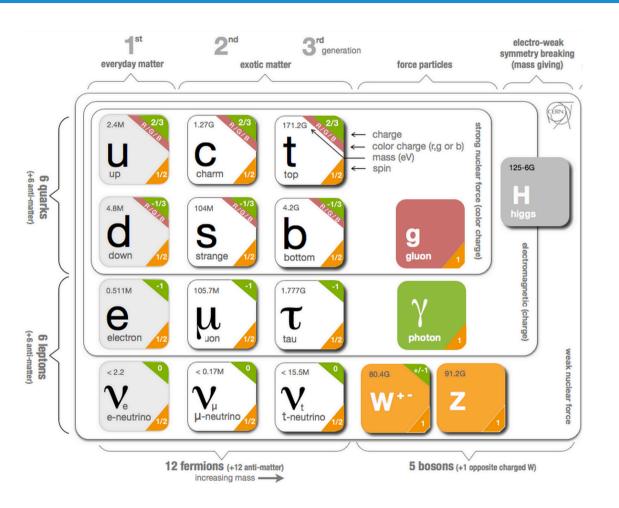
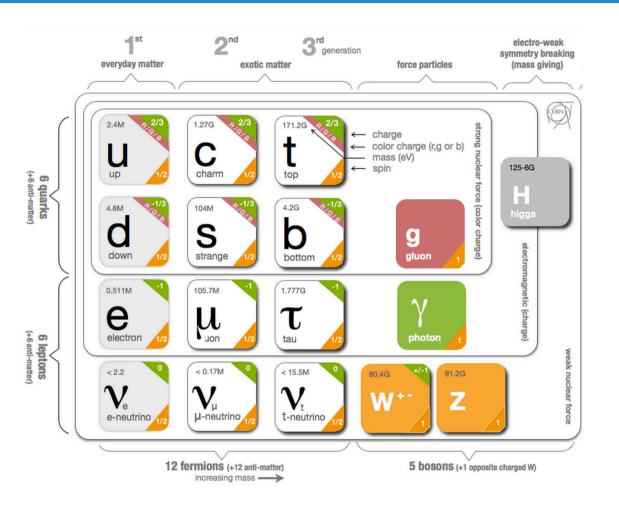
BEAUTY AND THE LEPTONS

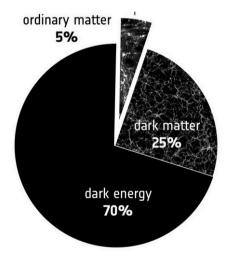

A tale of selected $b \rightarrow s\ell\ell^{(\prime)}$ analyses at LHCb

Habilitation à Diriger des Recherches


Francesco Polci LPNHE-CNRS/IN2P3

18 Decembre 2025

ONCE UPON A TIME: THE STANDARD MODEL



THE STANDARD MODEL

A THEORY WITH STILL MANY OPEN QUESTIONS:

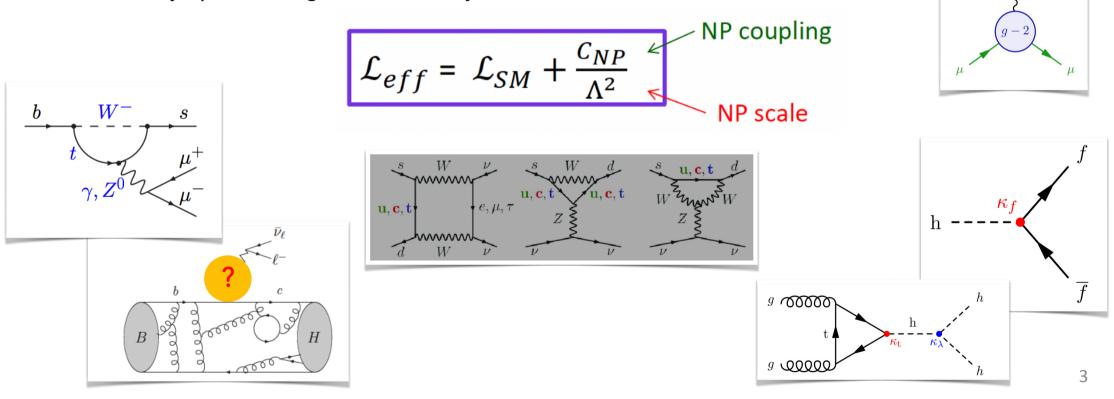
- 3 generations, same gauge interaction but vastly different masses?
- Matter-antimatter asymmetry in the universe?
- Dark matter?
- Gravity?

The Standard Model is understood as low energy approximation of a more fundamental theory

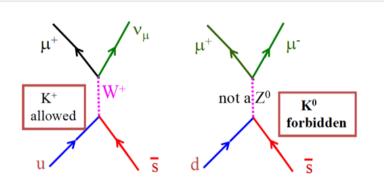
A MESSAGE FROM THE LHC

Main outcome of LHC:

- 1) Discovery of a SM Higgs-like boson
- 2) No direct observation of new physics particles


⇒ New physics scale is higher than expected

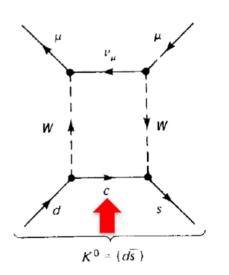
Can we explore it?



PRECISION MEASUREMENTS

- Mesure precisely quantities predicted by the Standard Model and check consistency.
- Quantum corrections could unveil new physics effects
- Sensitivity to much higher scales and/or smaller couplings than direct searches
- Rarest decays provide highest sensitivity to NP

o Early 70s: Foundation for a SM extension: FCNC (GIM mechanism) and CP violation in kaons (1964)



$$\frac{BR(K^0 \to \mu^+ \mu^-)}{BR(K^+ \to \mu^+ \nu_\mu)} = \frac{7 \times 10^{-9}}{0.64} \approx 10^{-8}$$

SM with *u,d,s* only was predicting 10-4

1970: Glashow, Iliopoulos, Maiani (GIM) propose:

- no tree level Flavor Changing Neutral Current (FCNC)
- FCNC occurs via loops, so suppressed
- A new quark to suppress *u* contribution
- prediction of charm quark, directly observed in 1973

- Early 70s: Foundation for a SM extension: FCNC (GIM mechanism) and CP violation in kaons (1964)
- 1973: **Prediction** of third quark generation (CKM matrix)

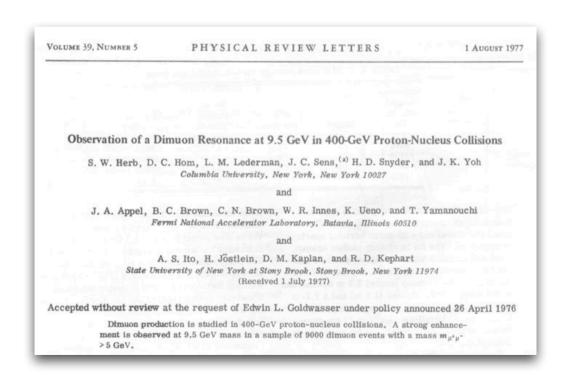
The weak interaction acts on flavour eigenstates, different from mass eigenstates.

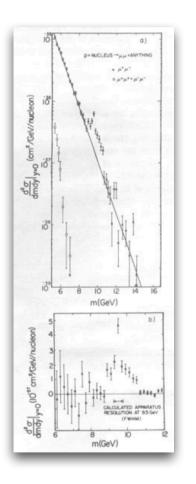
$$L_{\rm cc} = -\frac{g}{\sqrt{2}} \, \overline{u}_i \, \gamma^{\mu} \, (1 - \gamma_5) \, V_{ij} \, d_j \, W_{\mu}^{+} + \text{h.c.}$$

The transitions between families are described by the CKM matrix

$$V_{ij} = V_{\text{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

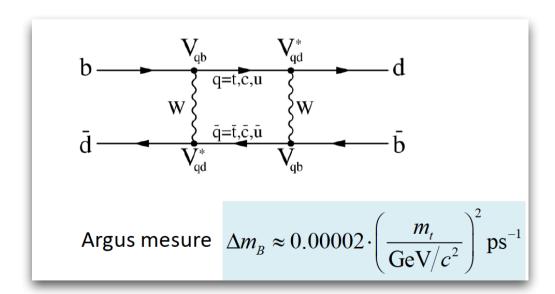
The CKM matrix is unitary. The Lagrangian does not depend on absolute phases.

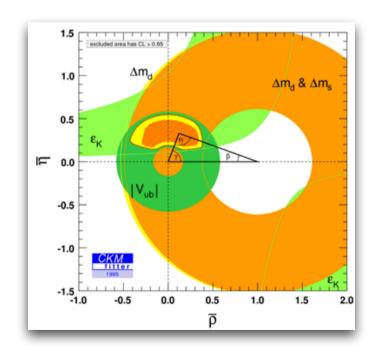

These conditions implies 18-9-5= 4 independent parameters, with 1 complex phase


===>
$$V \neq V^*$$
 ==> CP violation.

• Early 70s: Foundation for a SM extension: FCNC (GIM mechanism) and CP violation in kaons (1964)

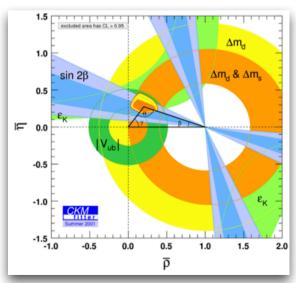
• 1973 : **Prediction** of third quark generation (CKM matrix)

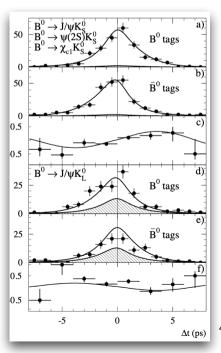

o <u>1977</u>: **Discovery** Y(1S) at E228 Fermilab (Lederman et al.)



- Early 70s: Foundation for a SM extension: FCNC (GIM mechanism) and CP violation in kaons (1964)
- 1973 : **Prediction** of third quark generation (CKM matrix)
- 1977 : **Discovery** Y(1S) at E228 Fermilab (Lederman et al.)
- 1986-1988: First b-hadrons weak decays at e+e- ->Y(4S) (CLEO/ARGUS).
- Late 80s and 90s: Mixing and lifetime b-hadrons. Lifetime (1.5 ps) provides first hint of large mass of the top

(discovered in 1995). First CKM unitarity tests (Vub, Vcb)

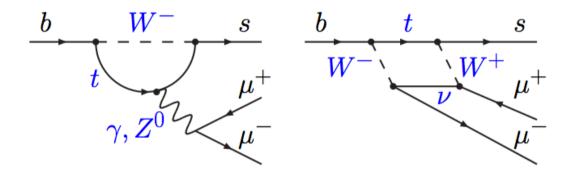



- Early 70s: Foundation for a SM extension: FCNC (GIM mechanism) and CP violation in kaons (1964)
- 1973: **Prediction** of third quark generation (CKM matrix)
- o <u>1977</u>: **Discovery** Y(1S) at E228 Fermilab (Lederman et al.)
- 1986-1988 : First b-hadrons weak decays at e+e- —>Y(4S) (CLEO/ARGUS).
- <u>Late 80s and 90s</u>: Mixing and lifetime b-hadrons. Lifetime (1.5 ps) provides first hint of large mass of the top

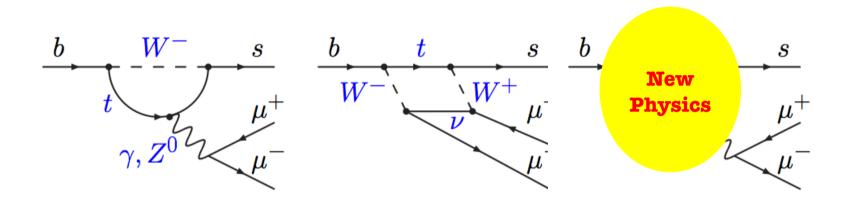
(discovered in 1995). First CKM unitarity tests (Vub, Vcb)

o 2001 : **CP violation in b-decays** observed by Babar and Belle.

Start of **precision tests era** for NP discovery (Tevatron, b-factories, LHC)

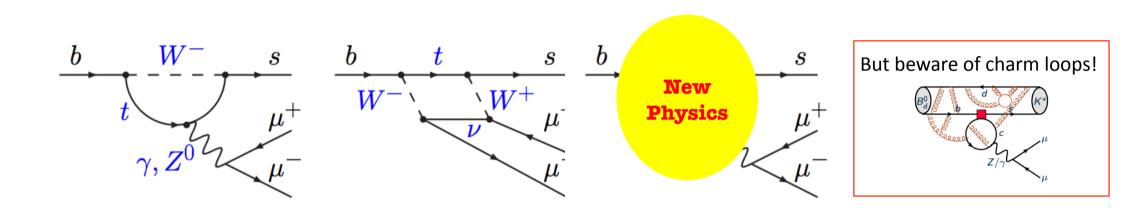


- o Early 70s: Foundation for a SM extension: FCNC (GIM mechanism) and CP violation in kaons (1964)
- 1973 : Prediction of third quark generation (CKM matrix)
- o <u>1977</u>: **Discovery** Y(1S) at E228 Fermilab (Lederman et al.)
- 1986-1988 : First b-hadrons weak decays at e+e- —>Y(4S) (CLEO/ARGUS).
- <u>Late 80s and 90s</u>: Mixing and lifetime b-hadrons. Lifetime (1.5 ps) provides first hint of large mass of the top (discovered in 1995). First CKM unitarity tests (Vub, Vcb)
- 2001 : CP violation in b-decays observed by Babar and Belle. Start of precision tests era for NP discovery (Tevatron, b-factories, LHC)


The b quark evolved from a theoretical necessity to one of the most powerful tools for testing the Standard Model and searching for new physics.

$b \to s \ell^+ \ell^-$ TRANSITIONS

$b \rightarrow s\ell^+\ell^-$ TRANSITIONS


New particles in the loop could: enhance/suppress decay rates; introduce new sources of CP violation; modify angular distributions; couple differently to different lepton families.

Branching fractions

Angular analyses

Lepton Flavour Universality tests

$b \rightarrow s\ell^+\ell^-$ TRANSITIONS

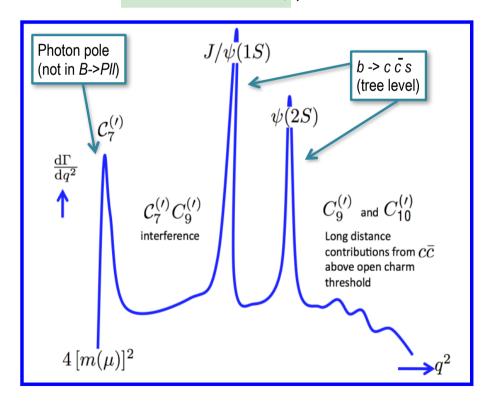
New particles in the loop could: enhance/suppress decay rates; introduce new sources of CP violation; modify angular distributions; couple differently to different lepton families.

