Biennale du LPNHE 13 septembre 2007

Le groupe BaBar au LPNHE 2005-2007

Eli Ben-Haïm, Hélène Briand, Jacques Chauveau, Odile Hamon, Philippe Leruste, Julie Malclès, José Ocariz, Alejandro Perez, Jennifer Prendki, Simon Sitt

CX.

Au programme

- Petits rappels sur le contexte physique
- L'expérience BaBar, ses résultats, ses performances
- Composition du groupe
- Thèses
- Activité Technique
- Activité d'analyse
- Production du groupe
- Perspectives du groupe et de l'expérience
- Résumé et conclusion

The CKM Matrix

Eli Ben-Haim

From CKM Matrix to Unitarity Triangle

 $V_{\text{CKM}} \text{ Unitarity} \Rightarrow V_{ud} V_{ub}^* + V_{cd} V_{cb}^* + V_{td} V_{tb}^* = 0$ $\sum_{\alpha \lambda^3}^{\infty \lambda^3} \sum_{\alpha \lambda^3}^{\infty \lambda^3} \sum_{\alpha \lambda^3}^{\infty \lambda^3} \sum_{\alpha \lambda^3}^{\infty \lambda^3} V_{cb}^* = 0$

Other unitarity conditions (triangles) are difficult to use: Sides are very different. Try it with second and third columns...

CP Violation is possible in the Standard Model only if V_{CKM} is complex $\Leftrightarrow \eta \neq 0 \Leftrightarrow$ Unitarity Triangle is not flat

We want to determine ρ and η experimentally

Eli Ben-Haim BaBar Biennale du LPNHE, 13 septembre 2007

How to Get ρ and η from Experiments?

Main goals of B factories

- Quantify CP Violation within the Standard Model with precision measurements of its angles and sides
- Test the Standard Model, by over- constraining the Unitarity Triangle with redundant measurements. If there is New Physics (not described by the Standard Model), we might see some incompatibilities between several independent measurements of the same parameter of the UT.

L'expérience BaBar

Conçu pour effectuer des mesures de précision de la violation de CP dans le secteur du méson B (et du charme)

- Fonctionnement:
 - Collision non symétriques:
 e⁻(9 GeV) e⁺(3.1 GeV)
 - $E_{CM} = m(\Upsilon(4S)) = 10.58 \text{ GeV}$
 - $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B}$
 - Les B sont produits presque au repos dans le CM
 - Boost de $\Upsilon(4S)$ avec $\beta \gamma = 0.56$ (distance de vol ~ 250µm)
 - → permet d'étiqueter la saveur du B

Performances et résultats de BaBar

Pas seulement la physique de B

■ ~480 fb⁻¹ de données « on peak » enregistrées

- Plus de 280 papiers publiés
- Résultats principaux:
 - Découverte de la brisure de symétrie CP dans les désintégrations du B
 - Violation de CP directe dans B→K⁻π⁺ observée
 - Observation de la violation de CP dans B→η'K⁰ (dominée par les « penguins »)
 - Découverte de nouveaux états D_S
 - Découverte de nouveaux états de quarkonium
 - Observation du mixing D⁰-D
 ⁰ (voir suite...)

As of 2007/09/12 00:00

Mixing de $D^0 - \overline{D}^0$

Eli Ben-Haim **BaBar**

Biennale du LPNHE, 13 septembre 2007

Composition du groupe BaBar

		Appartenance	Activité	
	BEN HAIM Eli	Paris 6	Dalitz	
	BRIAND Hélène	Paris 6	Bénévole	
	(CALDERINI Giovanni)	Atlas, CNRS	Syst. Manager du SVT	
	CHAUVEAU Jacques	Paris 6	Dalitz	
	HAMON Odile	Paris 6	Production MC	
	LERUSTE Philippe	CNRS	Bénévole, Production MC	
	OCARIZ José	Paris 7	Alpha, Dalitz, CKMFitter	
	PEREZ Alejandro	Thèse	Dalitz	
	PRENDKI Jennifer	Thèse	Dalitz	
	→ Aucun permanent CNRS à temps plein dans le groupe! → Jacques : détaché au CNRS jusqu'à août 2008 (à SLAC			
Départ :	MALCLES Julie	Thèse	Alpha, CKMfitter	
	→ Poste permanent	de physicienn	e au DAPNIA, 2006	
Renforts Récents :	DEL AMO Pablo	Postdoc	Dalitz	
	SITT Simon	Thèse (stage)	Dalitz	
Eli Ben-Haim BaBar	Biennale du LPNHE, 13 septembre 2007			

10

Thèses

- Soutenues :
 - Julie Malclès (directeur : José), avril 2006
- En cours :
 - Alejandro Perez (directeur : José) 2005-2008
 - Jennifer Prendki (directeur : Jacques) 2006-2009
- En démarage :
 - Simon Sitt (directeur: Eli) 2007-2010
- HDR :
 - José Ocariz, Novembre 2007

