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Context and Objectives

* Context:

— Many tickets come from users who don’t read or don’t understand the CC documentation.

- Waste of time for support teams.
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[DOCUMENTATION

* Objectives:
A RAG-LLM chatbot

- First-line support: automatically answer common questions.

— Reduce ticket volume: free up time for complex issues.
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IN2P3 Computing Centre (CC-IN2P3) is a CNRS support and research unit (Unité d’Appui a la Recherche UAR6402)
belonging to IN2P3, the institute that pursues and coordinates research on particle physics, nuclear physics and astroparticle
physics. A national research infrastructure, CC-IN2P3 designs and operates an array of services, especially a mass storage
system and resources able to process massive amounts of data.

DAILY USAGE

+ Collaboration
« User account

* Resource
* Assistance

COMPUTING DATA STORAGE
» The computing platform « Storage areas
« The computing grid « Distributed storage

* Work produced by Mattéo Belz during a two-month internship at the CCin 2025.
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What about LLM ?

LLM = Large Language Model

&
%CCINEF’B

Deep neural networks trained on vast text corpora to generate human-like text.

[ Input Text J

o

LLM

(Trained on Large Corpus)

Large Language Model

{Generated Output}

Problems:

* limited knowledge (no updates after training)

* risk of hallucinations (made-up answers).
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What about RAG ?
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What about RAG ? %ECINEPB

RAG = Retrieval-Augmented Generation

Combines documentation search (retrieval) with LLM (generation).
Update responses without retraining the LLM
Provides accurate, context-aware answers grounded in official docs.
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Source Documentation
from RST to JSON

02/11/2026 Sybille Voisin



Source documentation : from RST to JSON

RST (ReStructuredText) :

A structured text format used for technical documentation

— RST files mix tags, metadata, and raw text.

— Not directly usable for RAG : needs clean, structured text.

JSON (Key-Value Format) :

Remove RST tags (titles, code blocks, comments).
— Preserve hierarchy (titles - subheadings - content).

— Compatible with vector databases (e.g., ChromaDB). |§
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Chunking and Embedding il N = Neeners

Chunking : Divide JSON into chunks (semantically coherent units).

- Each chunk = a independent piece of information (e.qg., a paragraph + its title).

Vectorization : Numerical representations of text in a high-dimensional space.

— Similar token have similar vectors. ) ~ E(woman) - E(man)

E(man)

Cosine Similarity : Measuring similarity between vectors.

— The closer the score is to 1, the more similar the vectors are. eem) j
" E(woman)
— In our case : Score = 0.7 x similarity(title) + 0.3 x similarity(content) ' /

ChromaDB : Open-source vector database, fast similarity search.

— Useful because 2 collections : in French and in English.
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Running LLM
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Running LLM %ECINEPB

* Ollama : Open-source, local execution, easy to deploy and manage, supports GPU acceleration.

Questions/Answers test based on CC Documentation.
- Model used : Deepseek R1 32B.

— Alternatives tested: Llama 3 70B (too slow), Mistral 7B (less accurate).

.®.

* Parameters :

- Temperature: Controls randomness (low (<=0) : precise, high (>=1) :creative).
— In our case: 0.2

- Top-k: We only keep the top-k tokens with the higher probablity.
— In our case: 50

- Top-p: Selects tokens until their cumulative probability reaches p (0 <p < 1).
— In our case: 0.9
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* Pipeline :
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Next steps o %ECINEPB

* Validate the information extracted from the RAG part ( chunks + embedding part).
* Is the 70% title and 30% content ratio sufficient?
* Documentation enrichment (ticket examples, code...).

* Fine-tuning : Retrain the LLM on our data to improve accuracy.
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