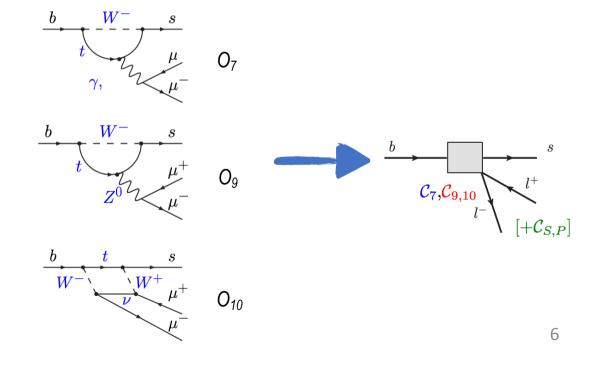
Branching fractions Affected by FF + $c\bar{c}$ loops

Angular analyses Affected by $c\bar{c}$ loops

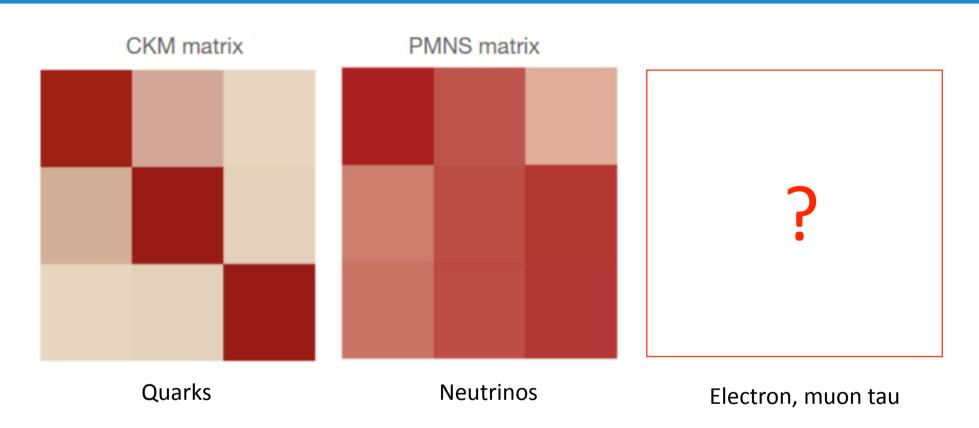
Lepton Flavour Universality tests
Clean!

increasing theoretical complexity	
	increasing experimental complexity


EFFECTIVE FIELD THEORY

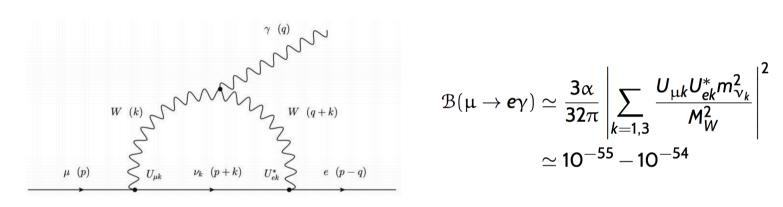

Describe low-energy phenomena without knowing the full details of high-energy theory

$$H_{eff} = -\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* \sum_{i} \left[\underbrace{C_i(\mu)O_i(\mu)}_{\text{left-handed part}} + \underbrace{C_i'(\mu)O_i'(\mu)}_{\text{right-handed part suppressed in SM}} \right]$$


Operators O_i: non-perturbative long-distance effects Wilson coefficients C_i: perturbative short-distance effects

i = 1, 2 Tree
i = 3 -6, 8 Gluon penguin
i = 7 Photon penguin
i = 9, 10 Electroweak penguin
i = S Higgs (scalar) penguin
i = P Pseudoscalar penguin

PUZZLE OF MIXING MATRICES


Very different mixing structure between quarks and neutrinos!

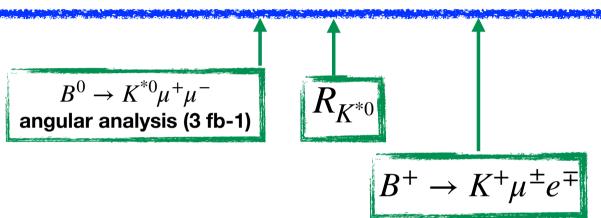
And why charged lepton are the only fermions not directly mixing?

CHARGED LEPTON FLAVOR VIOLATION

- Lepton flavour violation in the Standard Model through neutrino oscillations (Br $< 10^{-40}$)
 - => charged LFV decays in the SM have rates of the order of 10-54!

Observation would be a striking sign of new physics!

$$egin{aligned} \mathfrak{B}(\mu
ightarrow e \gamma) &\simeq rac{3lpha}{32\pi} \left| \sum_{k=1,3} rac{U_{\mu k} U_{ek}^* m_{
u_k}^2}{M_W^2}
ight|^2 \ &\simeq 10^{-55}-10^{-54} \end{aligned}$$

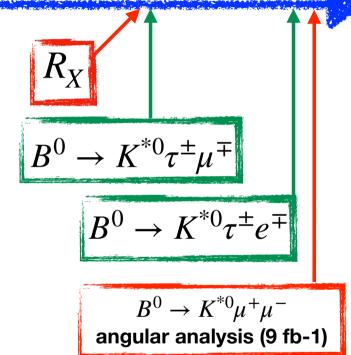

[Glashow, Guadagnoli, Lane] LFV in B decays is potentially, but not necessarily, related to LFU violation: PhysRevLett.114.091801

$$\mathcal{B}(B \to K \mu^{\pm} e^{\mp}) \sim 3 \cdot 10^{-8} \left(\frac{1 - R_K}{0.23}\right)^2$$

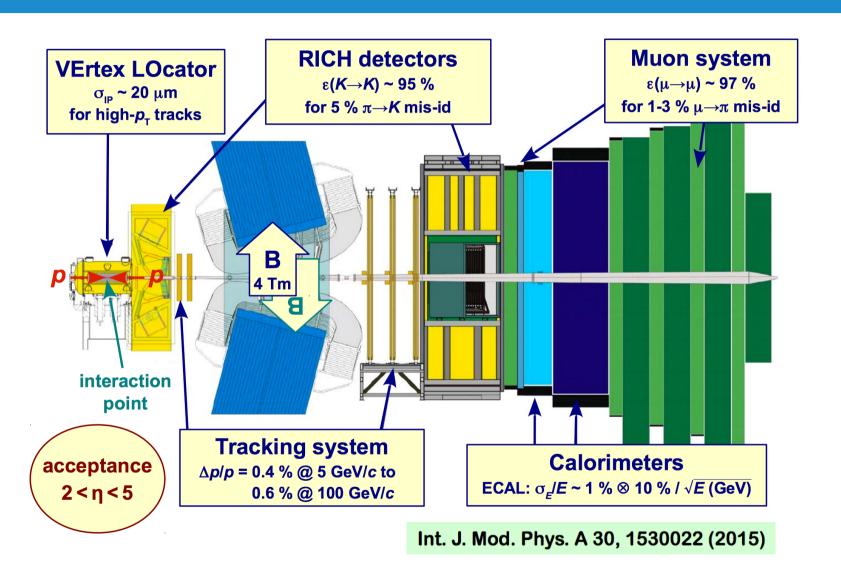
$$\mathcal{B}(B o K(e^\pm, \mu^\pm) au^\mp) \sim 2 \cdot 10^{-8} \left(rac{1-R_K}{0.23}
ight)^2$$
 [Hiller, Loose, Schönwald (2016)]

TIMESCALE OF THE ANALYSES

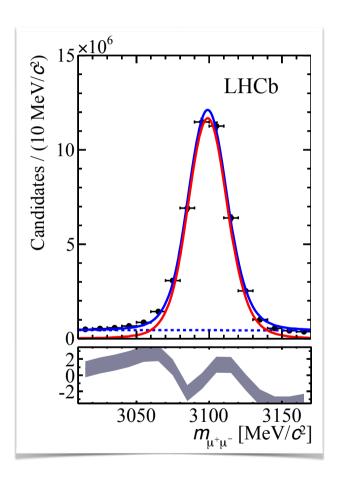
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025


Co-direction de theses:

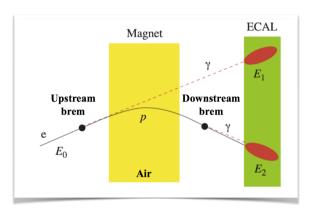
- Samuel Coquereau
- Andrea Mogini
- Tommaso Fulghesu

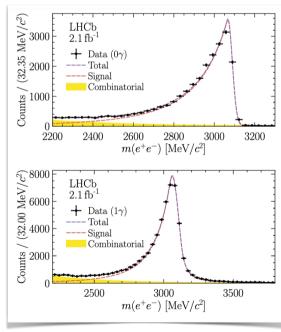

Supervision des postdocs:

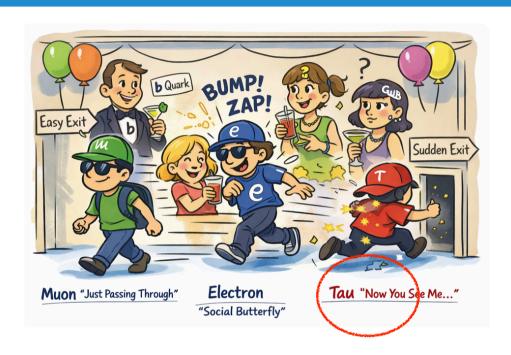
- Giulio Dujany
- Steffen George Weber


LHCb: A DETECTOR FOR FLAVOR PHYSICS

- Clear trigger signature
- Very good di-muon resolution.




Problems:


- 1) bremsstrahlung
- 2) trigger inefficiencies

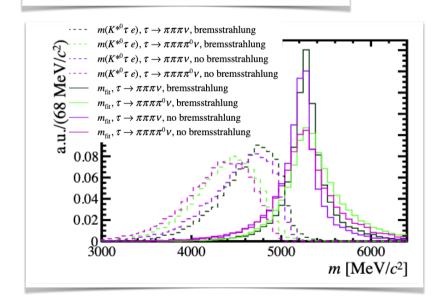
Solutions:

- 1) Recovery and brew categories
- 2) Additional triggers

Problem:

reconstructed through decays with neutrino

Solution:


- exploit event kinematics

Leptonic:

- BR($\tau^- \rightarrow \mu^- \nu \nu$) = 17.41 ± 0.04 %
- BR($\tau^- \rightarrow e^- \nu \nu$) = 17.83 ± 0.04 %

Hadronic:

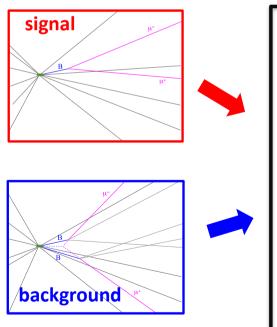
- BR($\tau \to \pi \bar{\nu}$) = 10.83 ± 0.06 %
- BR($\tau^- \to \pi^- \pi^0 \nu$) = 25.52 ± 0.09 %
- BR($\tau^- \rightarrow \pi^- \pi^0 \pi^0 \nu$) = 9.30 ± 0.11 %
- BR($\tau^- \to \pi^- \pi^+ \pi^- \nu$) = 9.31 ± 0.06 %
- BR($\tau^- \to \pi^- \pi^+ \pi^- \pi^0 \nu$) = 4.62 ± 0.06 %

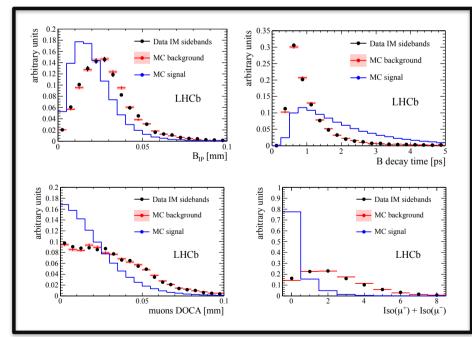
BACKGROUNDS

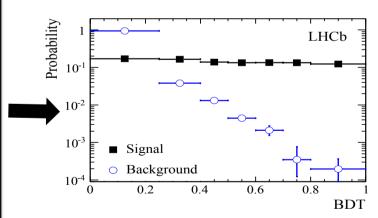
Multiple type of **backgrounds** should be rejected:

- Combinatorial
- Physics backgrounds (fully and/or partially reconstructed and/or with mis-identification)
 particularly annoying as could pollute physics quantities determinations.

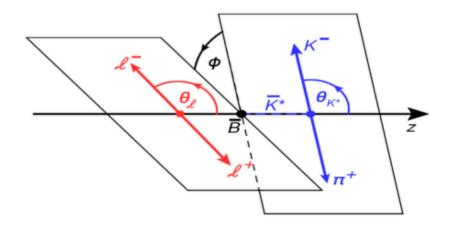
Background decay	Selection			
$(B^0 \to K^{*0}V (\to \ell^+\ell^-))$	In angular: $q^2 \notin (0.98, 1.10) \text{ GeV}^2/c^4$			
$V = \rho, \omega, \text{or } \phi$	In $R_{K^{*0}}$: contamination < 2%, negligible as			
	similar for μ and e			
$B^0 \to K^{*0} J/\psi (\to \mu^+ \mu^-)$	$q^2 \notin (8, 11) \text{ GeV}^2/c^4$			
$B^0 \to K^{*0} \psi(2S) (\to \mu^+ \mu^-)$	$q^2 \notin (12.5, 15.0) \text{ GeV}^2/c^4$			
$B^0 \to K^{*0} J/\psi (\to \mu^+ \mu^-)$	$m(h_{\mu}\mu)^2 \notin (8,11) \text{ GeV}^2/c^4$			
$B^0 \to K^{*0} \psi(2S) (\to \mu^+ \mu^-)$	$m(h_{\mu}\mu)^{2} \notin (12.5, 15) \text{ GeV}^{2}/c^{4}$			
with swapped identity of one hadron (h) and	h_{μ} is swapped hadron under muon mass			
one μ .	hypothesis)			
$(B^0 \to D^-(\to K^{*0}\ell^-\overline{\nu})\ell^+\nu)$	In angular: D veto			
Non-peaking background with a branching	In $R_{K^{*0}}$: $ \cos \theta_{\ell} < 0.8$			
fraction four orders of magnitude larger than				
the signal.				
$B^+ \to K^+ \ell^+ \ell^-$	In angular: $m(K^+\mu^+\mu^-) \notin (5220, 5340)$			
Combined with a low-momentum π^- from	MeV/c^2			
the rest of the event, populates the upper	In $R_{K^{*0}}$: $m(K^+\ell^+\ell^-) < 5100$ MeV/ c^2 . Can-			
mass sideband region used for training the	didates where the π^- from the K^* is misiden-			
neural-network classifiers.	tified as a kaon and paired with a π^+ are			
	similarly rejected.			


$(B_s^0 \to \phi(\to K^+K^-)\ell^+\ell^-)$	In angular: Tight PID criteria if $m(K\pi_K\mu\mu)$		
One kaons is misidentified as a pion.	and $m(K\pi_K)$ are consistent with the known		
	B_s^0 and ϕ masses.		
	In $R_{K^{*0}}$: $m(K\pi_K) > 1040 \text{MeV}/c^2$.		
$B^{0,+} \to K^{*0,+} \ell^+ \ell^-$	Not peaking, included in combinatorial pa-		
Pion from $K^{*0,+}$ replaced by another pion	rameterization		
in the event.			
$B^0 \to K^{*0} \ell^+ \ell^-$	Tight PID criteria.		
Can be background to $\bar{B}^0 \to \bar{K}^{*0} \ell^+ \ell^-$ (and			
vice versa) if the K^+ (K^-) is misidentified as			
the π^+ (π^-) and the π^- (π^+) is misidentified			
as the $K^{-}(K^{+})$.			
$\Lambda_b^0 \to p K^- \mu^+ \mu^-$	Tight pion PID if $m(\pi_p K \mu \mu)$ close to $m(\Lambda_b^0)$		
Proton misidentified as pion.	-		
$\Lambda_b^0 \to pK^-\mu^+\mu^-$	Tight PID criteria.		
Double misidentification of the hadrons, i.e.,			
where the proton is misidentified as a kaon			
and the kaon is misidentified as a pion.			


Table 2.6.1: Summary of relevant background decays and selection strategies for the angular and $R_{K^{*0}}$ analyses.


