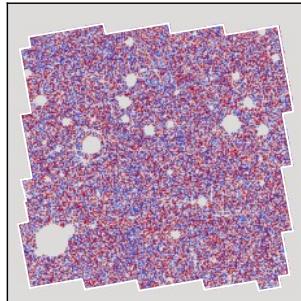
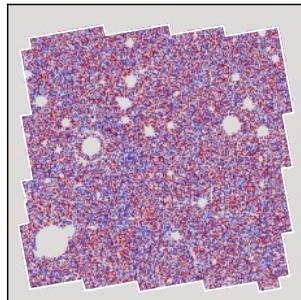
Ground truth κ



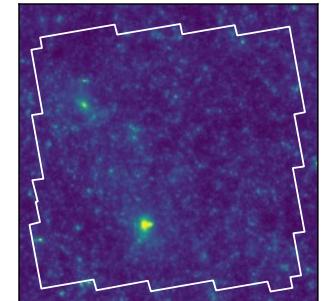
Input γ

PnPMass on residuals

- **Main idea:** include knowledge about underlying physics.
- Decompose κ into Gaussian / non-Gaussian components.



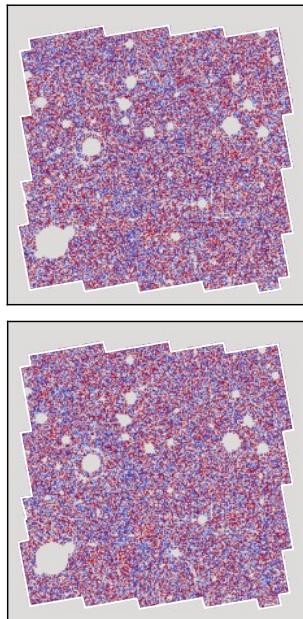
Input γ



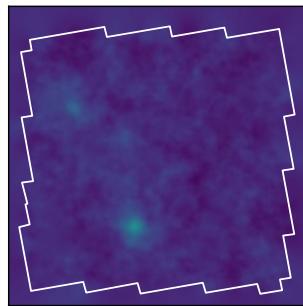
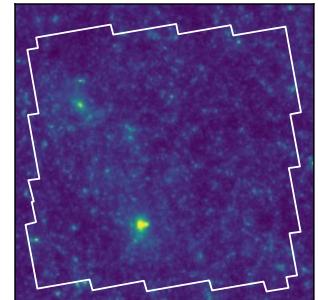
Ground truth κ

PnPMass on residuals

- **Main idea:** include knowledge about underlying physics.
- Decompose κ into Gaussian / non-Gaussian components.