Activités techniques (I)

Responsabilités liées au détecteur Cherenkov (DIRC) :

- Responsabilité de la qualité de donnés
 - Eli : Jan. 2006 Jan. 2007
 - Jennifer : Oct. 2007 Mar. 2007
 - Simon : Jan. 2008 Juin 2008
- « Commissioning » du DIRC (long séjour à SLAC):
 - Alejandro : Fev. 2007 Août 2007
 - Jennifer : Jan. 2008 Juin 2008
 - Simon : Jan. 2008 Juin 2008
- Le groupe éléctronique (Hervé Lebbolo et al.)
 « on call » si problème TDC

 \rightarrow Suite à la baisse de main d'œuvre dans BaBar, les doctorants sont soumis à plus de travail de service par rapport aux anciens

Eli Ben-Haim BaBar Biennale du LPNHE, 13 septembre 2007

Activités techniques (II)

- Giovanni : « System manager » du SVT
- José, Jacques : Membres de la comité d'élection de coordinateur de physique
- Jacques :

Eli Ben-Haim

- Membre du « Publication board » : 2003 2006
- Membre du « Speakers bureau » : 2007 2009
- Coordinateur de prise de données Jan 2008 Juin 2008

BaBar Biennale du LPNHE, 13 septembre 2007

Analyse - généralités

- Le groupe concentre son effort dans les analyses Dalitz des désintégrations du B en trois corps sans charme
- Ces analyses, parmi les plus compliquées de l'expérience, font partie des « core physics goals » de BaBar
- Donnent accès direct aux amplitudes des différents modes résonnants de désintégration Amplitudes → paramètres de violation de CP, phases, rapports d'embranchements
- Sensibles aux interférences entre les différentes résonances dans le plan de Dalitz. Exemple de B⁰ → K⁰_S $\pi^+ \pi^-$: $\rho^0 (\rightarrow \pi^+ \pi^-) K^0_S$

Analyse – le canal $B^0 \rightarrow K^+ \pi^- \pi^0$

Jacques, José

- Long PRD en revue interne
- Observation du mode $B^0 \rightarrow K^{*0} (\rightarrow K^+ \pi^-) \pi^0$
- Image claire des interférences déstructives/ instructives entre l'onde S et l'onde P
- « Gratuitement » : meilleure mesure du rapport d'embranchement pour $B^0 \rightarrow D^0 \pi^0$

Analyse – le canal $B^0 \rightarrow K_S^0 \pi^+ \pi^- (I)$

Alejandro, Eli, José

Eli Ben-Haim BaBar

Biennale du LPNHE, 13 septembre 2007

16

Analyse – le canal $B^0 \rightarrow K^0_S \pi^+ \pi^-$ (II)

- → $2\beta_{eff}$ (f₀ (980)K⁰_S) = (89⁺²²₋₂₀ ± 5 ± 8)°
 - Notre résultat ne suit pas la tendance observée dans des modes similaires
 - Pas d'ambiguïté « trigonométrique »

 $\sin(2\beta^{\text{eff}}) \equiv \sin(2\phi_1^{\text{eff}})$

b→ccs	World Average	0.68 ± 0.03
	BaBar	0.21 ± 0.26 ± 0.11
¥	Belle	0.50 ± 0.21 ± 0.06
	Average	0.39 ± 0.17
0	BaBar	0.58 ± 0.10 ± 0.03
×	Belle	0.64 ± 0.10 ± 0.04
F	Average :	0.61 ± 0.07
×	BaBar	0.71 ± 0.24 ± 0.04
×°	Belle	0.30 ± 0.32 ± 0.08
Š	Average :	0.58 ± 0.20
, cn	BaBar	0.40 ± 0.23 ± 0.03
×	Belle	0.33 ± 0.35 ± 0.08
3	Average :	0.38 ± 0.19
× s	BaBar	0.61 ^{+0.22} ± 0.09 ± 0.08
°4	Average	0.61 +0.25
S	BaBar	0.62 ^{+0.25} _{-0.30} ± 0.02
X	Belle	0.11 ± 0.46 ± 0.07
°	Average	0.48 ± 0.24
φ.	BaBar	0.90 ± 0.07
X	Belle	0.18±0.23±0.11
	Average	0.85 ± 0.07
×°	BaBar Babar	-0.72 ± 0.71 ± 0.08
°⊧	Belle	-0.43 ± 0.49 ± 0.09
°e	Average	-0.52 ± 0.41
Ŷ	BaBar	$0.76 \pm 0.11^{+0.07}_{-0.04}$
¥	Belle	$0.68 \pm 0.15 \pm 0.03 + 0.21 \pm 0.03$
: <u>*</u>	Average	0.73 ± 0.10
-2	-1	^o Notre résultat ²