A TYPICAL ANALYSIS AT LHCb

- Trigger
- "stripping", i.e. central preselection
- Multivariate techniques exploiting kinematics and topology
- Specific vetoes to remove or reduce peaking backgrounds
- Particle Identification requirements
- Control channels to correct simulations
- Normalization channels to reduce systematics (no absolute BR)
- Statistical methods on a final set of discriminating variables



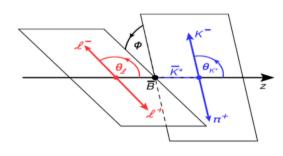
 $B^0 o K^{*0} \mu^{\pm} \mu^{\mp}$ ANGULAR ANALYSIS

$B^0 \to K^{*0} \mu^{\pm} \mu^{\mp}$ ANGULAR ANALYSIS

$$\frac{d^4\Gamma[\bar{B}^0 \to \bar{K}^{*0}\mu^+\mu^-]}{dq^2 \, d\vec{\Omega}} = \frac{9}{32\pi} \sum_i I_i(q^2) f_i(\vec{\Omega})$$
$$\frac{d^4\bar{\Gamma}[B^0 \to K^{*0}\mu^+\mu^-]}{dq^2 \, d\vec{\Omega}} = \frac{9}{32\pi} \sum_i \bar{I}_i(q^2) f_i(\vec{\Omega})$$

	•	ı
i	$\mid I_i \mid$	$\mid f_i \mid$
1s	$= \frac{3}{4} \left(A_{\parallel}^{L} ^{2} + A_{\perp}^{L} ^{2} + A_{\parallel}^{R} ^{2} + A_{\perp}^{R} ^{2} \right)$	$\sin^2 \vartheta_K$
1c	$\left(\hat{A}_{0}^{L} ^{2}+ A_{0}^{R} ^{2}\right)$	$\cos^2 \vartheta_K$
2s	$\left \frac{1}{4} \left(A_{\parallel}^{L} ^{2} + A_{\perp}^{L} ^{2} + A_{\parallel}^{R} ^{2} + A_{\perp}^{R} ^{2} \right) \right $	$\sin^2 \vartheta_K \cos 2\vartheta_\ell$
2c	$-(A_0^L ^2 - A_0^R ^2)$	$\cos^2 \vartheta_K \cos 2\vartheta_\ell$
3	$\frac{1}{2} \left(A_{\perp}^{L} ^{2} - A_{\parallel}^{L} ^{2} + A_{\perp}^{R} ^{2} - A_{\parallel}^{R} ^{2} \right)$	$\sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi$
4	$\sqrt{2}\operatorname{Re}(A_0^L A_{\parallel}^{L*} + A_0^R A_{\parallel}^{R*})$	$\sin 2\vartheta_K \sin 2\vartheta_\ell \cos \phi$
5	$\sqrt{2} \operatorname{Re}(A_0^L A_{\perp}^{L*} - A_0^R A_{\perp}^{R*})$	$\sin 2\vartheta_K \sin \vartheta_\ell \cos \phi$
6s	$2\operatorname{Re}(A_{\parallel}^{L}A_{\perp}^{L*}-A_{\parallel}^{R}A_{\perp}^{R*})$	$\sin^2 \vartheta_K \cos \vartheta_\ell$
7	$\sqrt{2}\operatorname{Im}(A_0^L A_{\parallel}^{L*} - A_0^R A_{\parallel}^{R*})$	$\sin 2\vartheta_K \sin \vartheta_\ell \sin \phi$
8	$\sqrt{2} \operatorname{Im}(A_0^L A_{\perp}^{L*} + A_0^R A_{\perp}^{R*})$	$\sin 2\vartheta_K \sin 2\vartheta_\ell \sin \phi$
9	$\operatorname{Im}(A_{\parallel}^{L*}A_{\perp}^{L} + A_{\parallel}^{R*}A_{\perp}^{R})$	$\sin^2 \vartheta_K \sin^2 \vartheta_\ell \sin 2\phi$
10	$\frac{1}{3}\left(A_S^L ^2+ A_S^R ^2\right)$	1
11	$\sqrt{\frac{4}{3}}\operatorname{Re}(A_S^L A_0^{L*} + A_S^R A_0^{R*})$	$\cos \vartheta_K$
12	$-rac{1}{3}\left(A_{S}^{L} ^{2}+ A_{S}^{R} ^{2} ight)$	$\cos 2\vartheta_{\ell}$
13	$-\sqrt{\frac{4}{3}}\operatorname{Re}(A_S^L A_0^{L*} + A_S^R A_0^{R*})$	$\cos \vartheta_K \cos 2\vartheta_\ell$
14	$\sqrt{\frac{2}{3}} \operatorname{Re}(A_S^L A_{\parallel}^{L*} + A_S^R A_{\parallel}^{R*})$	$\sin \vartheta_K \sin 2\vartheta_\ell \cos \phi$
15	$\sqrt{\frac{8}{3}} \operatorname{Re}(A_S^L A_{\perp}^{L*} - A_S^R A_{\perp}^{R*})$	$\sin \vartheta_K \sin \vartheta_\ell \cos \phi$
16	$\sqrt{\frac{8}{3}} \operatorname{Im}(A_S^L A_{\parallel}^{L*} - A_S^R A_{\parallel}^{R*})$	$\sin \vartheta_K \sin \vartheta_\ell \sin \phi$
17	$\sqrt{\frac{2}{3}}\operatorname{Im}(A_S^L A_{\perp}^{L*} + A_S^R A_{\perp}^{R*})$	$\sin \vartheta_K \sin 2\vartheta_\ell \sin \phi$

$$S_{i} = \frac{I_{i} + \bar{I}_{i}}{\frac{d\Gamma}{dq^{2}} + \frac{d\bar{\Gamma}}{dq^{2}}}$$
$$A_{i} = \frac{I_{i} - \bar{I}_{i}}{\frac{d\Gamma}{dq^{2}} + \frac{d\bar{\Gamma}}{dq^{2}}}$$

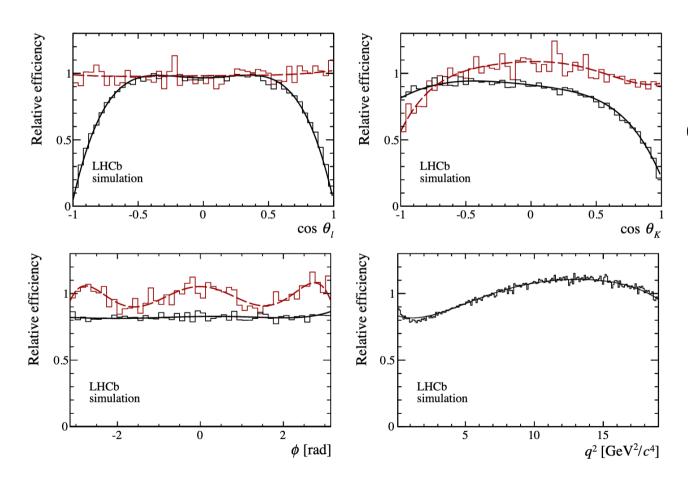

CP-averaged observables

CP-asymmetries

THE ANGULAR DISTRIBUTION

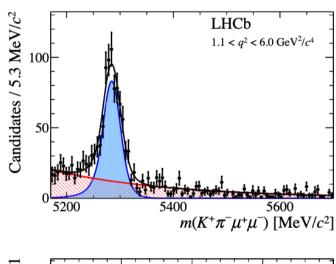
• The full angular distribution $(\theta_1, \theta_K, \phi)$ is described by **eight independent observables**:

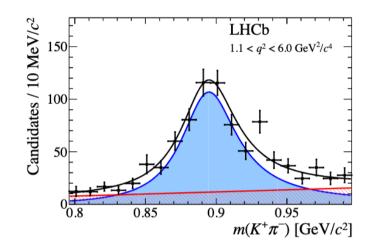
$$\begin{split} \frac{1}{\mathrm{d}(\Gamma+\bar{\Gamma})/\mathrm{d}q^2} \, \frac{\mathrm{d}^4(\Gamma+\bar{\Gamma})}{\mathrm{d}q^2 \, \mathrm{d}\vec{\Omega}} &= \frac{9}{32\pi} \left[\frac{3}{4} (1-F_\mathrm{L}) \sin^2\theta_K + F_\mathrm{L} \cos^2\theta_K \right. \\ &\quad + \frac{1}{4} (1-F_\mathrm{L}) \sin^2\theta_K \cos 2\theta_l \\ &\quad - F_\mathrm{L} \cos^2\theta_K \cos 2\theta_l + S_3 \sin^2\theta_K \sin^2\theta_l \cos 2\phi \\ &\quad + S_4 \sin 2\theta_K \sin 2\theta_l \cos \phi + S_5 \sin 2\theta_K \sin \theta_l \cos \phi \\ &\quad + \frac{4}{3} A_\mathrm{FB} \sin^2\theta_K \cos \theta_l + S_7 \sin 2\theta_K \sin \theta_l \sin \phi \\ &\quad + S_8 \sin 2\theta_K \sin 2\theta_l \sin \phi + S_9 \sin^2\theta_K \sin^2\theta_l \sin 2\phi \right] \,. \end{split}$$



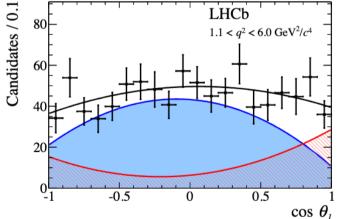
- Observables (A_{FB}, F_L and S_j) are function of the Wilson coefficients.
- **P' is a set of observables** where hadronic form factor uncertainties cancels at the leading order (JHEP 1305(2013)137). Example:

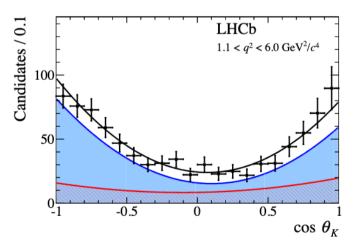
$$P_5' \equiv \frac{S_5}{\sqrt{F_L(1-F_L)}}$$

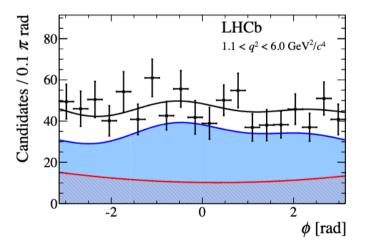

EFFICIENCY SHAPE


$$\varepsilon(\cos\vartheta_{\ell},\cos\vartheta_{K},\phi,q^{2}) = \sum_{i,j,m,n} c_{ijmn} L_{i}(\cos\vartheta_{\ell}) L_{j}(\cos\vartheta_{K}) L_{m}(\phi) L_{n}(q^{2})$$

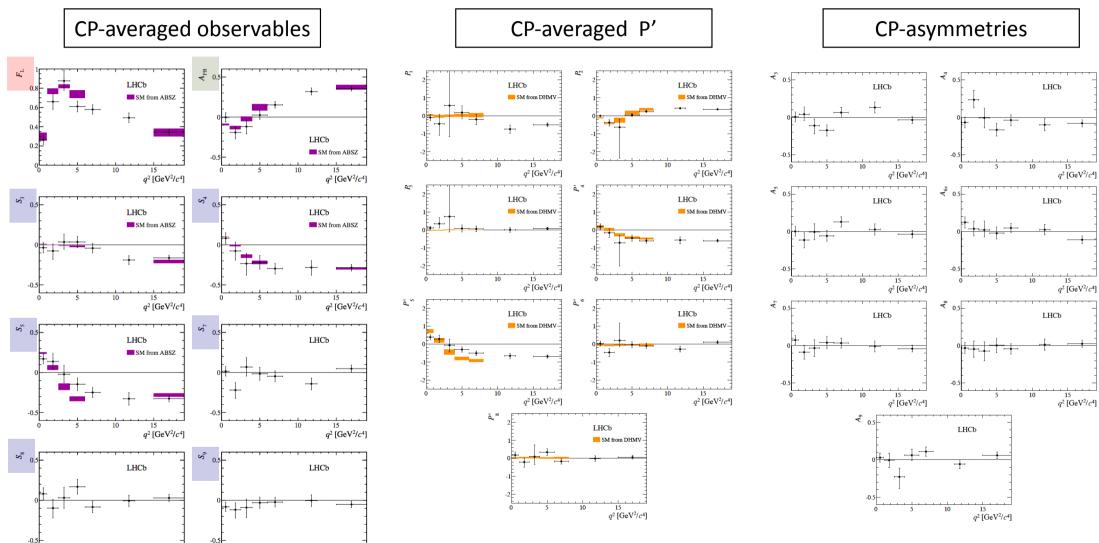
0.10 < q2 < 0.98 GeV2/c418 < q2 < 19 GeV2/c4

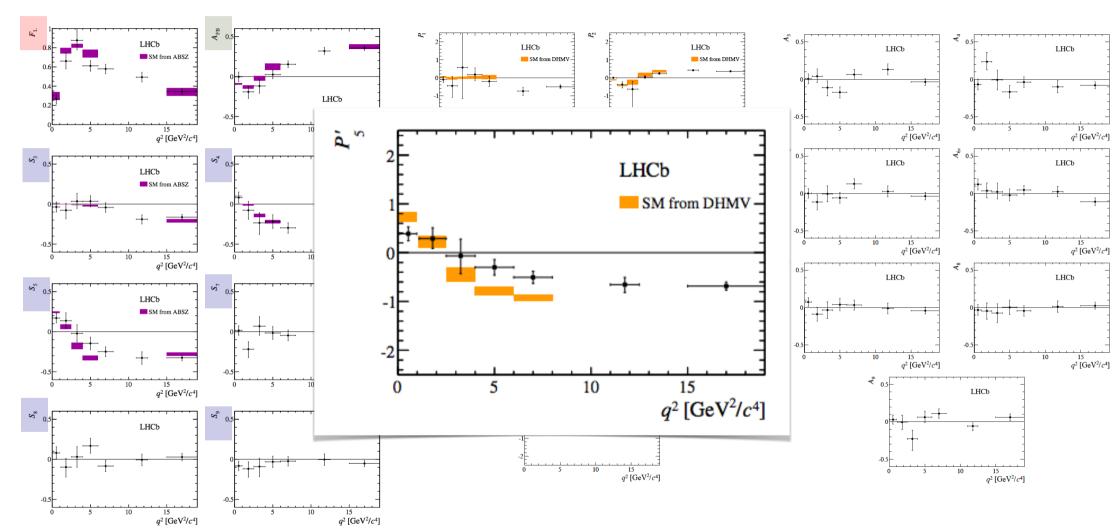

MAXIMUM LIKELIHOOD FIT





First full angular analysis of $\, {\bf B}\text{->}{\bf K}^*\,\mu\mu, \,$ using Run1 (3 fb-1)


- full set of CP-averaged angular terms
- full set of CP-asymmetries
- correlation matrix published
- form-factor independent ratios of observables measured (P')

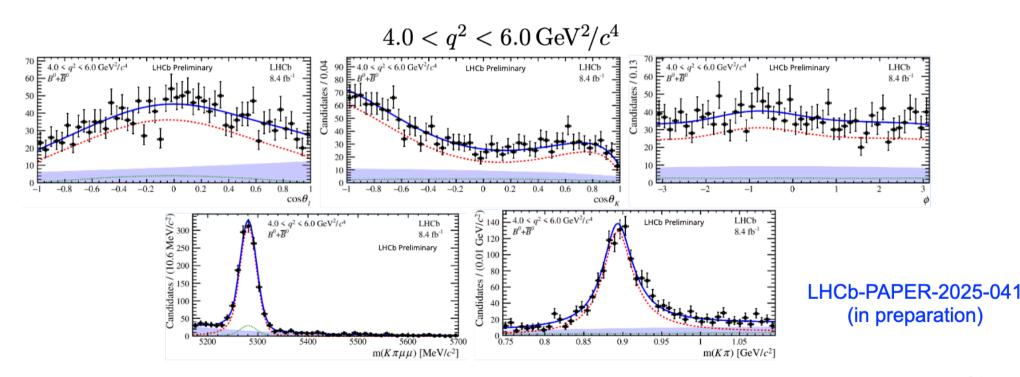

RESULTATS

15 q² [GeV²/c⁴]

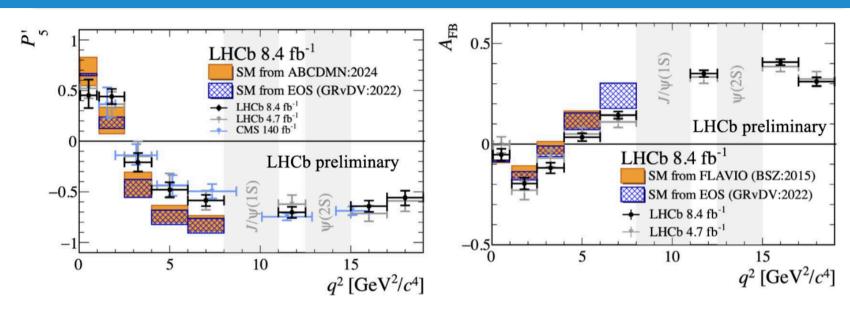
 $q^2 \, [\text{GeV}^2/c^4]$

RESULTATS

Puzzling discrepancy of about 3.4 σ

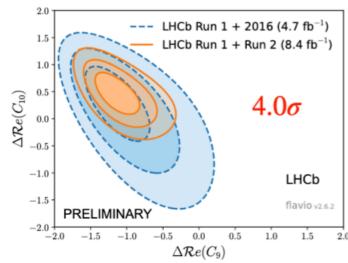

SYSTEMATIC UNCERTAINTIES

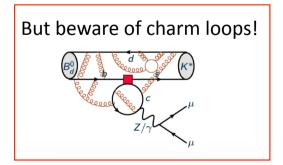
Source	F_L	S_3-S_9	A_3-A_9	$P_1 - P_8'$
Acceptance stat. uncertainty	< 0.01	< 0.01	< 0.01	< 0.01
Acceptance polynomial order	< 0.01	< 0.02	< 0.02	(< 0.04)
Data-simulation differences	0.01 – 0.02	< 0.01	< 0.01	< 0.01
Acceptance variation with q^2	< 0.01	< 0.01	< 0.01	< 0.01
$m(K^+\pi^-)$ model	< 0.01	< 0.01	< 0.01	< 0.03
Background model	< 0.01	< 0.01	< 0.01	< 0.02
Peaking backgrounds	< 0.01	< 0.01	< 0.01	< 0.01
$m(K^+\pi^-\mu^+\mu^-)$ model	< 0.01	< 0.01	< 0.01	< 0.02
Det. and prod. asymmetries	_	_	< 0.01	< 0.02


Errors on the measurements are statistically dominated.