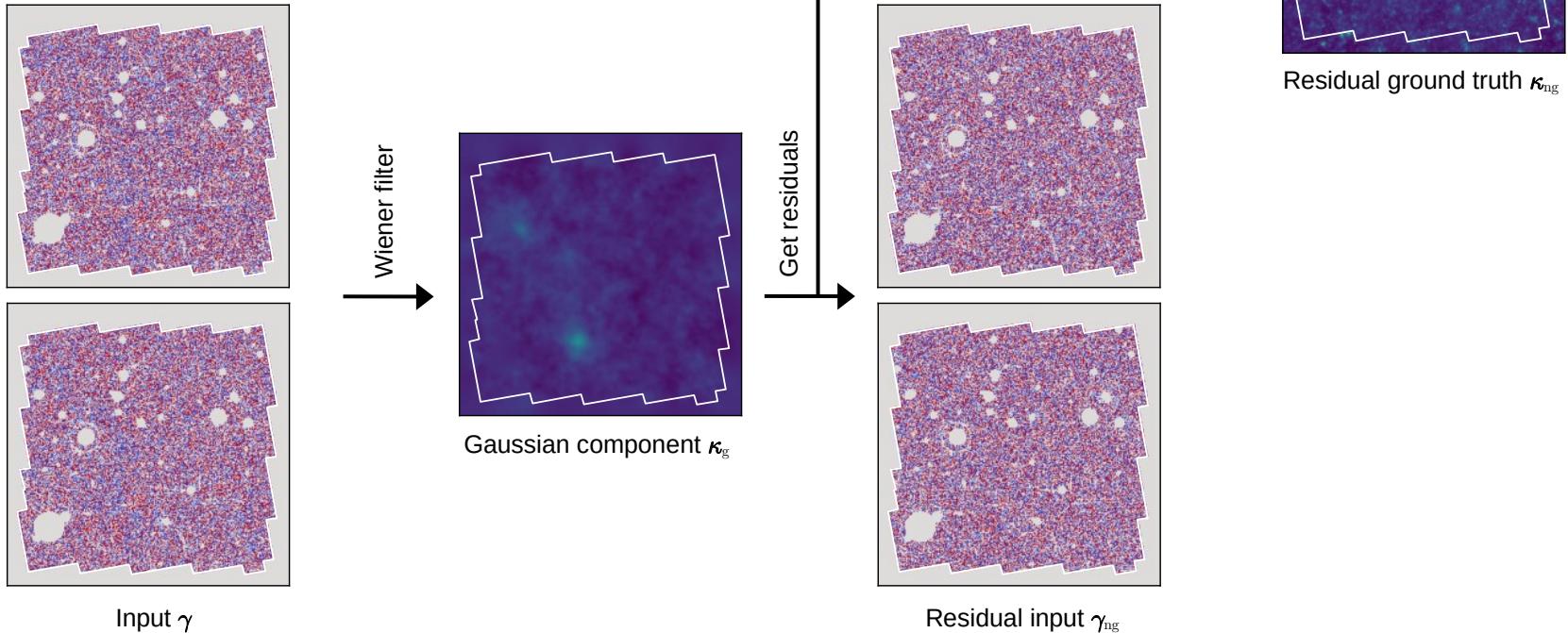


Wiener filter



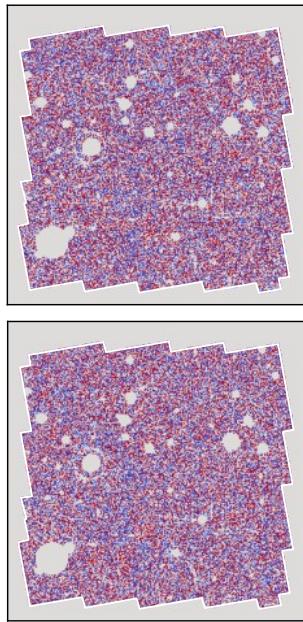
PnPMass on residuals

- **Main idea:** include knowledge about underlying physics.
- Decompose κ into Gaussian / non-Gaussian components.

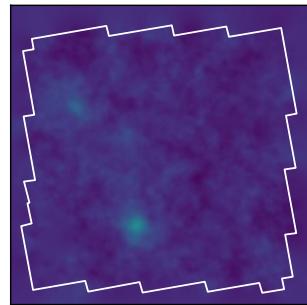


PnPMass on residuals

- **Main idea:** include knowledge about underlying physics.
- Decompose κ into Gaussian / non-Gaussian components.

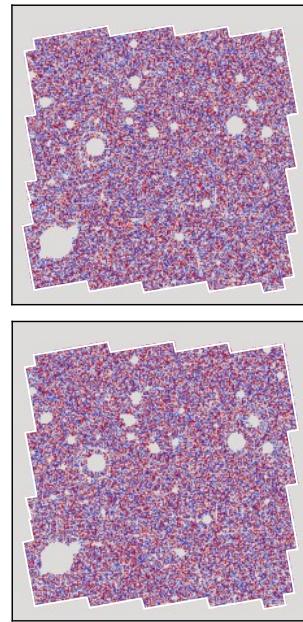


Wiener filter



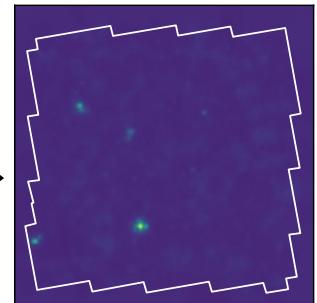
Gaussian component κ_g

Get residuals

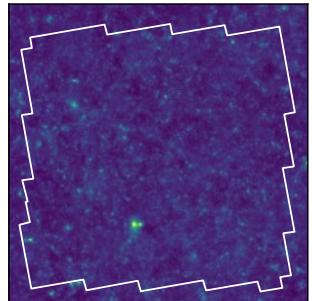


Residual input γ_{ng}

PnPMass



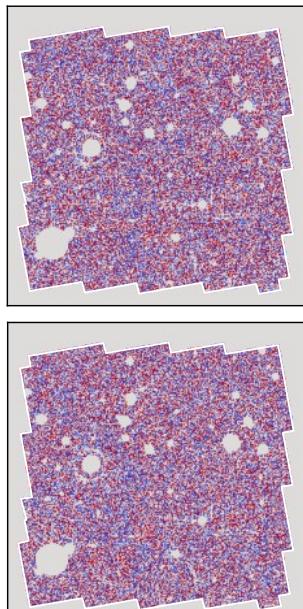
Residual estimate



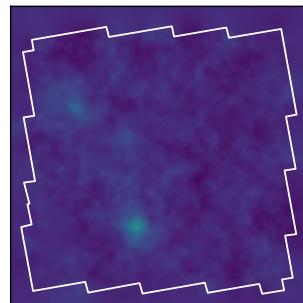
Residual ground truth κ_{ng}

PnPMass on residuals

- **Main idea:** include knowledge about underlying physics.
- Decompose κ into Gaussian / non-Gaussian components.