Analyse – le canal $B^+ \rightarrow K_S^0 \pi^+ \pi^0$

Jennifer, Jacques

- L'analyse vise Moriond 2008
- En phase de fits des données

Plus de détails : présentation de Jennifer réunion de vendredi (prévue en novembre)

Production du groupe

- Réalisations principales 2007-2008
 - L'analyse $B^0 \rightarrow K_{s}^0 \pi^+ \pi^-$ a été présentée à Lepton-Photon 2007. Papier pour PRD en préparation
 - L'analyse $B^0 \rightarrow K^+ \pi^- \pi^0$ fait l'objet d'un (long) PRD (en revue interne)
 - L'analyse $B^+ \rightarrow K_{S}^0 \pi^+ \pi^0$ vise Moriond 2008
- Le groupe a organisé un atelier « Charmless 3 body B decays » au laboratoire, dans le cadre de la FRIF (fev. 2006)
- Présentations, séminaires et conférences
 - Julie :s
 - PANIC 2005
 - Moriond-électrofaible 2006
 - Atelier « Flavour in the LHC era », CERN (feb. 2006)
 - Cours et séminaires sur la physique des saveurs lourds via HELEN (nov. 2006)
 - Séminaires à Annecy, Lyon et Marseille
 - Alejandro :
 - APS 2006
 - Séminaires sur la physique des saveurs lourds via HELEN (août -sept. 2007)
 - José :
 - Moriond-électrofaible 2006
 - Atelier « Flavour physics », Capri (mai 2006)
 - Eli:
 - Atelier « From Nuclei and Neutrinos to the Universe », Trento (juin 2007)
 - Jacques :
 - XIII Lomonosov, Moscou (aout 2007)
- Nombreuses contributions à des notes internes de BaBar

Eli Ben-Haim BaBar Biennale du LPNHE, 13 septembre 2007

Perspectives du groupe

- L'axe principal de l'équipe reste les désintégrations du B en 3 corps sans charme, jusqu'à la fin de BaBar
- Démarrage d'une analyse (thèse de Simon Sitt) avec deux Kaons dans l'état final
- Publication des analyses, et mise à jour avec la statistique complète de BaBar
- En fin des thèses, les doctorants effectuent une étude phénoménologique (de type CKMfitter)
- Contribution visible au fonctionnement du détecteur
 - Effort à maintenir
 - Missions pour garantir :
 - 6 mois de séjour par thésard (Jennifer, Simon)
 - Présence à SLAC (shifts, réunions de collaboration...)
 - Renfort de missions pour le postdoc
- Intérêt pour le projet « super B factory » (Eli)

Perspectives de l'expérience

- Fin de la prise de données : septembre 2008
- L'échantillon attendu à la fin de la prise de données est ~780 fb⁻¹ (échantillon actuel x 1.6)
- Le programme de physique continuera intensivement 2-3 ans après la fin de prise de données. Les données resteront accessibles pendant plusieurs années

Résumé et conclusions

- Grand succès de BaBar, du MS et de l'image CKM
- Les résultats actuelles des usines à B donnent des contraintes fortes sur l'éventuelle physique au-delà du MS (correction à l'image CKM, structure en saveur similaire à celle du MS, « modèles MFV »)
- La concentration des efforts du groupe dans les canaux en trois corps sans charme porte ses fruits

Eli Ben-Haim BaBar Biennale du LPNHE, 13 septembre 2007

The BaBar Detector

Silicon Vertex Tracker (SVT)

Reconstruction of decay vertex and tracks close to the IP

Drift Chamber (DCH)

Reconstruction of deviated charged particles tracks: momentum and angles

Detector of Cherenkov light (DIRC)

Identification of charged particles Separation K/ π >2.5 σ up to 4 GeV/c

Intrumented flux return (IFR)

Magnet 1.5T

Identification of $\mu^{+/-}$

Electromagnetic calorimeter (EMC)

Eli Ben-Haim BaBar

Detection of γ , e⁻ identification Reconstruction of $\pi^0 \rightarrow \gamma\gamma$, Energy measurement Biennale du LPNHE, 13 septembre 2007

Examples of Weak Processes

$$B^{0}\left(ar{b}d
ight)$$
 , $ar{B^{0}}(bar{d})$, $B^{+}\left(ar{b}u
ight)$, $B^{-}\left(bar{u}
ight)$

• Semileptonic Decay of B^0

Provide information on V_{ub} (V_{cb})

