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Why test general relativity (GR)?



Why test general relativity (GR)?

GR is compatible with extremely high-precision measurements made:

e on Earth (clocks, GPS),

* in the Solar System (ephemerides),

® on stars (gravitational redshift),

* on binary and triple systems of pulsars (decay of period due to GW),
* in mergers of black holes and neutron stars (GW detections),

* in direct imaging of black holes (Event Horizon Telescope).

but.. all those tests happen in strong field regime



3 levels of weird in the Universe

1st level: the Universe is expanding... (1930)

2nd level: the Universe expansion is accelerating...
... due to a cosmological constant (2000)

3rd level: the Universe expansion is accelerating...
... due to an evolving kind of dark energy (2024)

What is dark energy?

or... is there a problem with GR on cosmic weak-field regime?
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13.8 Billion yrs

BICEP2 Collaboration/CERN/NASA
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Modelling the expansion
/
Space / g
P / ﬁj a(t) = scale of the Universe
/ LT
R Ry -
L // % Time t
)% g //
) 4
1 da
Hubble expansion-rate: H(t) = o) (?)

Hubble constant:  H, = H(t = today)



Modelling the expansion

/
/
Space // g
KL‘ a(t) = scale of the Universe
// 4
ﬁ 2 // '
/ % Time t
ol
/| V g
4 0
/7‘
Redshift of photons:
A 1
Big B i=—"-1= :
ig Bang Ae a(t) Today
a— 0 Scale factor a a="1
Z — 0

Redshift z z=10



Modelling the expansion

Space-time properties == Energy content of the Universe

+ isotropic and homogeneous Universe
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Modelling the expansion

Space-time properties == Energy content of the Universe

+ isotropic and homogeneous Universe
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photons,

Expansion-rate neutrinos

0.008%
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Modelling the expansion

Space-time properties == Energy content of the Universe

+ isotropic and homogeneous Universe

4 )
Q [a(H)]™*

photons, dark energy
neutrinos (cosmological constant)
0.008% 70%

- _J

The only one causing acceleration of the expansion!-)
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Modelling the expansion

Space-time properties == Energy content of the Universe

+ isotropic and homogeneous Universe
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Modelling the expansion

Space-time properties == Energy content of the Universe

+ isotropic and homogeneous Universe

Q [a(?)] 30 +mrHmde=3w.l1-at)

No fundamental origin for A | dark energy

(quintessence, phantom force)

70%

The only one causing acceleration of the expansion!-j




Observing the expansion

Type-la Supernovae (SNla)
as standard candles

L

candle
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Observing the expansion

Type-la supernovae
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Supernovae distance D, [Gpc]

Observing the expansion

Type-la supernovae

~ 1500 SN from the DES collaboration

Accelerating Universe

Favored by the
Dark Energy Survey
supernova data

(35% matter,
65% dark energy)

Non-accelerating Universe
(100% matter)

Redshift 2

<
c
Distances in an expanding Universe:  D(z) = " ——dz



Observing the expansion-rate

Type-la Supernovae (SNla) Baryon Acoustic Oscillations (BAO)
as standard candles as standard ruler
L r r

_ candle AQ ruler Az = ruler
47D}(2) Dy(2) Dy(2)




Observing the expansion
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Observing the expansion

Baryon Acoustic Oscillations
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1% of full survey volume

<0



The instrument

Mayall Telescope @ Kitt Peak, Arizona USA
4m mirror

10 spectrographs

30 cameras




Focal plane
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SPECTROSCOPIC
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DESI DR2 Results 2025

Observing the expansion

Baryon Acoustic Oscillations

Perpendicular BAO Distance
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Observing the expansion

Cosmic microwave background (CMB)

Type-la Supernovae (SNla) Baryon Acoustic Oscillations (BAO)
as standard candles as standard ruler
Lcandle Al = Fruler A Fruler

- 47DX(z) Dy (2) T Dy(2)



Cosmic Microwave Background

The Sun

R Soat bl ¥ A 27,
CMB temperature at emission 3,000 K
CMB temperature today 2,73 K

Photosphere temperature 5,772 K

Photosphere is at 8 light-minutes . . .
Light emitted 13,5 billion years ago



Cosmic Microwave Background

The CMB
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Observing the expansion

Cosmic microwave background (CMB)

Type-la Supernovae (SNla) Baryon Acoustic Oscillations (BAO)
as standard candles as standard ruler
Lcandle Al = Fruler A Fruler

- 47DX(z) Dy (2) T Dy(2)



Observing the expansion

_ Lcandle Af = Fruler AZ _ Fruler
42D}(2) Dy(2) Dy (2)
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Constraints on evolving dark energy

Cosmological constant A -\

0

Tension with the cosmological

BAO +CMB = 3.1o

—1 1
BAO + CMB + SNpueons = 280 s
BAO + CMB —+ SNDESY5 = 420 —2-
DESI DR2 Results Il (2025)
-3

Bl BAO + CMB + SNp, iheont

| BN BAO + CMB + SNprays
N\ --- BAO+CMB

-
D

Third level of weird in the Universe (2025)

Will this tension remain with more data?
What is dark energy?


http://arxiv.org/abs/2503.14738

What it general relativity is incomplete?