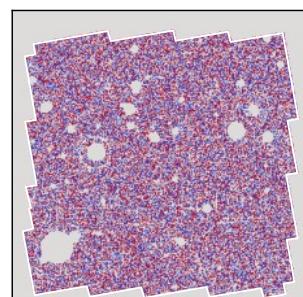


Wiener filter



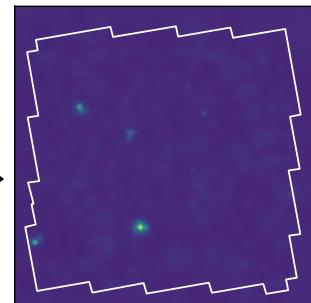
Gaussian component κ_g

Get residuals



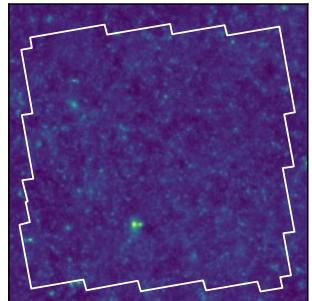
Residual input γ_{ng}

PnPMass



Residual estimate

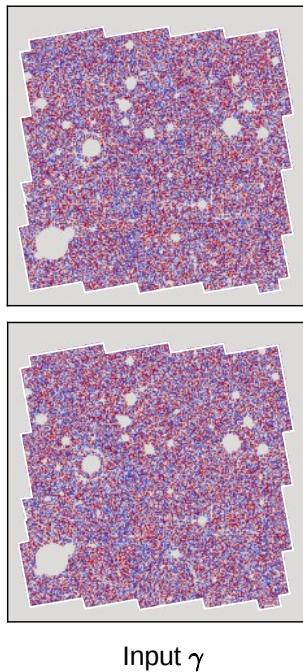
Denoiser specifically trained
on non-Gaussian residuals



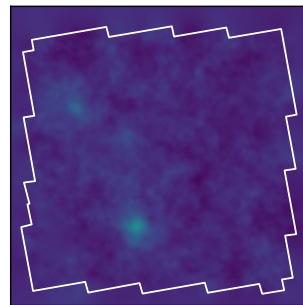
Residual ground truth κ_{ng}

PnPMass on residuals

- **Main idea:** include knowledge about underlying physics.
- Decompose κ into Gaussian / non-Gaussian components.

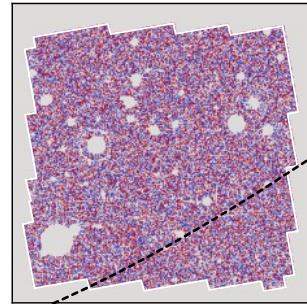


Wiener filter

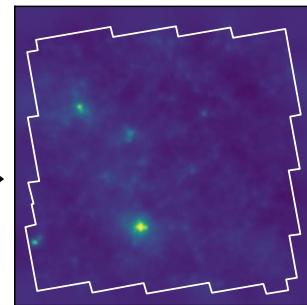
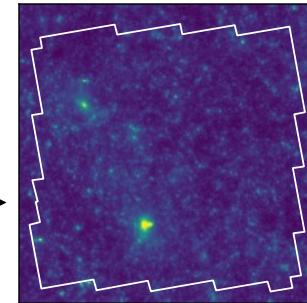