THE LEGACY LHCb RUN 1-2 RESULT

- 0 8.4 fb-1
- Accounts for non-negligible muon mass, extension of lowest bin to 0.06 Gev2/c4
- Measurement of interference terms of P and S wave


2025 LHCb UPDATE: LEGACY LHCb RUN 1-2



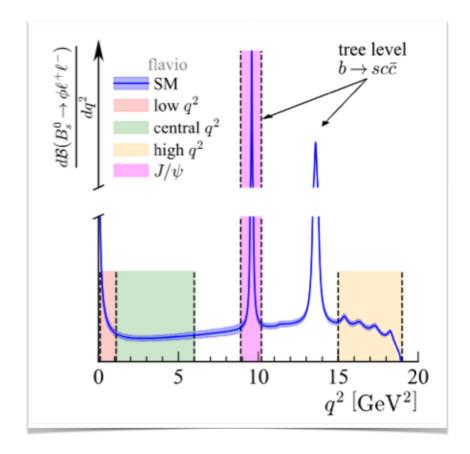
The tension strengthened!

 $\Delta Re(C_9) = -0.94^{+0.22}_{-0.22}$

Significance: 4.0σ

LEPTON FLAVOR UNIVERSALITY TEST RK*

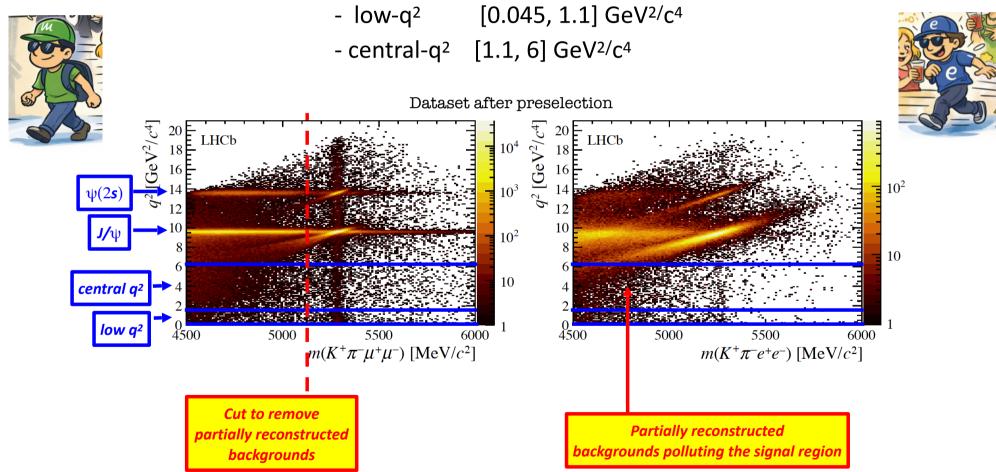
$$R_{H_s} = \frac{\int_{q_{\min}^2}^{q_{\max}^2} \frac{d\Gamma(H_b \to H_s \mu^+ \mu^-)}{dq^2} dq^2}{\int_{q_{\min}^2}^{q_{\max}^2} \frac{d\Gamma(H_b \to H_s e^+ e^-)}{dq^2} dq^2}$$

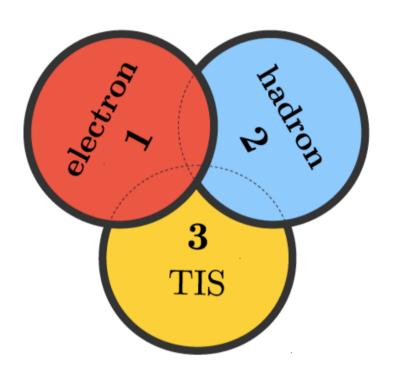

$$H_s = \textit{K, K*, } \phi$$

$$R_{Hs} = 1$$
 (at 10⁻³) in the SM

QED effects ~ % arXiv:1605.07633

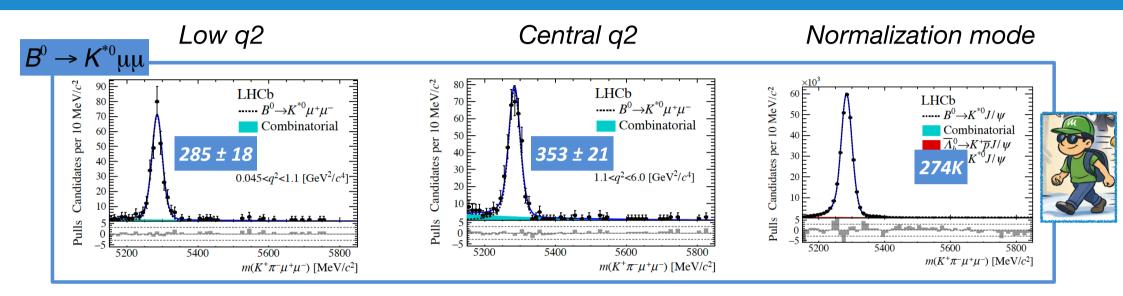
- Theoretically: ratio cancels hadronic uncertainties
- Experimentally: double ratio reduces systematic uncertainties

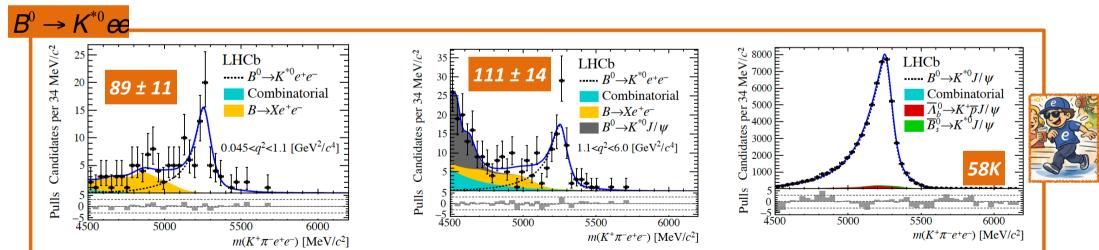

$$R_{K^{*0}} = \frac{\mathcal{B}(B^0 \to K^{*0}\mu^+\mu^-)}{\mathcal{B}(B^0 \to K^{*0}J/\psi(\to \mu^+\mu^-))} / \frac{\mathcal{B}(B^0 \to K^{*0}e^+e^-)}{\mathcal{B}(B^0 \to K^{*0}J/\psi(\to e^+e^-))}$$


$$=\frac{N(B^0\to K^{*0}\mu\mu)}{N(B^0\to K^{*0}J/\psi(\mu\mu))}\times\frac{N(B^0\to K^{*0}J/\psi(ee))}{N(B^0\to K^{*0}ee)}\times\frac{\epsilon(B^0\to K^{*0}J/\psi(\mu\mu))}{\epsilon(B^0\to K^{*0}\mu\mu)}\times\frac{\epsilon(B^0\to K^{*0}J/\psi(ee))}{\epsilon(B^0\to K^{*0}J/\psi(ee))}$$

RK*: DATASET AFTER PRESELECTION

- Integrated luminosity: 3fb-1
- Analysis in two q² bins:


EFFICIENCY PER TRIGGER CATEGORIES

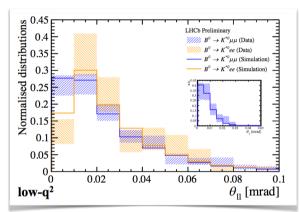


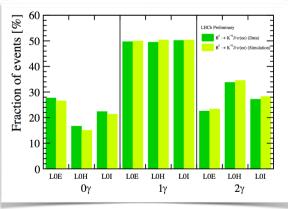
	$\varepsilon_{\ell^+\ell^-}/\varepsilon_{J/\psi(\ell^+\ell^-)}$			
	$low-q^2$	central- q^2		
$\mu^+\mu^-$	0.679 ± 0.009	0.584 ± 0.006		
e^+e^- (L0E)	0.539 ± 0.013	0.522 ± 0.010		
e^+e^- (L0H)	2.252 ± 0.098	1.627 ± 0.066		
$e^{+}e^{-}$ (L0I)	0.789 ± 0.029	0.595 ± 0.020		

YIELDS

CROSSCHECKS

r_{J/\psi} ratio : => very stringent test! (not a double ratio)


$$r_{J/\psi} = \frac{\mathcal{B}(B^0 \to K^{*0}J/\psi (\to \mu^+ \mu^-))}{\mathcal{B}(B^0 \to K^{*0}J/\psi (\to e^+ e^-))} = 1.043 \pm 0.006 \text{ (stat)} \pm 0.045 \text{ (syst)}$$


Compatible with 1 and flat as function of kinematics and event multiplicity

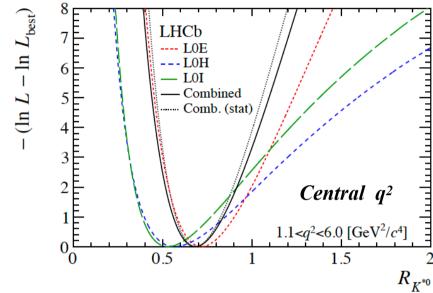
• $R_{\psi(2s)}$ and r_{ν} ratios : consistent with expectations

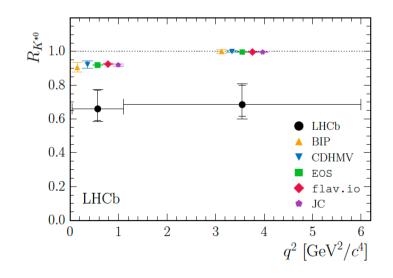
$$\mathcal{R}_{\psi(2S)} = \frac{\mathcal{B}(B^0 \to K^{*0}\psi(2S)(\to \mu^+\mu^-))}{\mathcal{B}(B^0 \to K^{*0}J/\psi(\to \mu^+\mu^-))} / \frac{\mathcal{B}(B^0 \to K^{*0}\psi(2S)(\to e^+e^-))}{\mathcal{B}(B^0 \to K^{*0}J/\psi(\to e^+e^-))}$$
$$r_{\gamma} = \frac{\mathcal{B}(B^0 \to K^{*0}\gamma(\to e^+e^-))}{\mathcal{B}(B^0 \to K^{*0}J/\psi(\to e^+e^-))}$$

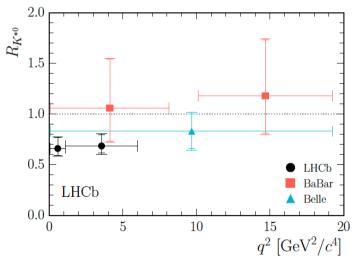
- BR(B->K*μμ): in agreement with published LHCb result [arXiv:1606.04731].
- No corrections to MC: less than 5% variation on R_{K*}.
- Population of bremsstrahlung categories: consistent between data and MC.
- Kinematic distributions: consistent among MC/background subtracted data.

SYSTEMATIC UNCERTAINTIES

Measurement is statistically dominated Many systematics cancels in the double ratio

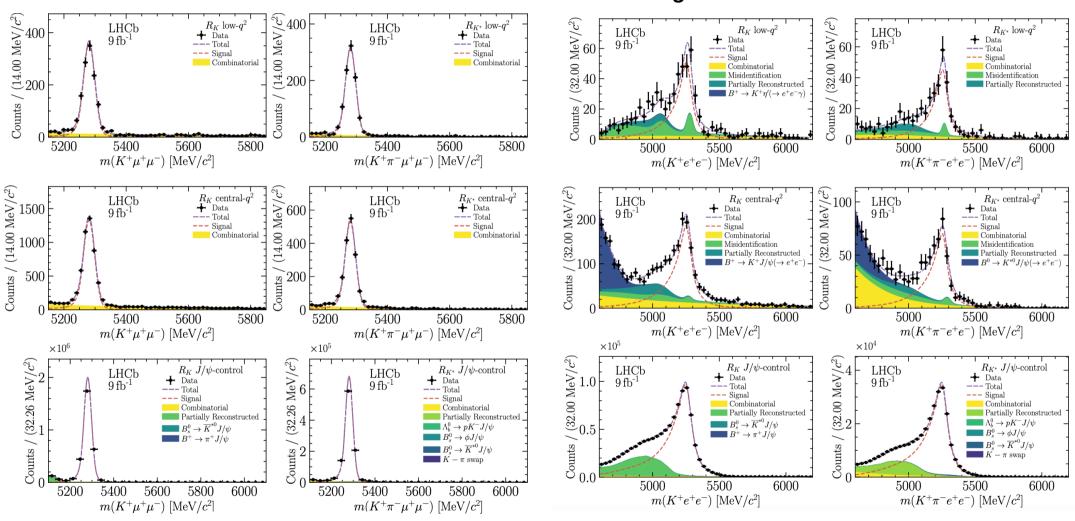

	$\mathrm{low} ext{-}q^2$		$\operatorname{central} olimits_q^2$			
Trigger category	L0E	L0H	LOI	L0E	L0H	LOI
Corrections to simulation	2.5	4.8	3.9	2.2	4.2	3.4
Trigger	0.1	1.2	0.1	0.2	0.8	0.2
PID	0.2	0.4	0.3	0.2	1.0	0.5
Kinematic selection	2.1	2.1	2.1	2.1	2.1	2.1
Residual background	_	_	_	5.0	5.0	5.0
Mass fits	1.4	2.1	2.5	2.0	0.9	1.0
Bin migration	1.0	1.0	1.0	1.6	1.6	1.6
$r_{J/\psi}$ flatness	1.6	1.4	1.7	0.7	2.1	0.7
Total	4.0	6.1	5.5	6.4	7.5	6.7