Several theories try to explain an accelerated expansion

. RET . See reviews by
Massive N Ezquiaga & Zumalacéarregui 2018;
Gravity - K : Hou, JB et al. 2023
m., > 0 L Bigravity
General ’ :

........

R6|atIVIty Multis \:

gravity

Unique theory |
of massless g, B

Additional |
Field ' .

Break
Assumptions

Extra
\dimensions

Non=Local

So... dark energy or alternative/extended GR?
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Our Universe is not homogeneous.. and it's complex !

Growth of structures

Dense regions get denser
Void regions get emptier

Peculiar velocities
Matter moves around

Matter clumps into halos
Galaxies form inside halos
Supernovae explode inside galaxies

10 Mpc (comoving)

llustris hydrodynamical n-body simulation



Growth of structures: modelling it

Homogeneous density * Inhomogeneous density
p(1) p(E. 1) = p() |1 + 8, 1)

Continuity + Euler fluid equation and Poisson equation for gravity

Assume small contrast (0 < 1) and keep linear terms only:

5(}, r) _|_[ expansion H(t) ]5(}, ) — [ gravity G ]5()_5, ) = 0

Growth rate of structures f(¢)

SR, 1) ~ (1) 3R, to)
In GR:  f(1) = [Q, ()] wherey =0.55

Measurements of the growth rate can show deviations from GR!



Growth rate of structures f(¢)

Time since Big Bang |Gyr]
13.7 12.5 5.9
0.65 e e

— GR
—— oy = (.42
cene oy =0.68

0.01 0.1 1.0
Redshift z

Measurements of the growth rate can show deviations from GR!



Statistics of the density field

Matter density field 6(X, 1)

Variance
o° = (5(X)8(X))

(.) = average over all cells in the volume

Large standard deviation

O

/ \_
= T T T T |

~10 -5 0 5 10
5(x, 1)




Statistics of the density field

Matter density field 6(X, 1)
smoothed over R = 84~ 'Mpc

Variance
o° = (5(X)8(X))

(.) = average over all cells in the volume

1 Smaller standard deviation
Og
-10 -5 0 5 10
O(X, 1)

oz ~ (0.8 is a cosmological parameter




Statistics of the density field

Matter density field 6(X, 1)

Variance
o° = (5(X)8(X))

(.) = average over all cells in the volume

Correlation function

E(F) = (BER)SE + 7)) = &)

(.) = average over all pairs in the volume




Statistics of the density field

Matter density field 8(x, 1) Correlation function
E(F) = (6(X)0(X + 7)) = &y, )

(.) = average over all pairs in the volume

25 | | | ]

=16




s%¢0(s) [h~*Mpc?]

50+

20

=20

Statistics of the density field

LRG2

60

80

160 150
s [h~1Mpc]

140

Correlation function

E(F) = (BE)6E + 7)) = Ery, 1)

(.) = average over all pairs in the volume

25 | | ] ]




Statistics of the density field

FFT

"

Matter density field 6(X, 1) Fourier amplitudes 5(%, 7)




Variance per mode P, (k)

Statistics of the density field

Power spectrum

Fourier amplitudes 5(%, t)

Yok + K0P = (5,K5:K))

Fourier analogous of the correlation function

LRG3

large scales small scales

Fourier mode / frequency k [1/Mpc]



Statistics of the density field

Statistical measurement

Correlation function

& 50 | '  LRG2 T oaical
Galaxy survey S o) Cosmologica
— |
o(X, 1) 2 of parameters
7 -2y
610 810 l(l)O 1é0 11110
s [h~Mpc]
* G
Power spectrum
S A
a” LRG3
’ }
g 03
:
>

Angular mode

The full shape of £(7) or P(z) depends on cosmological parameters
(and on the gravity model!)



What about peculiar velocities?



What about peculiar velocities?

Continuity equation

V V(X 1) ~ G, 1)



What about peculiar velocities?