Residual input γ_{ng}

Get residuals



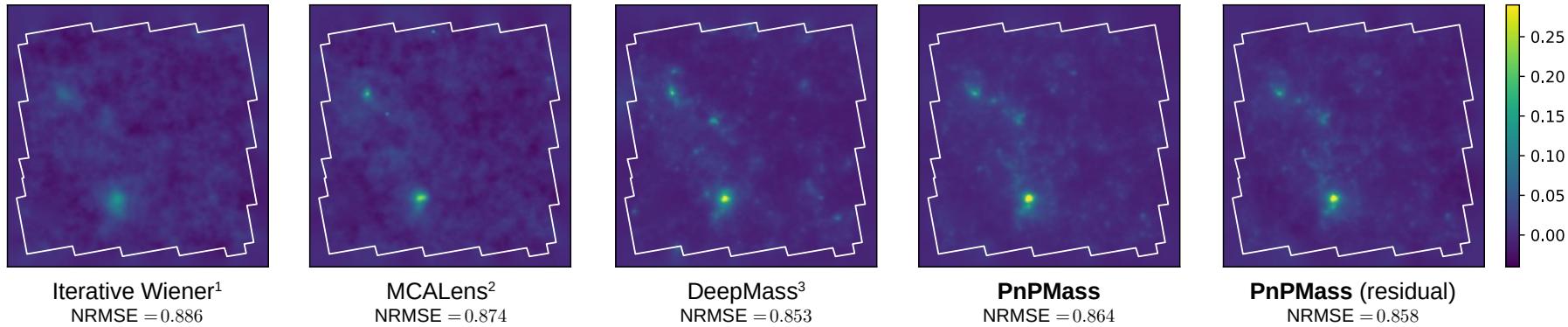
PnPMass



Add κ_g to residual ground truth and estimate

22

Visual comparison with other methods

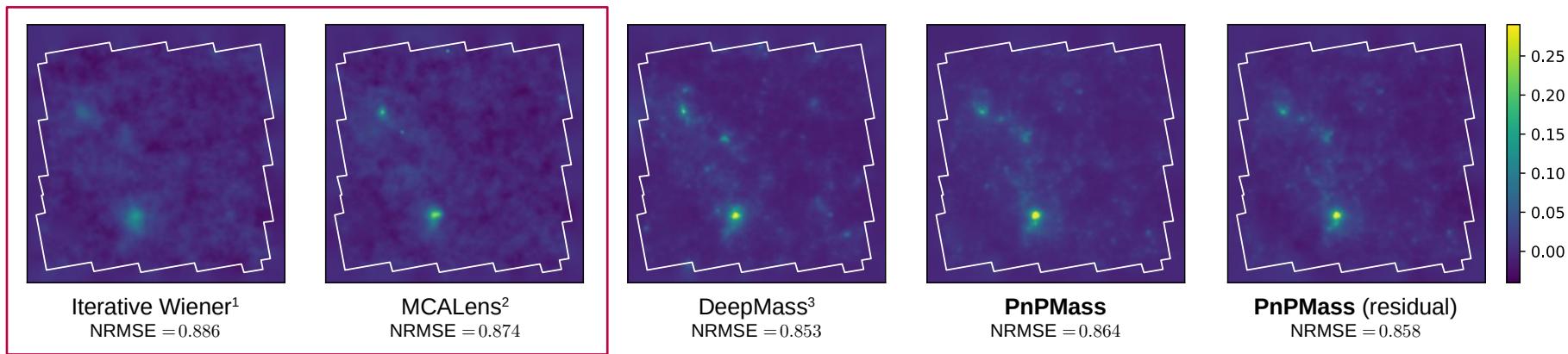


¹ J. Bobin, J.-L. Starck, F. Sureau, and J. Fadili, "CMB Map Restoration," *Advances in Astronomy*, 2012.

² J.-L. Starck, K. E. Themelis, N. Jeffrey, A. Peel, and F. Lanusse, "Weak-lensing mass reconstruction using sparsity and a Gaussian random field," *A&A*, 2021.

³ N. Jeffrey, F. Lanusse, O. Lahav, and J.-L. Starck, "Deep learning dark matter map reconstructions from DES SV weak lensing data," *MNRAS*, 2020.

Visual comparison with other methods



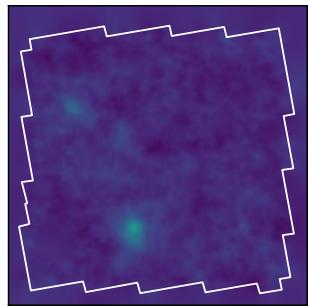
Classical (model-driven) methods

¹ J. Bobin, J.-L. Starck, F. Sureau, and J. Fadili, "CMB Map Restoration," *Advances in Astronomy*, 2012.

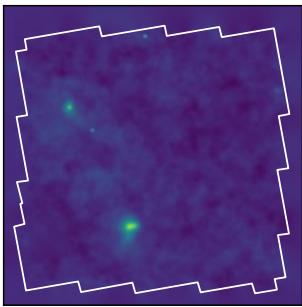
² J.-L. Starck, K. E. Themelis, N. Jeffrey, A. Peel, and F. Lanusse, "Weak-lensing mass reconstruction using sparsity and a Gaussian random field," *A&A*, 2021.

³ N. Jeffrey, F. Lanusse, O. Lahav, and J.-L. Starck, "Deep learning dark matter map reconstructions from DES SV weak lensing data," *MNRAS*, 2020.

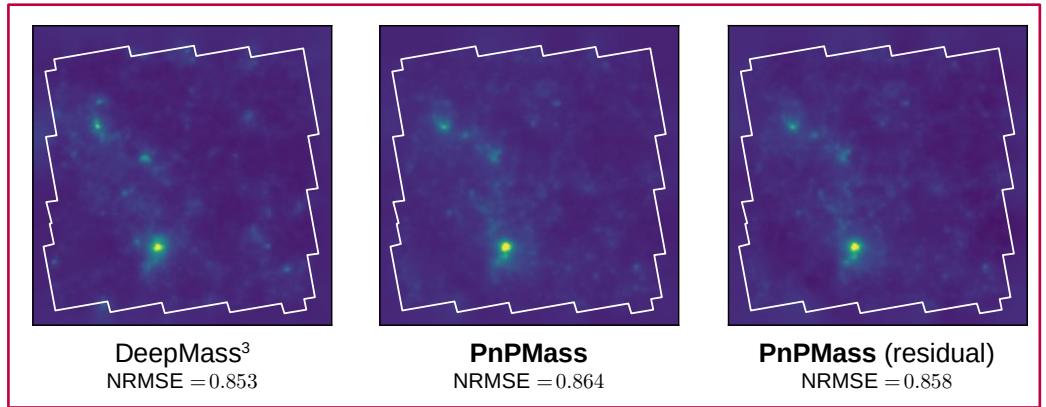
Visual comparison with other methods



Iterative Wiener¹
NRMSE = 0.886



MCALens²
NRMSE = 0.874



¹ J. Bobin, J.-L. Starck, F. Sureau, and J. Fadili, "CMB Map Restoration," *Advances in Astronomy*, 2012.

² J.-L. Starck, K. E. Themelis, N. Jeffrey, A. Peel, and F. Lanusse, "Weak-lensing mass reconstruction using sparsity and a Gaussian random field," *A&A*, 2021.