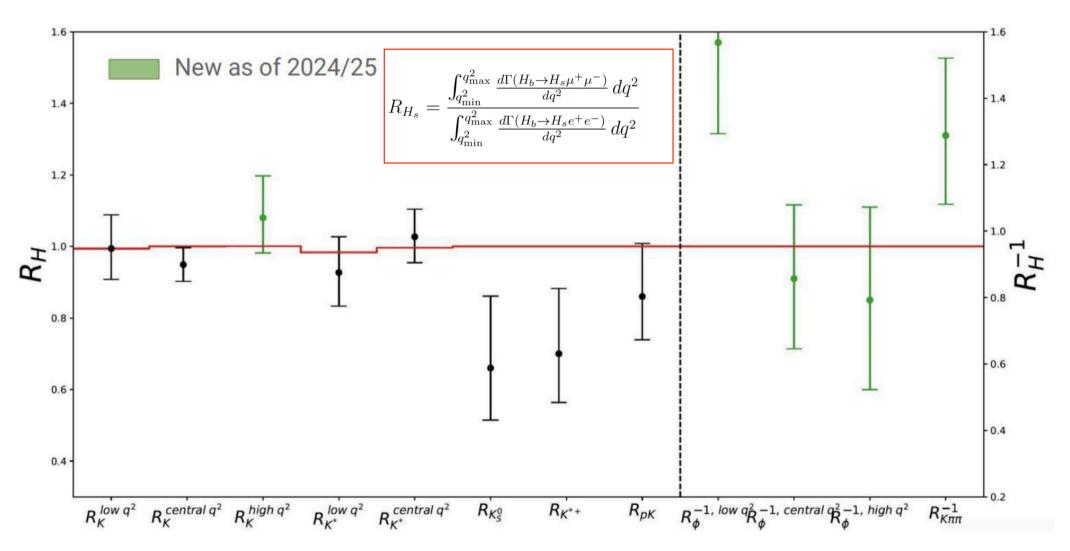

RESULTS


Compatibility with the SM:

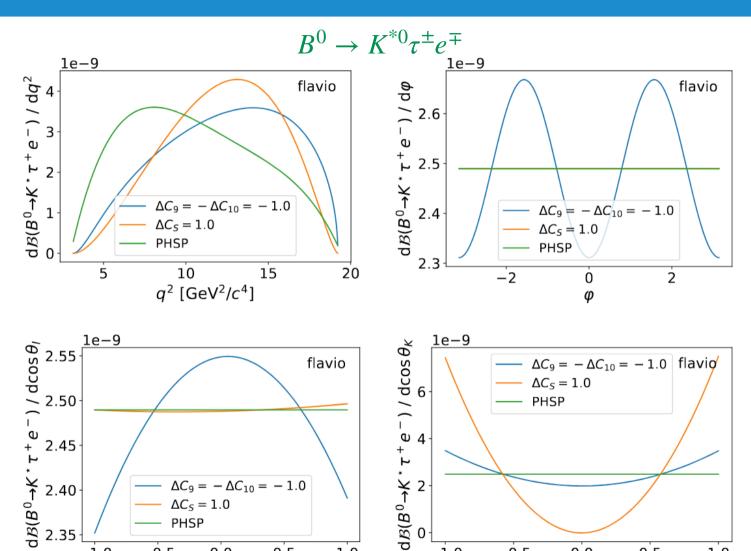
- 2.1-2.3 standard deviations (low-q²)
- 2.4-2.5 standard deviations (central-q²)

	$low-q^2$	central- q^2
$R_{K^{*0}}$	$0.66^{+0.11}_{-0.07} \pm 0.03$	$0.69^{+0.11}_{-0.07} \pm 0.05$
95.4% CL	[0.52, 0.89]	[0.53, 0.94]
$99.7\%~\mathrm{CL}$	[0.45, 1.04]	[0.46, 1.10]




LEGACY RUN1-2 LHCb ANALYSIS RX

Simultaneous measurement of RK and RK* using all the available data


LHCb-PAPER-2022-045 LHCb-PAPER-2022-046

LFU IN b-HADRON DECAYS: STATUS

NEW PHYSICS KINEMATICS?

-1.0

-0.5

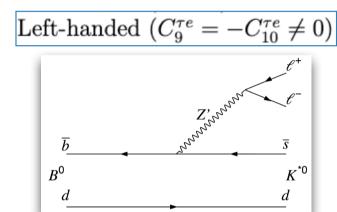
0.0

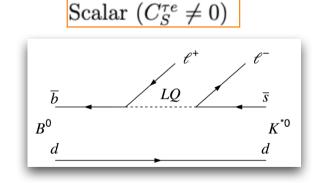
 $\cos \theta_l$

0.5

1.0

-1.0

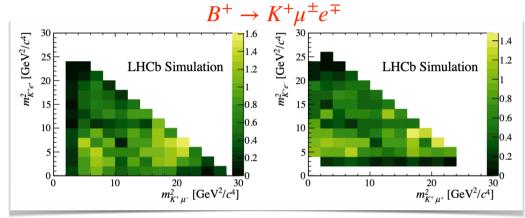

-0.5

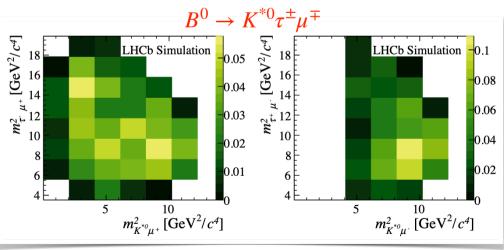

0.0

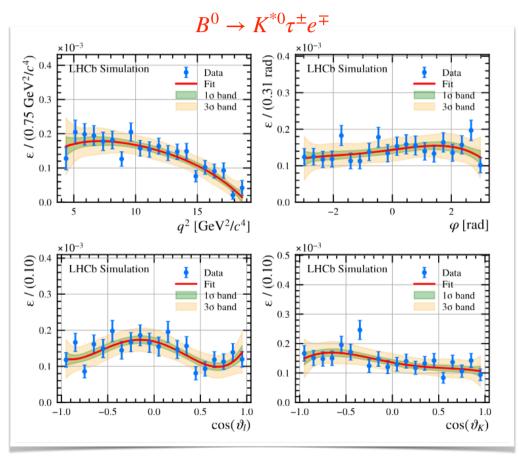
 $\cos \theta_K$

0.5

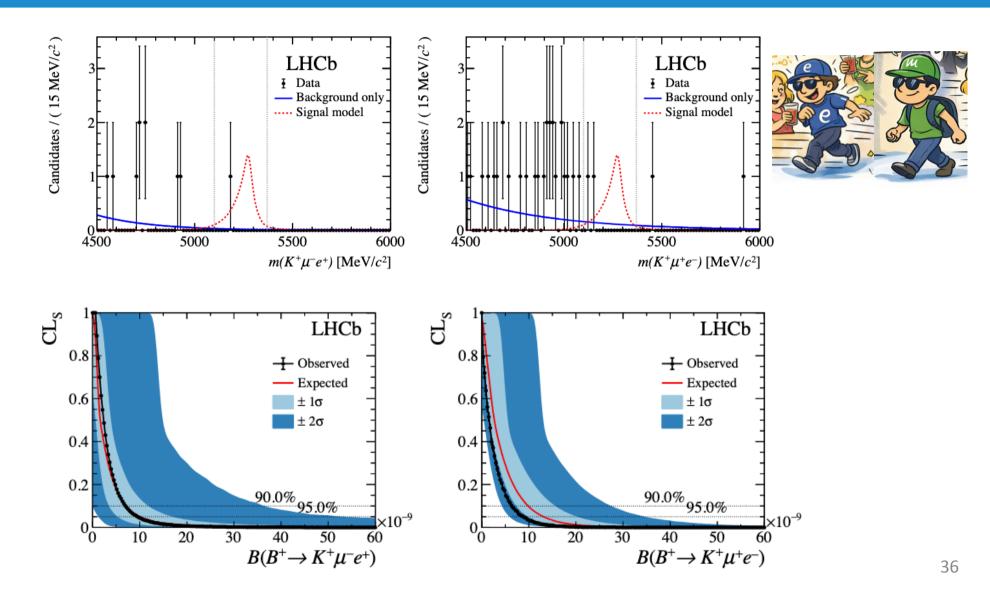
1.0

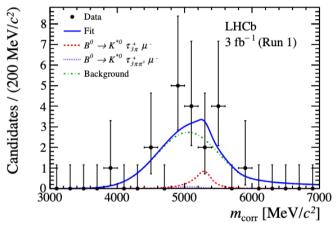


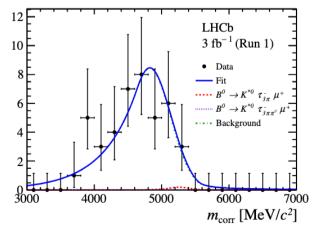


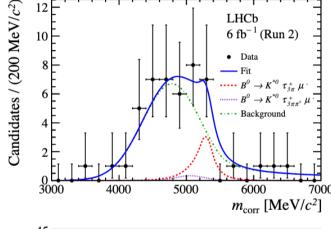

DETERMINATION OF THE EFFICIENCY SHAPE

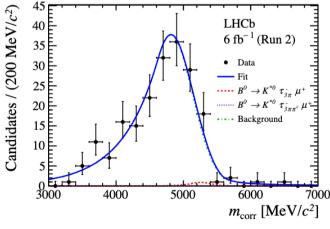
Underlining new physics kinematics is unknown.

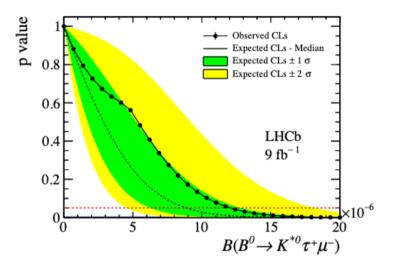

- phase space hypothesis used as baseline;
- efficiency shapes provided for re-casting in different models.

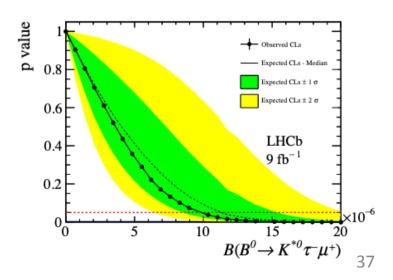



RESULTS: $B^+ \rightarrow K^+ \mu^{\pm} e^{\mp}$

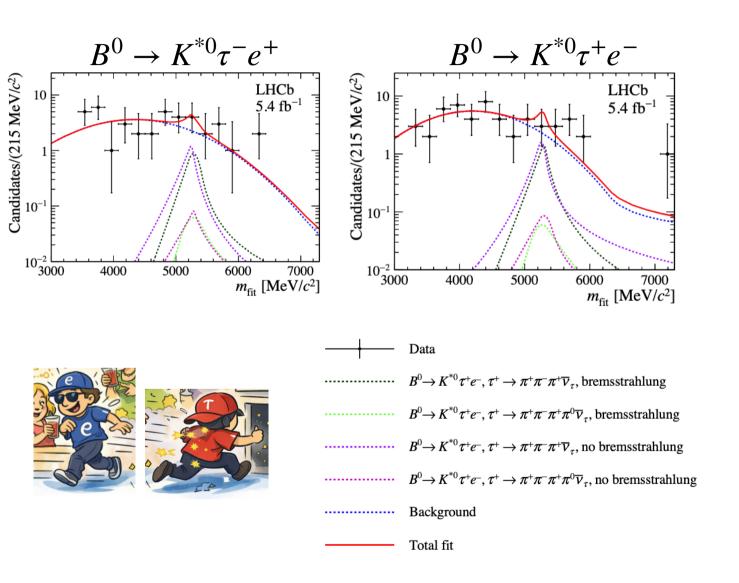

RESULTS: $B^0 \to K^{*0} \tau^{\pm} \mu^{\mp}$

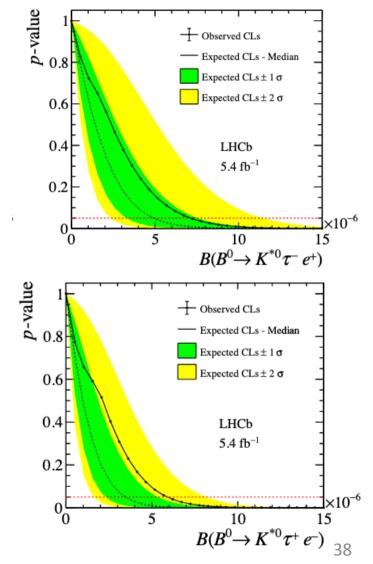






Candidates / $(200 \text{ MeV}/c^2)$



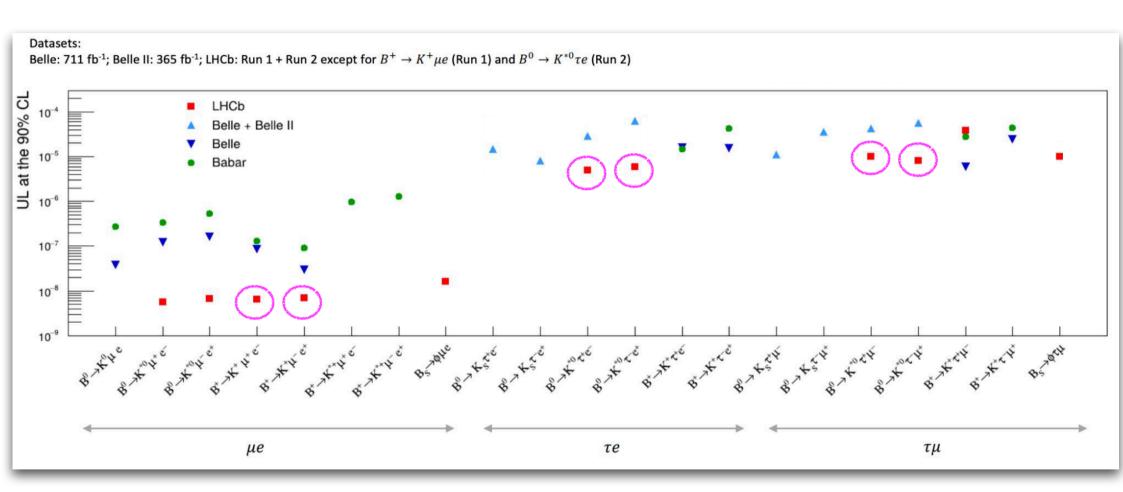


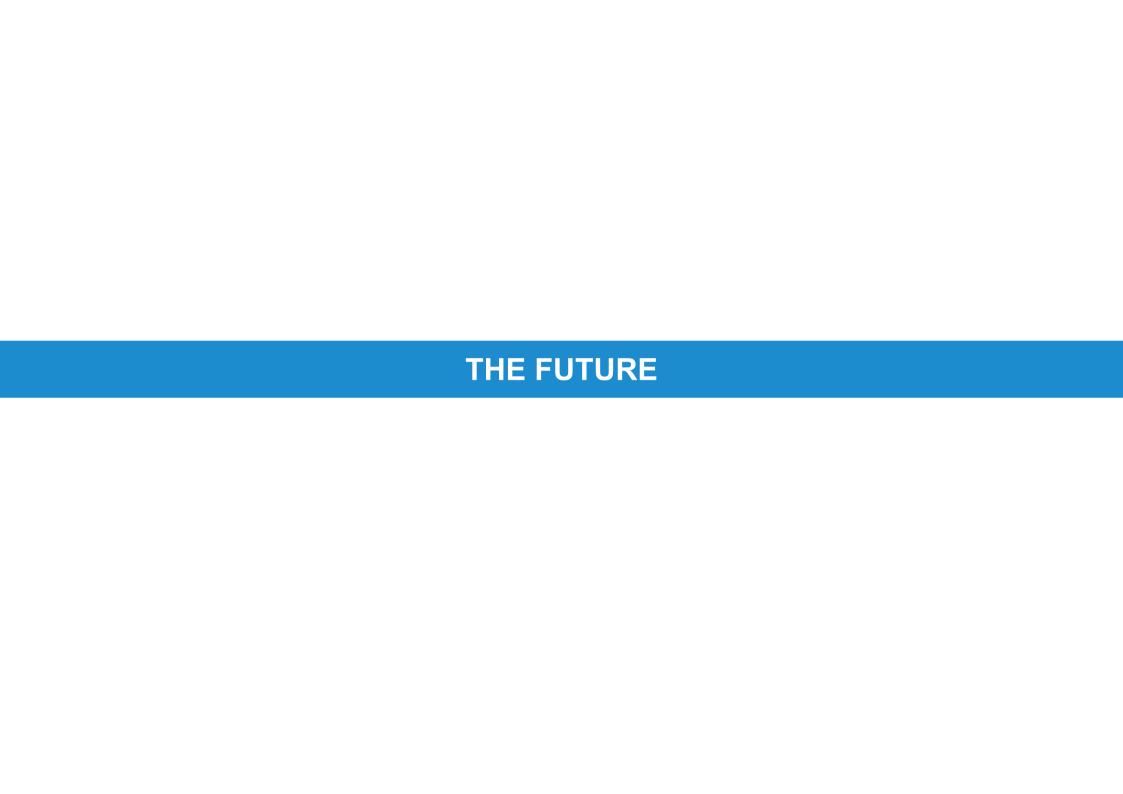
RESULTS: $B^0 \to K^{*0} \tau^{\pm} e^{\mp}$