• $B^0 \leftrightarrow \overline{B}^0$ Oscillations

 $\propto (V_{td} V_{tb}^*)^2$

More on **B** Oscillations

With the weak int. eigenstates: $|B_L\rangle = p|B^0\rangle + q|\overline{B}^0\rangle$ $|B_H\rangle = p|B^0\rangle - q|\overline{B}^0\rangle$ Oscillation frequency, width difference: $\Delta M_d = m_{B_H} - m_{B_L}$ $\Gamma_d = \Gamma_{B_H} - \Gamma_{B_L}$

Time evolution of a B meson that was a B^0 at t=0:

$$|B^{0}(t)\rangle = e^{-imBt}e^{-\Gamma_{d}t/2} - \frac{\text{Decay term}}{\text{Decay term}}$$

Oscillation $\longrightarrow \left[\cos\left(\frac{\Delta m_{d}t}{2}\right)|B^{0}\rangle + i\frac{q}{p}\sin\left(\frac{\Delta m_{d}t}{2}\right)|\overline{B}^{0}\rangle\right]$
term

Competition between oscillation and decay

To study oscillations, need to identify the species of the *B* meson at time t=0. To follow its time evolution, need to measure time.

Eli Ben-Haim BaBar Biennale du LPNHE, 13 septembre 2007

Two Types of CP Violation

- Direct CP Violation: $B o f
 eq ar{B} o ar{f}$, with $f
 eq ar{f}$
 - To measure it, only need to count events.
 Rates are different ⇔ CP is violated
 - Only type of CP violation for charged B mesons
- CP violation in the interference between decay and mixing:

In the double-slit experiment, there are two paths to the same point on the screen.

In the *B* experiment, we must choose final states into which both a \overline{B}^0 and a B^0 can decay. We perform the *B* experiment twice (starting from B^0 and from \overline{B}^0). We then compare the

Eli Ben-Haim BaBar

Biennale du LPNHE, 13 septembre 2

Time Dependent Measurements, Flavor Tagging

BaBar Biennale du LPNHE, 13 septembre 2007

Eli Ben-Haim

Time Dependent Measurements, Flavor Tagging

$$\Delta t \equiv t_{rec} - t_{tag} \approx \Delta Z / \beta \gamma C$$

Solution:

- There is coherent evolution until B_{tag} decays
- At t_{tag} the flavor of B_{reco} is the opposite of the B_{tag} 's flavor
- B_{reco} 's flavor determined from B_{tag} 's flavor and Δt
- Boost: Δt measured via space length measurement between B_{tag} and $B_{reco} \Delta z$
- Flavor of the B_{tag} determined by its decay product: charge of leptons, K, π

Measurement of sin(2 β) with B⁰ \rightarrow J/ ψ K⁰_S

• Final state accessible to B^0 and $\overline{B}^0 \rightarrow$ Time dependent asymmetry:

Measurement of sin(2 β) with B⁰ \rightarrow J/ ψ K⁰_S

Measurement of sin(2_β) with "s Penguins"

Eli Ben-Haim BaBar

Biennale du LPNHE, 13 septembre 2007

Comparison of K, B_d and B_s Oscillations

Eli Ben-Haim

BaBar Bienr

Biennale du LPNHE, 13 septembre 2007

Mixing in $D^0 - D^0$ (Belle)

Method using Dalitz $ex: D^0 \rightarrow K^0_{S} \pi^- \pi^+$

0.17 0.16 0.15 0.15 0.14 Belle preliminary *CP* eingenstate lifetimes / Dº-K'T' decay time ratio $\tau(K^-\pi^+)$ $\Delta\Gamma$ 2Γ $\tau(K^-K^+)or\tau(\pi^+\pi^-)$ 0.13 0.12 $K^{-}K^{+}$ (or $\pi^{-}\pi^{+}$) pure CP D_{I}^{0} 0.11 $K^{-}\pi^{+}$ $50\% D_1^0 + D_2^0$ 0.1 Constraint on y 0.09 t/τ_{PDG} $y_{CP} = 1.31 \pm 0.32 \pm 0.25 \% (3.2\sigma)$ Compare assuming $\delta=0$: (x'=x, y'=y) BABAR preliminary Best fit 20 Belle life. (1σ) y'/10^{.3} 0 **Belle** Dalitz 0 Within 2σ , -10 less if $\delta \neq 0$ -0.5 0.0 0.5 $x'^{2} / 10^{-3}$ 5

RS and WS occupy the same Dalitz plot Measurement of strong phase δ Constraint on x,y²

(also sensitive to sign of x)

Eli Ben-Haim BaBar

Biennale du LPNHE, 13

Missions demandées pour 2008

- 85k €
 - \rightarrow Déplacement pour shifts et réunions de collaboration
 - → Suivi des doctorants en long séjour à SLAC
 - → Séjours de longue durée (6 mois) à SLAC de Jennifer et Simon pour tâches de service
 - \rightarrow Financement des missions du postdoc

Analyse – le canal $B^0 \rightarrow K^0_S \pi^+ \pi^-$ (backup)