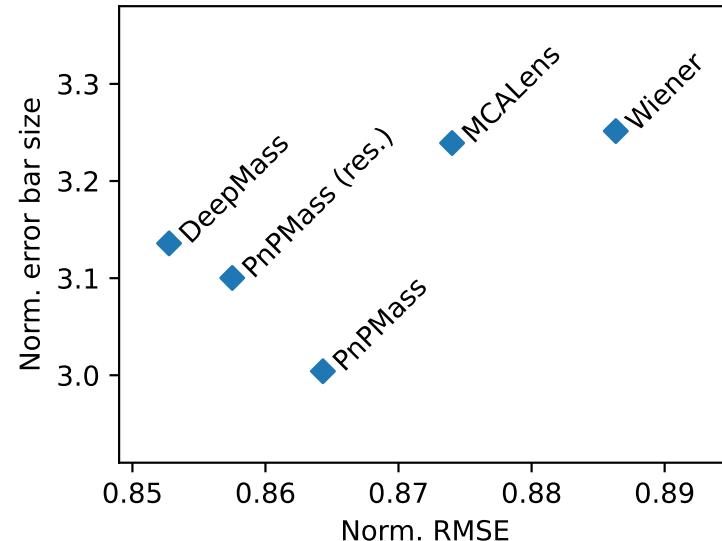
³ N. Jeffrey, F. Lanusse, O. Lahav, and J.-L. Starck, "Deep learning dark matter map reconstructions from DES SV weak lensing data," *MNRAS*, 2020.

Results – Accuracy vs Error bar size

- Test set: 512 images from kTNG simulations;
- Uncertainty quantification with calibration: coverage guarantees for all methods;
- Target miscoverage rate set to 4.6% (2σ -confidence).

Comments:

- PnPMass (residual version) slightly less accurate than DeepMass, but much more flexible;
- Smaller error bars for PnPMass than DeepMass (in 100% of the test examples);
- **Possible explanation:** DeepMass recovers more peaks, but also hallucinate more → bias / variance trade-off? Check with CHEM.¹



¹J. Li, I. Rosellon-Inclan, G. Kutyniok, and J.-L. Starck, “CHEM: Estimating and Understanding Hallucinations in Deep Learning for Image Processing,” arXiv, 2025

Toward tomographic mass mapping

Toward tomographic mass mapping

- So far, source galaxies from all redshifts:

$$\kappa := \int_0^{z_{\max}} \kappa_s(z_s) n(z_s) dz_s.$$

Toward tomographic mass mapping

- So far, source galaxies from all redshifts:

$$\kappa := \int_0^{z_{\max}} \kappa_s(z_s) n(z_s) dz_s.$$

Convergence at a given source redshift

Toward tomographic mass mapping

- So far, source galaxies from all redshifts:

$$\kappa := \int_0^{z_{\max}} \kappa_s(z_s) n(z_s) dz_s.$$

Source distribution

Toward tomographic mass mapping

- So far, source galaxies from all redshifts:

$$\kappa := \int_0^{z_{\max}} \kappa_s(z_s) n(z_s) dz_s.$$

- New objective: perform mass mapping per redshift bin \rightarrow lower SNR!

$$\kappa_i := \int_{z_{i-1}}^{z_i} \kappa_s(z_s) n(z_s) dz_s.$$

Toward tomographic mass mapping

- So far, source galaxies from all redshifts:

$$\kappa := \int_0^{z_{\max}} \kappa_s(z_s) n(z_s) dz_s.$$

- New objective: perform mass mapping per redshift bin \rightarrow lower SNR!

$$\kappa_i := \int_{z_{i-1}}^{z_i} \kappa_s(z_s) n(z_s) dz_s.$$

Integrate over the i -th redshift bin

Toward tomographic mass mapping

- So far, source galaxies from all redshifts:

$$\kappa := \int_0^{z_{\max}} \kappa_s(z_s) n(z_s) dz_s.$$

- New objective: perform mass mapping per redshift bin \rightarrow lower SNR!

$$\kappa_i := \int_{z_{i-1}}^{z_i} \kappa_s(z_s) n(z_s) dz_s.$$

- Each binned convergence map is a line-of-sight integration:

$$\kappa_i \propto \int_0^{z_i} \frac{w_i(z)}{a(z)} \delta(z) dz$$

Toward tomographic mass mapping

- So far, source galaxies from all redshifts:

$$\kappa := \int_0^{z_{\max}} \kappa_s(z_s) n(z_s) dz_s.$$

- New objective: perform mass mapping per redshift bin \rightarrow lower SNR!

$$\kappa_i := \int_{z_{i-1}}^{z_i} \kappa_s(z_s) n(z_s) dz_s.$$

- Each binned convergence map is a line-of-sight integration:

$$\kappa_i \propto \int_0^{z_i} \frac{w_i(z)}{a(z)} \delta(z) dz$$

↑
Matter (over)density field

Toward tomographic mass mapping

- So far, source galaxies from all redshifts:

$$\kappa := \int_0^{z_{\max}} \kappa_s(z_s) n(z_s) dz_s.$$

- New objective: perform mass mapping per redshift bin \rightarrow lower SNR!

$$\kappa_i := \int_{z_{i-1}}^{z_i} \kappa_s(z_s) n(z_s) dz_s.$$

- Each binned convergence map is a line-of-sight integration:

$$\kappa_i \propto \int_0^{z_i} \frac{w_i(z)}{a(z)} \delta(z) dz$$

Lensing kernel for the i -th redshift bin

Toward tomographic mass mapping

- So far, source galaxies from all redshifts:

$$\kappa := \int_0^{z_{\max}} \kappa_s(z_s) n(z_s) dz_s.$$

- New objective: perform mass mapping per redshift bin \rightarrow lower SNR!