SUMMARY OF UPPER LIMITS

Branching fraction	Model	Upper limit at 90 (95)% CL
$\mathcal{B}(B^+ \to K^+ \mu^- e^+)$	Phase space (PHSP)	$7.0 (9.5) \times 10^{-9}$
$\mathcal{B}(B^+\! o K^+\mu^+e^-)$	Phase space (PHSP)	$6.4 (8.8) \times 10^{-9}$
$\mathcal{B}(B^0 \to K^{*0} \tau^+ \mu^-)$	Phase space (PHSP)	$1.0 (1.2) \times 10^{-5}$
$\mathcal{B}(B^0 \to K^{*0} \tau^- \mu^+)$	Phase space (PHSP)	$8.2 (9.8) \times 10^{-6}$
$\mathcal{B}(B^0 \to K^{*0} \tau^+ e^-)$	Phase space (PHSP)	$5.9 (7.1) \times 10^{-6}$
	Left-handed $(C_9^{\tau e} = -C_{10}^{\tau e} \neq 0)$	$6.3 (7.7) \times 10^{-6}$
	Scalar $(C_S^{\tau e} \neq 0)$	$6.6 (8.0) \times 10^{-6}$
$\mathcal{B}(B^0\! o K^{*0} au^-e^+)$	Phase space (PHSP)	$4.9 (5.9) \times 10^{-6}$
	Left-handed $(C_9^{\tau e} = -C_{10}^{\tau e} \neq 0)$	$5.4 (6.4) \times 10^{-6}$
	Scalar $(C_S^{\tau e} \neq 0)$	$5.7 (6.8) \times 10^{-6}$

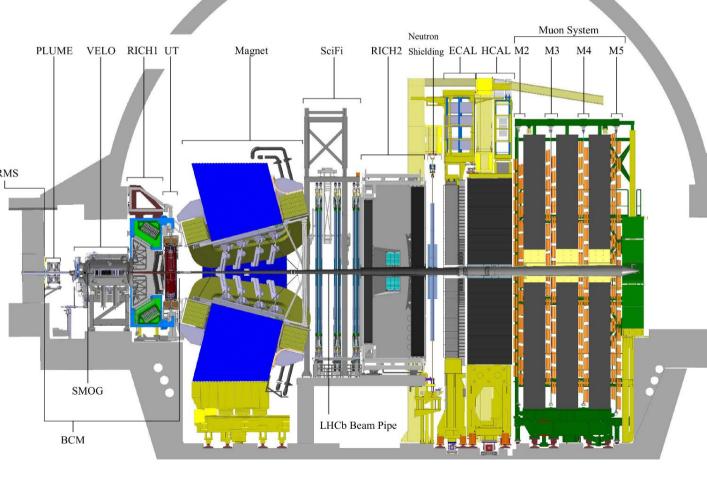
SYSTEMATIC UNCERTAINTIES

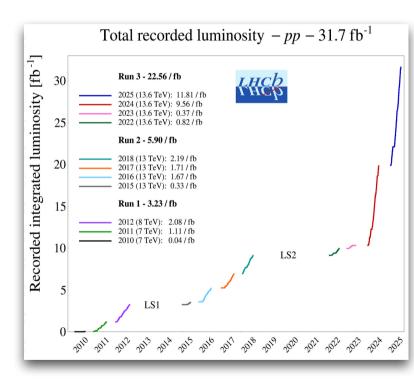

Effect	$B^+\!\to K^+\mu^+e^-$	$B^+ \rightarrow K^+ \mu^- e^+$
Data-simulation corrections	1.0%	1.0%
Electron-muon differences	1.4%	1.4%
Fitting model	2.1%	2.1%
PID resampling	4.5%	5.5%
Trigger	1.0%	1.0%
Normalisation factor	3.5%	3.5%
Total	6.4%	7.1%
Background	0.60	0.43

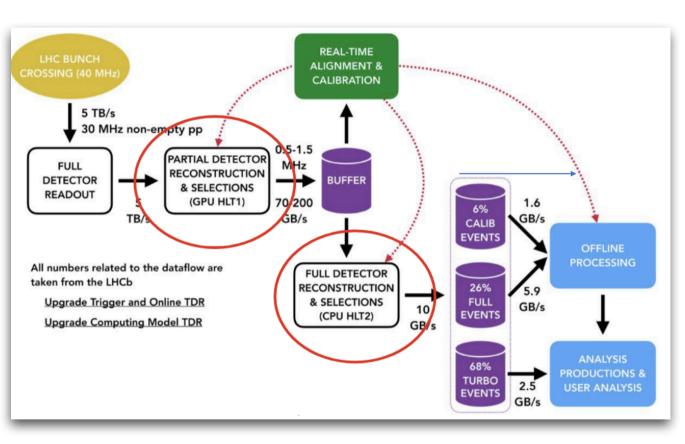

- The background parameterisations has the largest impact in analyses with tau leptons
- Input branching fractions are also relevant

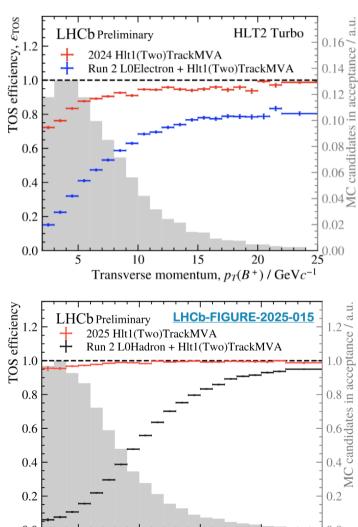
Systematic effect	Upper limit increase [%]		
	$B^0\! o K^{*0} au^-\mu^+$	$B^0\! o K^{*0} au^+\mu^-$	
Input branching fractions	4	3	
Efficiencies	2	1	
Normalisation yields	1	1	
Background control region choice	18	26	
Background analytical shape	1	1	
Total	26	32	

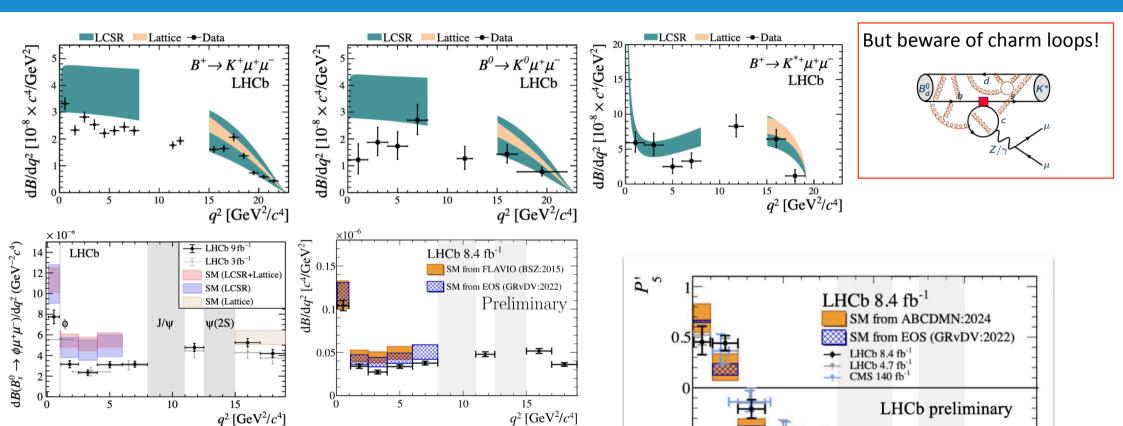
Upper limit increase [%]		
$B^0 \rightarrow K^{*0} \tau^+ e^-$	$B^0\!\to K^{*0}\tau^-e^+$	
2.3	2.5	
< 0.1	< 0.1	
1.2	1.0	
4.7	5.2	
1.2	0.5	
9.7	9.5	
	$8^{0} \rightarrow K^{*0} \tau^{+} e^{-}$ 2.3 < 0.1 1.2 4.7 1.2	


STATUS OF cLFV IN B DECAYS




THE CURRENT LHCb


LHCb Upgrade I Side View Deputy operations coordinator (9/2020 - 8/2022)
Operations coordinator (9/2022 - 8/2024)


A COMPLETELY SOFTWARE TRIGGER

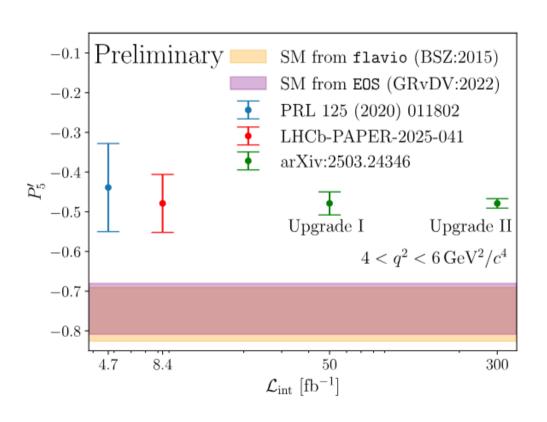
 B^0 transverse momentum [GeV c^{-1}]

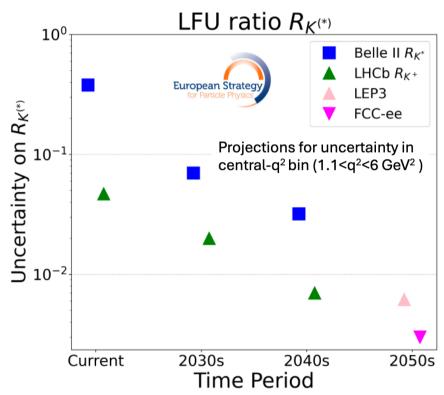
BRANCHING RATIOS AND ANGULAR OBSERVABLES STILL PUZZLING

-0.5

5

10


15


 $q^2 \left[\text{GeV}^2/c^4 \right]$

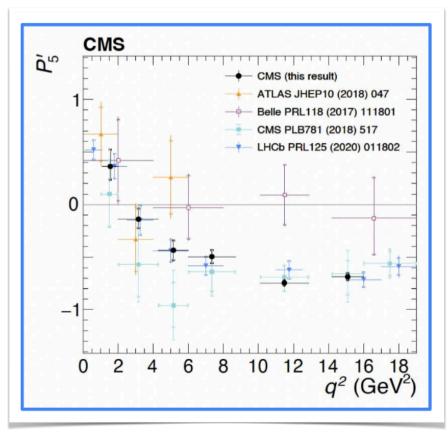
Investigation is not over.

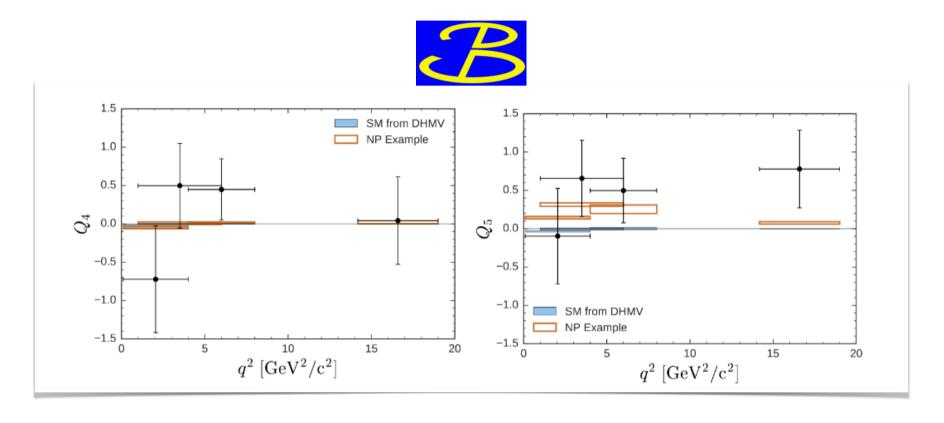
Need to keep exploring all observables for these transitions!

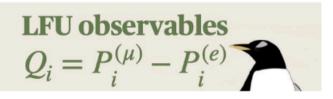
LHCb PROSPECTS

COMPLEMENTARY MEASUREMENTS ARE NEEDED

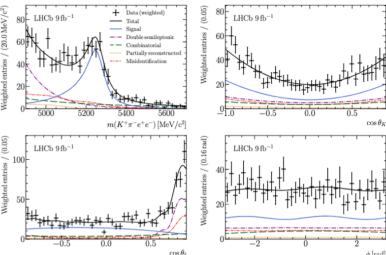
• Complementary measurements are performed in different b —> s II transitions

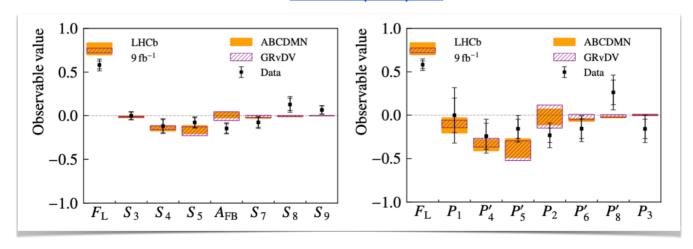


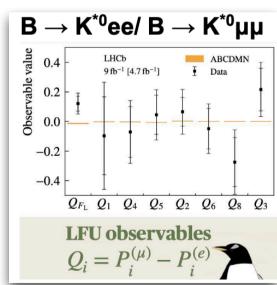


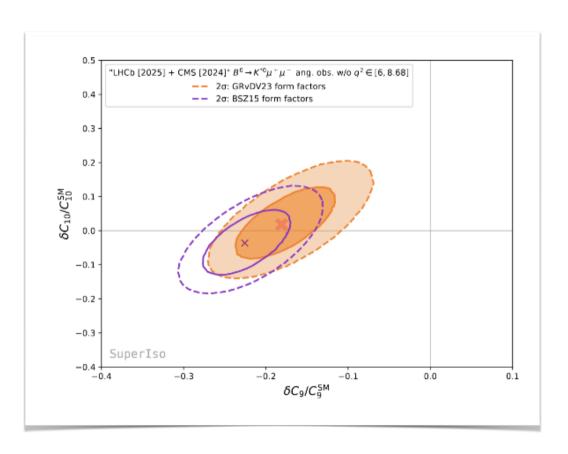


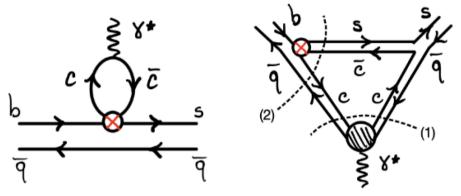
Decays	LFU test	q^2 range (GeV ² / c^4)	Experiment
$B^0 \to K^{*0}\ell^+\ell^-$	$R_{K^*} = 0.927^{+0.093+0.036}_{-0.087-0.035}$	[0.1, 1.1]	LHCb [113, 114]
	$R_{K^*} = 1.027^{+0.072+0.027}_{-0.068-0.026}$	[1.1, 6.0]	LHCb 113,114
$B^+ \rightarrow K^+ \ell^+ \ell^-$	$R_K = 0.994^{+0.090+0.029}_{-0.082-0.027}$	[0.1, 1.1]	LHCb [113, 114]
	$R_K = 0.949^{+0.042+0.022}_{-0.041-0.022}$	[1.1, 6.0]	LHCb [113, 114]
	$R_K = 1.08^{+0.11}_{-0.09} {}^{+0.04}_{-0.09}$	$q^2 > 14.3$	LHCb 118
	$R_K = 0.78^{+0.47}_{-0.23}$	[1.1, 6.0]	CMS [119]
$B_s^0 \to \phi \ell^+ \ell^-$	$R_{\phi}^{-1} = 1.57_{-0.25}^{+0.28} \pm 0.05$	[0.1, 1.1]	LHCb [120]
	$R_{\phi}^{-1} = 0.91_{-0.19}^{+0.20} \pm 0.05$	[1.1, 6.0]	LHCb [120]
	$R_{\phi}^{-1} = 0.85_{-0.23}^{+0.24} \pm 0.10$	[15.0, 19.0]	LHCb [120]
$B^+ \to K^+ \pi^+ \pi^- \ell^+ \ell^-$	$R_{K\pi\pi}^{-1} = 1.31_{-0.17-0.09}^{+0.18+0.12}$	[1.1, 7.0]	LHCb [117]
$B^0 \to K_S^0 \ell^+ \ell^-$	$R_{K_S^0} = 0.66^{+0.20}_{-0.14}^{+0.02}_{-0.04}$	[1.1, 6.0]	LHCb [116]
$B^+ \to K^{*+} \ell^+ \ell^-$	$R_{K^{*+}} = 0.70^{+0.18}_{-0.13} {}^{+0.03}_{-0.04}$	[0.045, 6.0]	LHCb [116]
$\Lambda_b^0 \to p K^- \ell^+ \ell^-$	$R_{pK} = 0.86^{+0.14}_{-0.11} \pm 0.05$	[0.1, 6.0]	LHCb 115