Continuity equation

VG 1) ~ m}{f(fﬂ@(ﬁt}{

Growth-rate of structures Smooth field on spheres of 8 Mpc/h

Its spatial variance is

<52(-;C)9 t)>8h—1Mpc — g(t)

Velocity field (X, 1) is correlated spatially like 6(x, 1)

Its amplitude is proportional to:

J(D)og(1)



Redshift-space distortions (RSD)

We measure redshifts : peculiar velocities affect our distance inferences

Redshift from Observed redshift is :
S the velocity (1 + 2450 = (1 4 Zogeme)(1 + 2,)
V .......................... Z gy 3
A <V y— A
e |
A
- |
] s
Redshift from : | Actual gObserved | Distorted
the expansion : distance : Redshift | distance
: |
Z COSMO X (Zcosmo) Z Ob S | X (Zobs)

| : I
I |
' Y

© ©

Real space Redshift space



Redshift-space distortions (RSD)

Average infall on large scales

Observer



Redshift-space distortions (RSD)

Average infall on large scales

v
\

€% =

Overdensity

Observer

Squashing on radial direction on large scales
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300 - Redshift-space distortions (RSD)
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Redshift-space distortions (RSD)
Impact on correlation function &(7) = <5(5€)5(55 + 7))

Real space
| | | | |

—-1.6 —-0.8 0.0 0.8
10g10(§)

Simulation by Kuruvilla & Porciani 2018



http://adsabs.harvard.edu/abs/2018MNRAS.479.2256K
http://adsabs.harvard.edu/abs/1987MNRAS.227....1K

Redshift-space distortions (RSD)
Impact on correlation function &(7) = <5(5c’)5(55 + 7))

Real space Redshift space
| | | | | | | | | 2 5

s, |h'Mpc]

—-1.6 —-0.8 0.0 0.8
loglo(ﬁ)

Simulation by Kuruvilla & Porciani 2018



http://adsabs.harvard.edu/abs/2018MNRAS.479.2256K

Isotropic
signal

Monopole
=0

Redshift-space distortions (RSD)

Multipoles of the
power-spectrum

k1Py(k)

Multipoles of the
correlation function

r’&(k)

0.0 0.1 0.2 0.3 0.4 0.5 0

k [h Mpc~1]

50 100 150 200
r [h~! Mpc]



Redshift-space distortions (RSD)

Multipoles of the
power-spectrum

k1Py(k)
Q@
: )
Isotropic Q. C”°
signal S N
>
G) 600_ f=00 EEEEENRI
_O f= 05 - OE ]
Anisotropic g- Cﬁ] 4007 F=10  —
signal g S 2004
O
0 A | |

0.0 0.1 0.2 0.3 0.4 0.5
k [h Mpc™1]

Multipoles of the
correlation function

r’&(k)

0 50 100 150 200
r [h~! Mpc]

Anisotropic clustering constrains the growth rate of structures f(7)og(?)
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Peculiar velocity measurements

Redshift survey
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Density field in
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Peculiar velocity measurements

Redshift survey Density field in Radial velocity field
N » redshift-space N in redshift space
Distance survey 6g(s ) V()
1000 Spatial correlations
.t : é ) A = / | e (86,(3)5,(5 + AF))
‘ﬁ« (8,(5I0,(5 + AF))
f y A / ’ >00 N7 AT
: ..:.., (v.(s)v.(s + As))

- 250 .
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: L ]
o
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[S/w] AND0I9A
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~1000
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Peculiar velocity measurements

Observed redshift is :
(1 + Zobs) — (1 + Zcosmo)(1 + Zv)

7 N N

Spectroscopic survey Distance indicator Radial peculiar velocity
.
Tully-Fisher Fundamental plane  Type-la supernova
insi o o o
Int.rms.|c scatter %> r0q Y % 79
(in distance) D D D
WALLABY ~ 30k Taipan ~ 50k ZTF ~ 5 to 20k

Future datasets DES| ~ 53k DESI ~ 133k LSST ~ 30 to 100 k
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Data sets

Mocks

Measurements

of fog

DESI PV Data Release 1

Batch of 7 papers submitted end of 2025

Caitlin Ross et al.: Fundamental Plane sample
Kelly Douglass et al.: Tully-Fisher sample

Anthony Carr et al.: Zero-point calibration and H,,

JB et al.: Mock catalogs from n-body simulations

Yan Lai et al.: Growth rate with maximum likelihood fields

Fei Qin et al.: Growth rate with momentum power spectra
Ryan Turner et al.: Growth rate with correlation functions
Andy Nguyen et al.: Growth rate with DESI and Pantheon+ SN

Key points
Internal combination of FP and TF samples
675 n-body based mock catalog realisations
First ever consistency check among methodologies
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e DESI PV Data Release 1
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DR1 Fundamental Plane sample: 98 292 velocities
DR1 Tully-Fisher sample: 10 262 velocities
DR1 density sample at z < 0.1: 415 523 galaxies

Already surpassed past PV samples



DESI PV DR1 Mock catalogs

U.S. Department of Energy Office of Science J B et al
AbacusSummit Evolving HOD model DR1 geometry
n-body simulations based on DESI BGS and completeness