$$\kappa_i := \int_{z_{i-1}}^{z_i} \kappa_s(z_s) n(z_s) dz_s.$$

- Each binned convergence map is a line-of-sight integration:

$$\kappa_i \propto \int_0^{z_i} \frac{w_i(z)}{a(z)} \delta(z) dz$$

Foreground mass taken into account
 \rightarrow correlations between bins

Toward tomographic mass mapping

- So far, source galaxies from all redshifts:

$$\kappa := \int_0^{z_{\max}} \kappa_s(z_s) n(z_s) dz_s.$$

- New objective: perform mass mapping per redshift bin \rightarrow lower SNR!

$$\kappa_i := \int_{z_{i-1}}^{z_i} \kappa_s(z_s) n(z_s) dz_s.$$

- Each binned convergence map is a line-of-sight integration:

$$\kappa_i \propto \int_0^{z_i} \frac{w_i(z)}{a(z)} \delta(z) dz$$

- Linear combination of bins to get projected mass in each bin:¹

$$\kappa_{\text{b}i} := \sum_{j=(i-2)}^i b_{ij} \kappa_j.$$

¹F. Bernardeau, T. Nishimichi, and A. Taruya, "Cosmic shear full nulling: sorting out dynamics, geometry and systematics," MNRAS, Dec. 2014.

Toward tomographic mass mapping

- So far, source galaxies from all redshifts:

$$\kappa := \int_0^{z_{\max}} \kappa_s(z_s) n(z_s) dz_s.$$

- New objective: perform mass mapping per redshift bin \rightarrow lower SNR!

$$\kappa_i := \int_{z_{i-1}}^{z_i} \kappa_s(z_s) n(z_s) dz_s.$$

- Each binned convergence map is a line-of-sight integration:

$$\kappa_i \propto \int_0^{z_i} \frac{w_i(z)}{a(z)} \delta(z) dz$$

- Linear combination of bins to get projected mass in each bin:¹

$$\kappa_{\text{b}i} := \sum_{j=(i-2)}^i b_{ij} \kappa_j.$$

↗ BNT weights, depend on the source distribution AND on the cosmology

¹F. Bernardeau, T. Nishimichi, and A. Taruya, "Cosmic shear full nulling: sorting out dynamics, geometry and systematics," MNRAS, Dec. 2014.

Toward tomographic mass mapping

- So far, source galaxies from all redshifts:

$$\kappa := \int_0^{z_{\max}} \kappa_s(z_s) n(z_s) dz_s.$$

- New objective: perform mass mapping per redshift bin \rightarrow lower SNR!

$$\kappa_i := \int_{z_{i-1}}^{z_i} \kappa_s(z_s) n(z_s) dz_s.$$

- Each binned convergence map is a line-of-sight integration:

$$\kappa_i \propto \int_0^{z_i} \frac{w_i(z)}{a(z)} \delta(z) dz$$

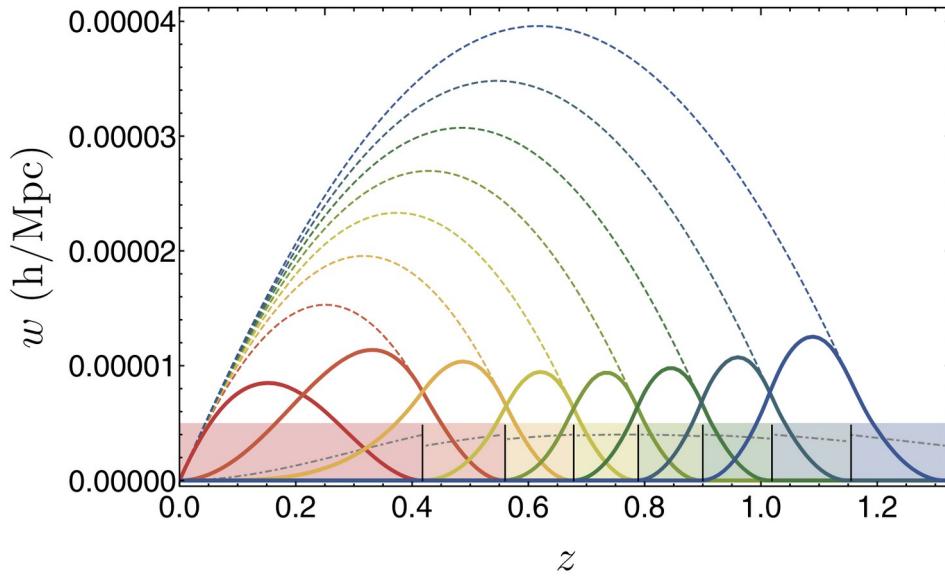
- Linear combination of bins to get projected mass in each bin:¹