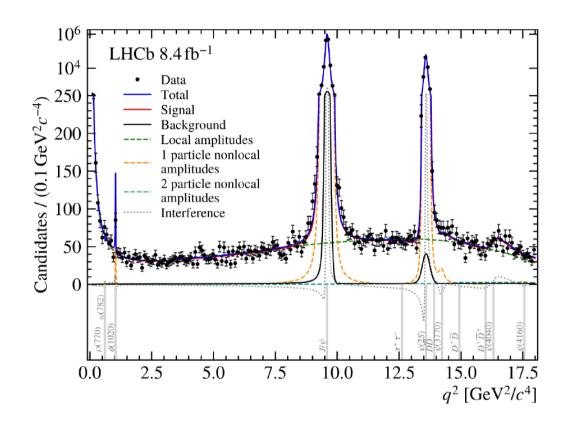

NEW FRONTIER: LFU ANGULAR ANALYSIS

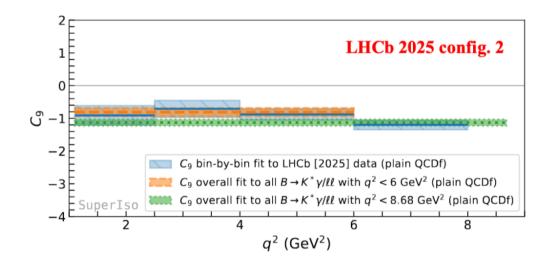

NEW FRONTIER: LFU ANGULAR ANALYSIS


- Angular analysis of $B^0 \to K^{*0}e^+e^-$ decays
- Results based on $9 \, \mathrm{fb^{-1}}$ of Run 1+2 data Analysis performed in central q^2 region $(1.1 < q^2 < 6.0 \, \mathrm{GeV^2/c^4})$
- No significant disagreement with SM predictions
- No evidence for LFU violations when analysing electron and muon modes together

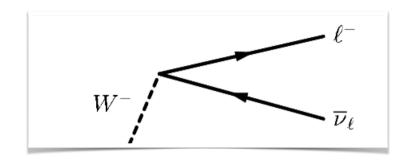


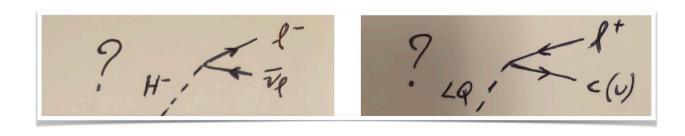

JHEP 06 (2025) 140


NEED THEORY PROGRESS

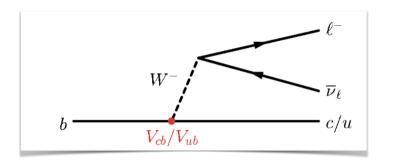


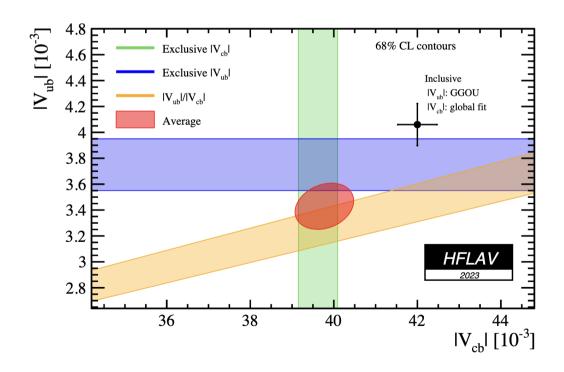
 New hope from calculation of non-local contribution from LQCD (but will take time)

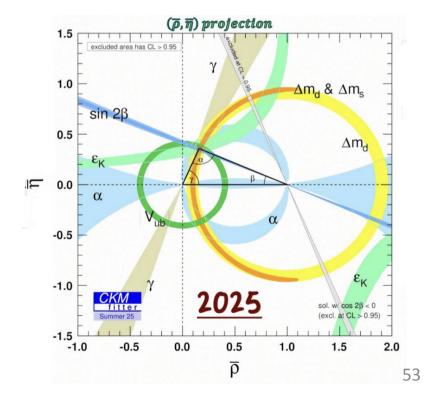

MEANWHILE AMPLITUDE ANALYSIS AND q2 DEPENDENCE



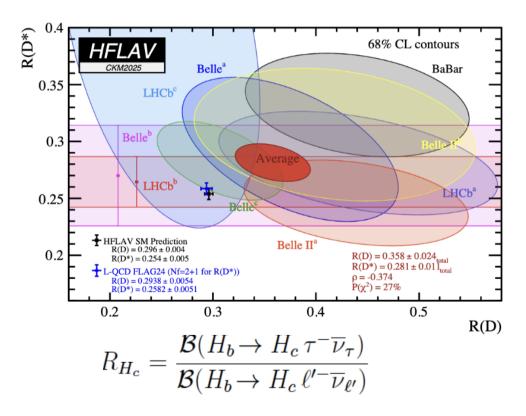
 Unbinned amplitude analysis introduce degrees of freedom to fit non-local contributions


Non-local contributions are q2 dependent

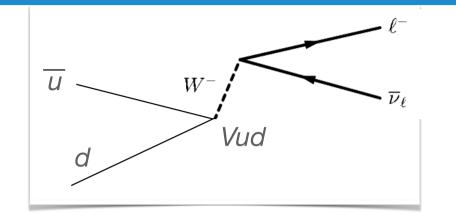

MY RESEARCH PROJECT FOR THE FUTURE

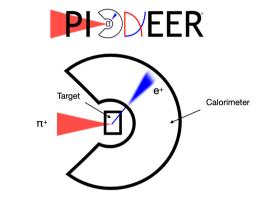


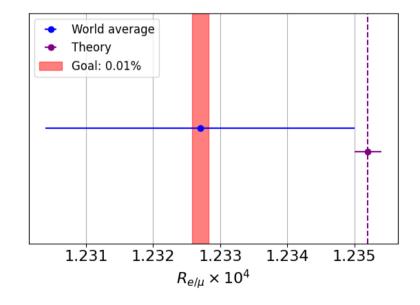
IMPROVE Vub MEASUREMENT

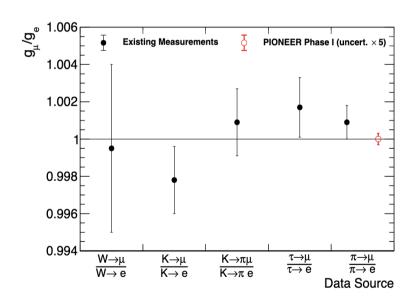


NEW LFU TESTS

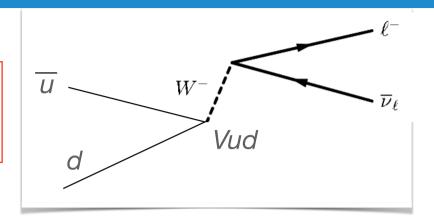

$$R_{K\tau\mu} = \frac{\mathcal{B}(B_s \to K^- \tau^+ \nu_\tau)}{\mathcal{B}(B_s \to K^- \mu^+ \nu_\mu)}$$

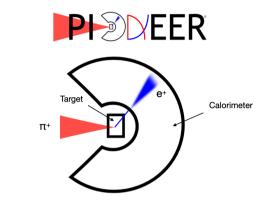

$$R_{Ke\mu} = \frac{\mathcal{B}(B_s \to K^- e^+ \nu_e)}{\mathcal{B}(B_s \to K^- \mu^+ \nu_\mu)}$$

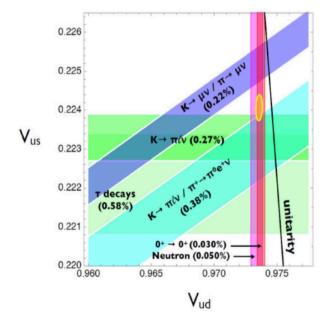

New, complementary measurements!

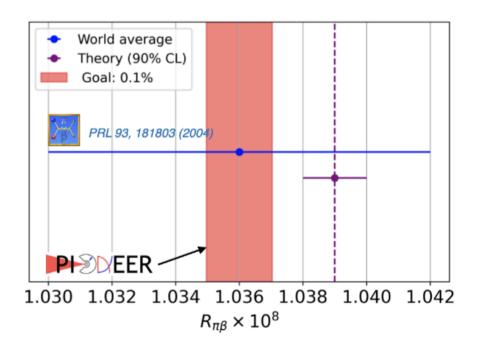

LFU TEST IN RARE PION DECAYS

$$R^\pi_{e/\mu} = rac{\Gammaig(\pi^+\! o e^+
u_e(\gamma)ig)}{\Gammaig(\pi^+\! o \mu^+
u_\mu(\gamma)ig)}$$



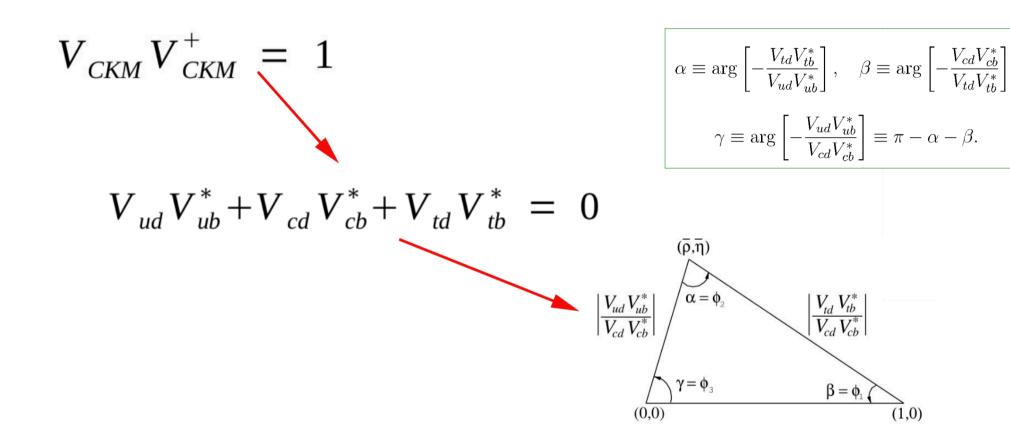



Vud MEASUREMENT IN RARE PION DECAYS


$$R_{\pi\beta} = \frac{\Gamma(\pi^+ \to \pi^0 e^+ \nu_e)}{\Gamma(\pi^+ \to \text{all})}$$

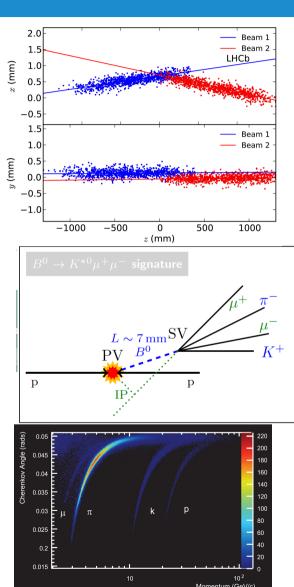
$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$

CONCLUSIONS


Nature is telling us that the Standard Model is not the ultimate theory. Yet, it is working hard to hide new physics from our sight. In my opinion, a diversified approach is the key to unveiling the mysteries of nature, and I am proud and excited to keep contributing to this fascinating work of investigation.

BACKUP

https://videos.cern.ch/record/2302130


UNITARITY TRIANGLE

REQUIREMENTS FOR FLAVOR PHYSICS AT LHC

Key ingredients:

- **High luminosity** to collect large data samples
- **Performing triggers** (for LHC: ex low pT triggers in GPD, real time analysis in LHCb)
- Be able to **cope with high pileup** (up to hundreds p-p interactions in GPD, few but now increasing in LHCb)
- **Vertex reconstruction capabilities** to identify the B decay, especially important for time-dependent measurements
- Good mass resolution to identify signal over backgrounds
- Flavor tagging of initial states for CPV measurements
- Particle identification

S-wave

$$\frac{1}{d(\Gamma + \bar{\Gamma})/dq^2} \frac{d^4(\Gamma + \bar{\Gamma})}{dq^2 d\bar{\Omega}} \Big|_{S+P} = (1 - F_S) \frac{1}{d(\Gamma + \bar{\Gamma})/dq^2} \frac{d^4(\Gamma + \bar{\Gamma})}{dq^2 d\bar{\Omega}} \Big|_{P}
+ \frac{3}{16\pi} F_S \sin^2 \vartheta_\ell
+ \frac{9}{32\pi} (S_{11} + S_{13} \cos 2\vartheta_\ell) \cos \vartheta_K
+ \frac{9}{32\pi} (S_{14} \sin 2\vartheta_\ell + S_{15} \sin \vartheta_\ell) \sin \vartheta_K \cos \phi
+ \frac{9}{32\pi} (S_{16} \sin \vartheta_\ell + S_{17} \sin 2\vartheta_\ell) \sin \vartheta_K \sin \phi$$

 F_S denotes the S-wave fraction,

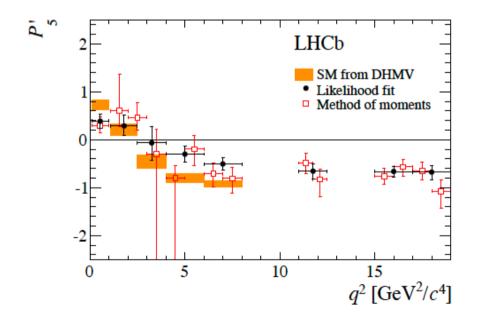
$$F_S = \frac{|A_S^L|^2 + |A_S^R|^2}{|A_S^L|^2 + |A_S^R|^2 + |A_0^L|^2 + |A_0^R|^2 + |A_{\parallel}^L|^2 + |A_{\parallel}^R|^2 + |A_{\perp}^L|^2 + |A_{\perp}^R|^2}$$