(Maksimova et al. 2021) (Smith et al. 2024) with observer
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BGS density Fundamental plane Tully-Fisher

675 realisations

Largest and most accurate set of mocks for PV cosmology
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Configuration space &(r) Fourier space P(k)

Turner et al. Qin et al.
Lai et al.
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S ] rcoscone DESI PV Methodologies
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U.S. Department of Energy Office of Science

Configuration space &(r) Fourier space P(k)
Turner et al. Qin et al.
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U.S. Department of Energy Office of Science

Configuration space &(r) Fourier space P(k)
Turner et al. Qin et al.
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Density-density

Velocity-velocity

Density-velocity

DESI PV Growth rate measurement
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Excellent fit to simulations

Fourier space P(k)
Qin et al.

fog = 0.468+9-061
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Density-density

Velocity-velocity

Density-velocity

DESI PV Growth rate measurement
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DESI PV Growth rate measurement

Time since Big Bang |Gyr]
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Theories

GR

v = 0.42

v = 0.68

Past measurements
SDSS o

DESI DR1 ¢

MLE v + 9

E(r)or P(k) v+9
Recon. v+ 9

DESI DR1 v+
MLE - Lai et al.
P;i(k) - Qin et al.
&ij(r) - Turner et al.

Consensus
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il Nsmomen Cosmological implications

— DESI DR1 (SF+BAO) Testing departures from GR

f) = [2,)]

y = 0.55 (GR)

Dataset ¥ Qp oF:
/ \ DESI DRI SF 0.610*0160  0,301+0013  ( 832+0.039
\ DESIDRI SF + PV 0.581+097 0.3013919  0.834+2.03!1
ﬂ
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30% improvement on y and Q2 uncertainty thanks to PV
Consistency with GR



Plan

The expansion: modelling and observing it
Growth of structures : modelling and observing it

Peculiar velocity measurements and DESI first results

Near future with ZTF and LSST



Peculiar velocity measurements

Observed redshift is :
(1 + Zobs) — (1 + Zcosmo)(1 + Zv)

7 N N

Spectroscopic survey Distance indicator Radial peculiar velocity
.
Tully-Fisher Fundamental plane  Type-la supernova
insi o o o
Int.rms.|c scatter %> r0q Y % 79
(in distance) D D D
WALLABY ~ 30k Taipan ~ 50k ZTF ~ 5k to 20k

Future datasets DES| ~ 53k DES| ~ 133k LSST ~ 30 to 100 k



Photometric surveys

WICKY
g TRANSIENT to detect supernovae bl

ZTF

PTF/iPTF, 7.3 deg? LSST, 9.6 deg? ZTF, 47 deg?




ICKY Photometric surveys ]
TRANGIENT to detect supernovae VERA G RUBIN

ZTF

PEEETREE

-60°

H DARK ENERGY

SPECTROSCOPIC

INSTRUMENT Great overlap with DESI and 4MOST




Future growth rate measurements

Time since Big Bang |Gyr]
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Future growth rate measurements
Time since Big Bang |Gyr]
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Future growth rate measurements

Uncertainty on foyg

by Camille DEMAY (M2 internship)




Future growth rate measurements

Uncertainty on y

In GR:  f(t) = [Q, ()] wherey =0.55

== FUture RSD measurements

= [yture RSD measurements + Future PV measurements
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by Camille DEMAY (M2 internship)
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Marseille Université ‘ :PPM

BEUIR DARK ENERGY Leadership of the ‘Peculiar Velocity’ working group (JB)
‘g SPECTROSCOPIC

00"l INSTRUMENT Lead authors of first publications and preparation of future ones

ICKY Lead author of growth rate measurement (Kebadian in prep.)

V Transient  Key contributors to new ZTF data reduction pipeline (Racine, Feinstein)
; FACILITY

Organisation of Peculiar Velocity workshop on campus (Racine, Fouchez)

Active participation to commissioning and alert system (Fouchez, Sédnchez)

VERA C.RUBIN . , . e .
SENSEIN]  Leadership of ‘Peculiar Velocity’ topical group (Rosselli — Carreres, Ravoux)

Jul emoji actively used in all 3 collaboration Slacks



Conclusion

The accelerated nature of the expansion is a mystery
Evidence for evolving dark energy : 3rd level of weird!

Combining expansion and growth rate measurements
can distinguish between dark energy or alternatives to GR

Peculiar velocity surveys help a lot at low-redshift
when the expansion is accelerated

First PV measurements from DESI DR1

Future is promising by combining several surveys
and CPPM is present
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Low-redshift supernovae causing tension with A?
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Tension with oscillation constraints Maximum posterior is positive!