$$\kappa_{b,i} := \sum_{j=(i-2)}^i b_{ij} \kappa_j.$$

Decorrelated maps; mass distribution averaged over each redshift bin

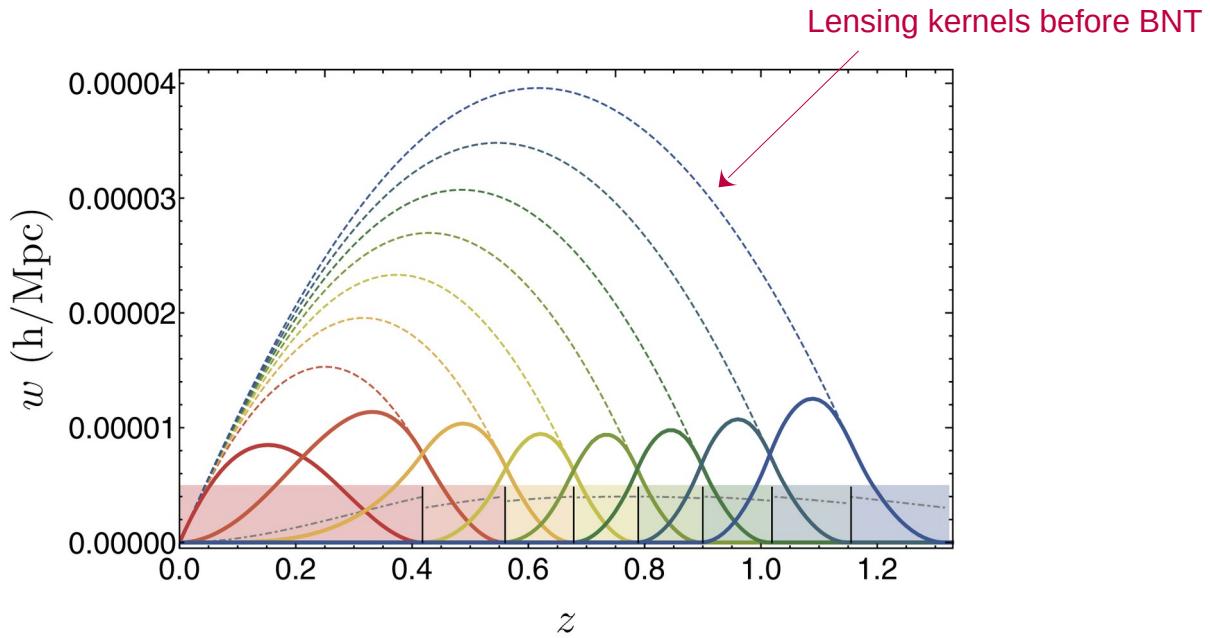
¹F. Bernardeau, T. Nishimichi, and A. Taruya, "Cosmic shear full nulling: sorting out dynamics, geometry and systematics," MNRAS, Dec. 2014.

Toward tomographic mass mapping

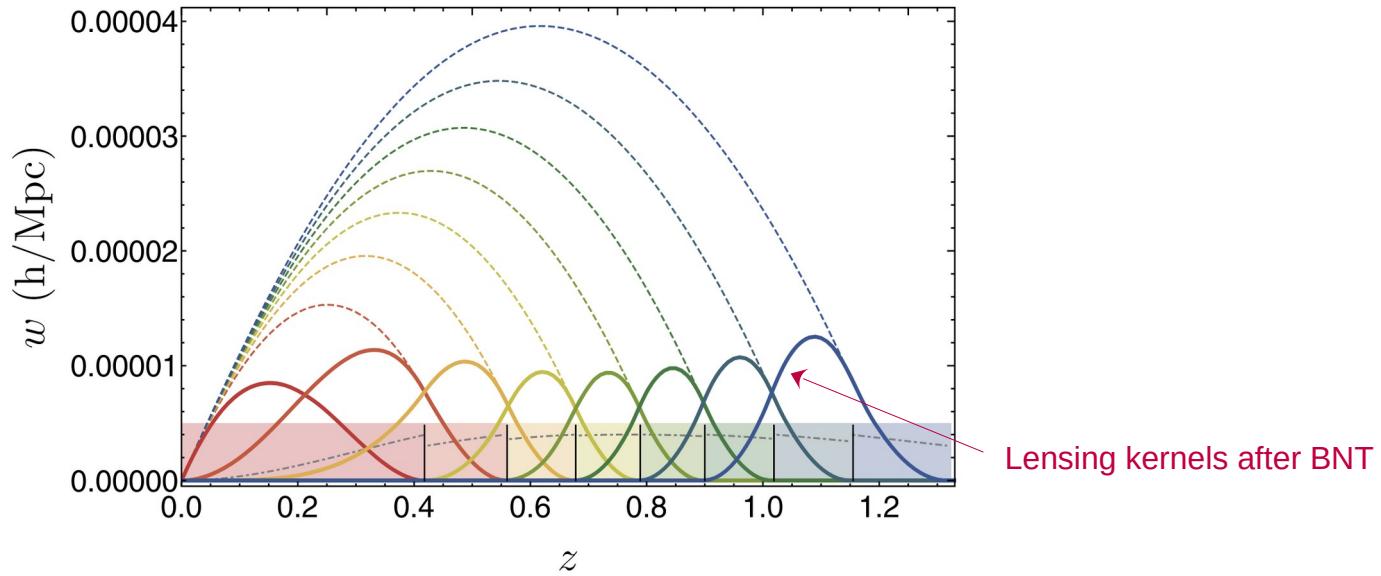


Plot from: A. Barthelemy et al., "Numerical complexity of the joint nulled weak-lensing probability distribution function," Phys. Rev. D, Feb. 2022

Toward tomographic mass mapping



Toward tomographic mass mapping



Plot from: A. Barthelemy et al., "Numerical complexity of the joint nulled weak-lensing probability distribution function," Phys. Rev. D, Feb. 2022

Toward tomographic mass mapping

Proposed solutions

- **Option 1:** Joint reconstruction of κ_i , then BNT. Corresponding inverse problem:

$$\bar{\gamma} = \bar{\mathbf{A}}\bar{\kappa} + \bar{n},$$

with:

$$\bar{\gamma} := \begin{bmatrix} \gamma_1 \\ \gamma_2 \\ \vdots \\ \gamma_J \end{bmatrix}; \quad \bar{\kappa} := \begin{bmatrix} \kappa_1 \\ \kappa_2 \\ \vdots \\ \kappa_J \end{bmatrix}; \quad \bar{\mathbf{A}} := \begin{bmatrix} \mathbf{A} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & \mathbf{A} & \cdots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{A} \end{bmatrix}; \quad \bar{n} \sim \mathcal{N}(\mathbf{0}, \bar{\Sigma}), \quad \text{with} \quad \bar{\Sigma} := \begin{bmatrix} \Sigma_1 & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & \Sigma_2 & \cdots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \cdots & \Sigma_J \end{bmatrix}.$$

- Model trained for joint denoising across redshift bins;
- PnPMass applied to this new problem;
- Then, apply BNT to the joint estimate.

Toward tomographic mass mapping

Proposed solutions

- **Option 2:** BNT directly embedded in the inverse problem:

$$\bar{\gamma} = \bar{\mathbf{A}} \bar{\mathbf{B}}^{-1} \bar{\kappa}_b + \bar{\mathbf{n}},$$

- New forward operator: $\bar{\mathbf{A}}_b := \bar{\mathbf{A}} \bar{\mathbf{B}}^{-1}$.
- Apply PnPMass on this new problem.
- New model trained on BNT convergence maps:
 - Clean maps are (almost) uncorrelated along zbins;
 - However the noise is correlated → joint denoising.

Toward tomographic mass mapping

Proposed solutions

- **Option 2:** BNT directly embedded in the inverse problem:

$$\bar{\gamma} = \bar{\mathbf{A}} \bar{\mathbf{B}}^{-1} \bar{\kappa}_b + \bar{\mathbf{n}},$$

Decorrelated maps to estimate

- New forward operator: $\bar{\mathbf{A}}_b := \bar{\mathbf{A}} \bar{\mathbf{B}}^{-1}$.
- Apply PnPMass on this new problem.
- New model trained on BNT convergence maps:
 - Clean maps are (almost) uncorrelated along zbins;
 - However the noise is correlated → joint denoising.

Toward tomographic mass mapping

Proposed solutions

- **Option 2:** BNT directly embedded in the inverse problem:

$$\bar{\gamma} = \bar{\mathbf{A}} \bar{\mathbf{B}}^{-1} \bar{\kappa}_b + \bar{n},$$

Inverse BNT transform

- New forward operator: $\bar{\mathbf{A}}_b := \bar{\mathbf{A}} \bar{\mathbf{B}}^{-1}$.
- Apply PnPMass on this new problem.
- New model trained on BNT convergence maps:
 - Clean maps are (almost) uncorrelated along zbins;
 - However the noise is correlated → joint denoising.

Toward tomographic mass mapping

Proposed solutions

- **Option 2:** BNT directly embedded in the inverse problem:

$$\bar{\gamma} = \bar{A} \bar{B}^{-1} \bar{\kappa}_b + \bar{n},$$

$\bar{\kappa}$

- New forward operator: $\bar{A}_b := \bar{A} \bar{B}^{-1}$.
- Apply PnPMass on this new problem.
- New model trained on BNT convergence maps:
 - Clean maps are (almost) uncorrelated along zbins;
 - However the noise is correlated → joint denoising.

Toward tomographic mass mapping

Proposed solutions

- **Option 2:** BNT directly embedded in the inverse problem:

Correlates the noise
across redshift bins!

$$\bar{\gamma} = \bar{\mathbf{A}} \bar{\mathbf{B}}^{-1} \bar{\kappa}_b + \bar{\mathbf{n}},$$

- New forward operator: $\bar{\mathbf{A}}_b := \bar{\mathbf{A}} \bar{\mathbf{B}}^{-1}$.
- Apply PnPMass on this new problem.
- New model trained on BNT convergence maps:
 - Clean maps are (almost) uncorrelated along zbins;
 - However the noise is correlated → joint denoising.

Conclusion and future work

- **Take-home messages:**
 - PnPMass: iterative method based on deep-learning denoising, fast and flexible;
 - Near state-of-the-art accuracy, with smaller error bars than existing methods;
 - Tomographic mass mapping with BNT transform (implementation in progress): take advantage of the correlations across redshift bins (either in the signal, or in the noise).
- **Next steps:**
 - Use PnPMass for cosmological parameter inference: size of contours? Bias? Benchmark against Kaiser-Squires and MCALens (paper Andreas¹).
 - Extend the method to spherical data;
 - Integrate PnPMass into Euclid's Science Ground Segment.

Visit our GitHub repository

Powered by

¹A. Tersenov, L. Baumont, J.-L. Starck, and M. Kilbinger, A&A, vol. 698, p. A25, Jun. 2025.