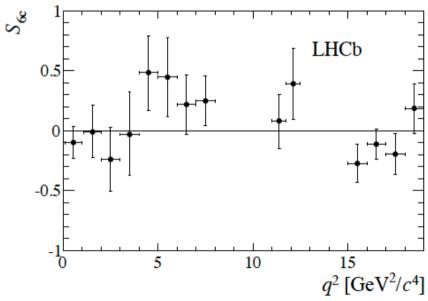
REDUCING FORM FACTOR UNCERTAINTIES: P'OBSERVABLES

$$P_{1} = \frac{2S_{3}}{(1 - F_{L})} = A_{T}^{(2)},$$

$$P_{2} = \frac{2}{3} \frac{A_{FB}}{(1 - F_{L})},$$

$$P_{3} = -\frac{S_{9}}{(1 - F_{L})},$$

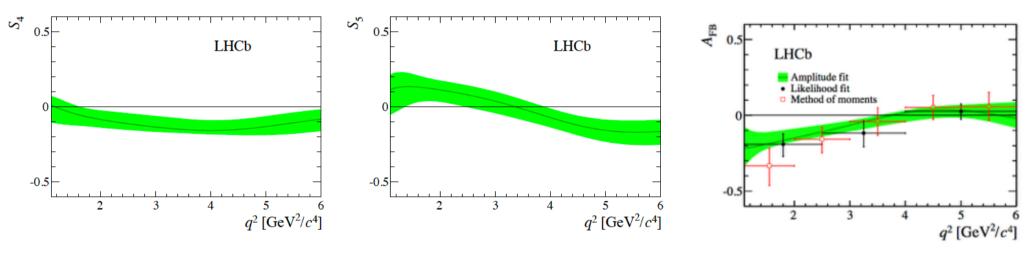

$$P'_{4,5,8} = \frac{S_{4,5,8}}{\sqrt{F_{L}(1 - F_{L})}},$$


$$P'_{6} = \frac{S_{7}}{\sqrt{F_{L}(1 - F_{L})}}.$$

COMPLEMENTARY APPROACHES: METHOD OF MOMENTS

$$M_{i}(q^{2}) = \frac{1}{\frac{d(\Gamma + \bar{\Gamma})}{dq^{2}}} \int \frac{d^{4}(\Gamma + \bar{\Gamma})}{dq^{2} d\vec{\Omega}} f_{i}(\vec{\Omega}) d\vec{\Omega} \qquad M_{i} = \begin{cases} \frac{8}{25} (1 - F_{S}) S_{i} & \text{if } i = 3, 4, 8, 9, \\ \frac{2}{5} (1 - F_{S}) S_{i} & \text{if } i = 5, 6s, 7, \\ \frac{2}{5} (1 - F_{S}) (2 - F_{L}) + \frac{2}{3} F_{S} & \text{if } i = 1s. \end{cases}$$

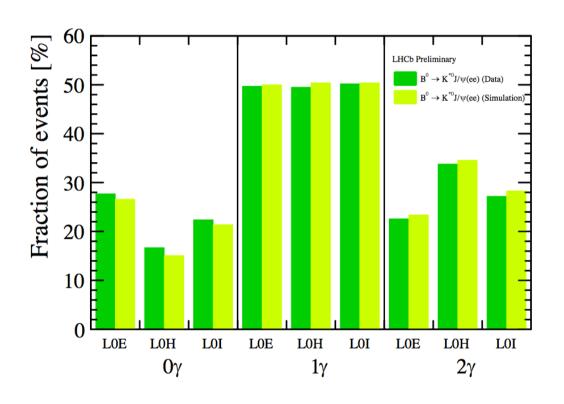
$$M_{i} = \begin{cases} \frac{8}{25}(1 - F_{S})S_{i} & \text{if } i = 3, 4, 8, 9 \\ \frac{2}{5}(1 - F_{S})S_{i} & \text{if } i = 5, 6s, 7, \\ \frac{2}{5}(1 - F_{S})(2 - F_{L}) + \frac{2}{3}F_{S} & \text{if } i = 1s. \end{cases}$$



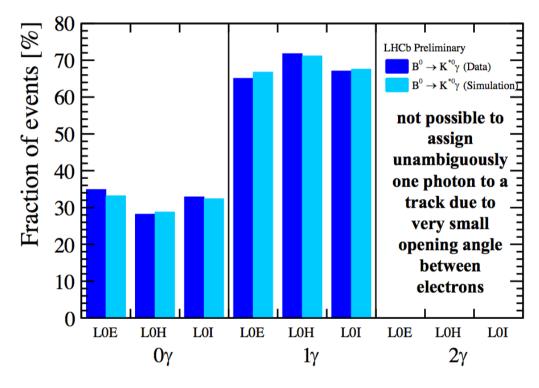
COMPLEMENTARY APPROACHES: AMPLITUDE ANALYSIS

Additional measurement of zero-crossing points, parameterizing the angular distribution with q2 dependent decay amplitudes

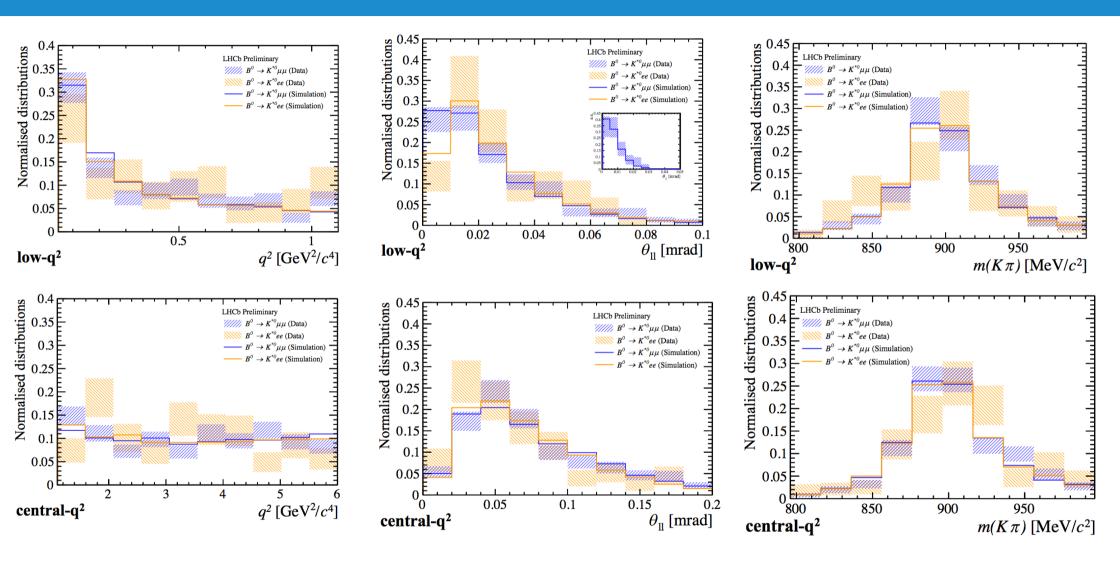
$$A_{i=0,\parallel,\perp}^{L,R}(q^2) = \alpha_i^{L,R} + \beta_i^{L,R}q^2 + \frac{\gamma_i^{L,R}}{q^2}$$


$$q_0^2(S_5) \in [2.49, 3.95] \text{ GeV}^2/c^4 \text{ at } 68\% \text{ C.L.}$$

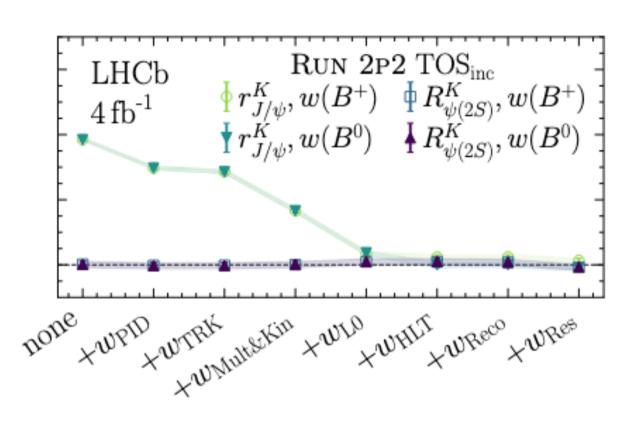
 $q_0^2(A_{\text{FB}}) \in [3.40, 4.87] \text{ GeV}^2/c^4 \text{ at } 68\% \text{ C.L.}$
 $q_0^2(S_4) < 2.65 \text{ GeV}^2/c^4 \text{ at } 95\% \text{ C.L.}$

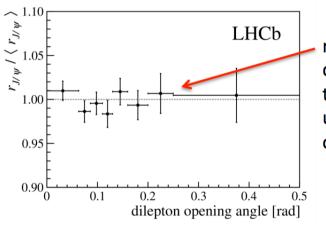

 ${\rm SM:} \; q_0^2(A_{\rm FB}) \sim [3.9, 4.4] \, {\rm GeV}^2/c^4$ [JHEP 01 (2012) 107, EPJ C41 (2005) 173, EPJ C47 (2006) 625]

SYSTEMATICS


Source	F_L	$S_3 - S_9$	A_3 - A_9	$P_1 - P_8'$	$q_0^2 \text{ GeV}^2/c^4$
Acceptance stat. uncertainty	< 0.01	< 0.01	< 0.01	< 0.01	0.01
Acceptance polynomial order	< 0.01	< 0.02	< 0.02	< 0.04	0.01 – 0.03
Data-simulation differences	0.01 – 0.02	< 0.01	< 0.01	< 0.01	< 0.02
Acceptance variation with q^2	< 0.01	< 0.01	< 0.01	< 0.01	_
$m(K^+\pi^-)$ model	< 0.01	< 0.01	< 0.01	< 0.03	< 0.01
Background model	< 0.01	< 0.01	< 0.01	< 0.02	0.01 – 0.05
Peaking backgrounds	< 0.01	< 0.01	< 0.01	< 0.01	0.01 – 0.04
$m(K^+\pi^-\mu^+\mu^-)$ model	< 0.01	< 0.01	< 0.01	< 0.02	< 0.01
Det. and prod. asymmetries	_	_	< 0.01	< 0.02	_

CROSSCHECKS: BREMSSTRAHLUNG

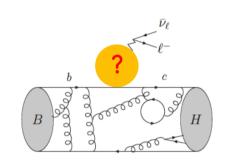


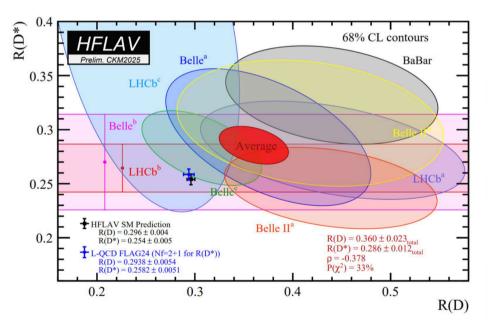

CROSSCHECKS: KINEMATICS

RX ANALYSIS: EFFICIENCIES

LHCb-PAPER-2022-045 LHCb-PAPER-2022-046

r(J/Ψ) =1
 demonstrates that
 the efficiencies are
 under very good
 control

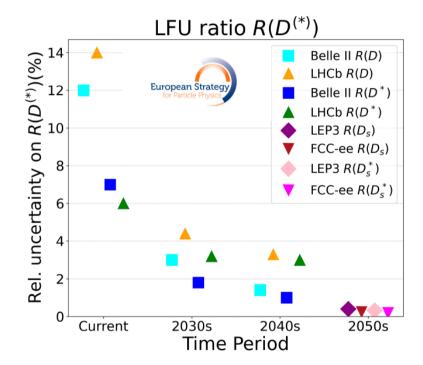

LFU IN b—>c I nu TRANSITIONS


$$R_{H_c} = \frac{\mathcal{B}(H_b \to H_c \, \tau^- \overline{\nu}_\tau)}{\mathcal{B}(H_b \to H_c \, \ell'^- \overline{\nu}_{\ell'})}$$

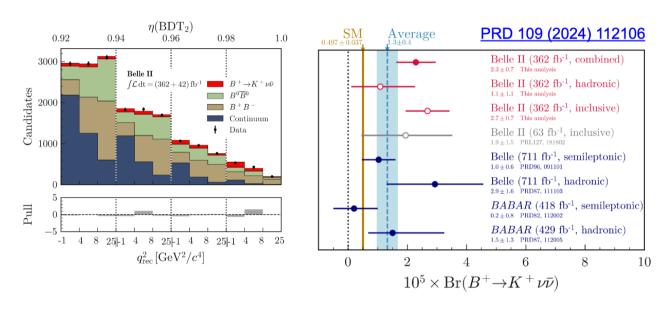
$$H_b = B^0, B_s^0, B_{(c)}^+, \Lambda_b^0$$

$$H_c = D^*, D^0, D^+, D_s^+, J/\psi, \Lambda$$

$$e \text{ or } \mu$$

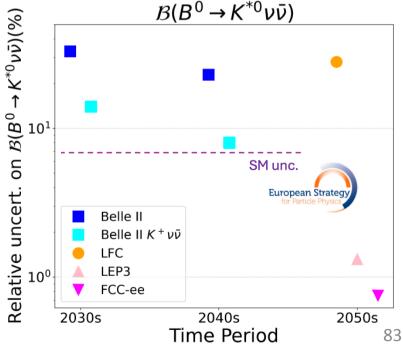


R(D) tension with SM: 2.7σ


R(D*) tension with SM: 2.7σ

R(D)-R(D*) tension : 4.2σ

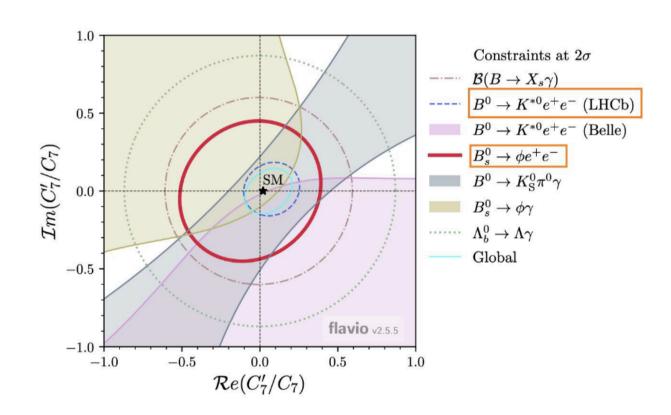
b -> s v v


$b \rightarrow sv\bar{\nu}$ is a clean observable, not affected by long-distance charm-loops effects

- Belle II evidence for $B^+ \to K^+ \nu \bar{\nu}$
 - 3.1 σ significant, and 2.7 σ above the SM prediction

$$BF(B^+ \to K^+ \nu \bar{\nu}) = (2.3 \pm 0.5^{+0.5}_{-0.4}) \times 10^{-5}$$

Observables	Belle $0.71 \mathrm{ab^{-1}} (0.12 \mathrm{ab^{-1}})$	Belle II $5 \mathrm{ab^{-1}}$	Belle II $50 \mathrm{ab^{-1}}$
$Br(B^+ \to K^+ \nu \bar{\nu})$	< 450%	30%	11%
$Br(B^0 \to K^{*0} \nu \bar{\nu})$	< 180%	26%	9.6%
$Br(B^+ \to K^{*+} \nu \bar{\nu})$	<420%	25%	9.3%
$F_L(B^0 \to K^{*0} \nu \bar{\nu})$	_	_	0.079
$F_L(B^+ \to K^{*+} \nu \bar{\nu})$	_	_	0.077
${\rm Br}(B^0 \to \nu \bar{\nu}) \times 10^6$	< 14	< 5.0	< 1.5
$Br(B_s \to \nu \bar{\nu}) \times 10^5$	< 9.7	< 1.1	_

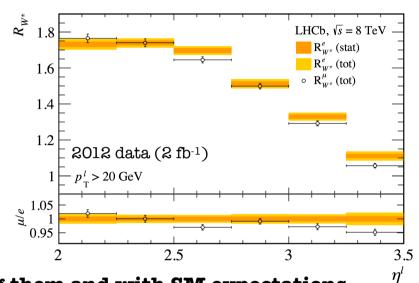

CONSTRAINTS ON PHOTON POLARIZATION

$${\cal H}_{
m eff} = -rac{4G_F}{\sqrt{2}} V_{ts}^* V_{tb} \, C_7 \, O_7 + {
m h.c.}$$

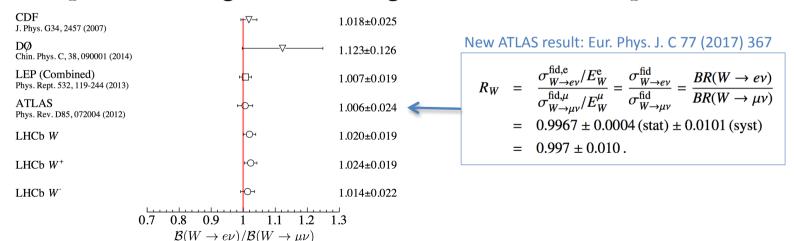
$$O_7 = rac{e}{16\pi^2} \, m_b \, ar{s} \, \sigma^{\mu
u} (1+\gamma_5) \, b \, F_{\mu
u} \, .$$

In b decays the photon is predominantly left-handed due to V-A structure

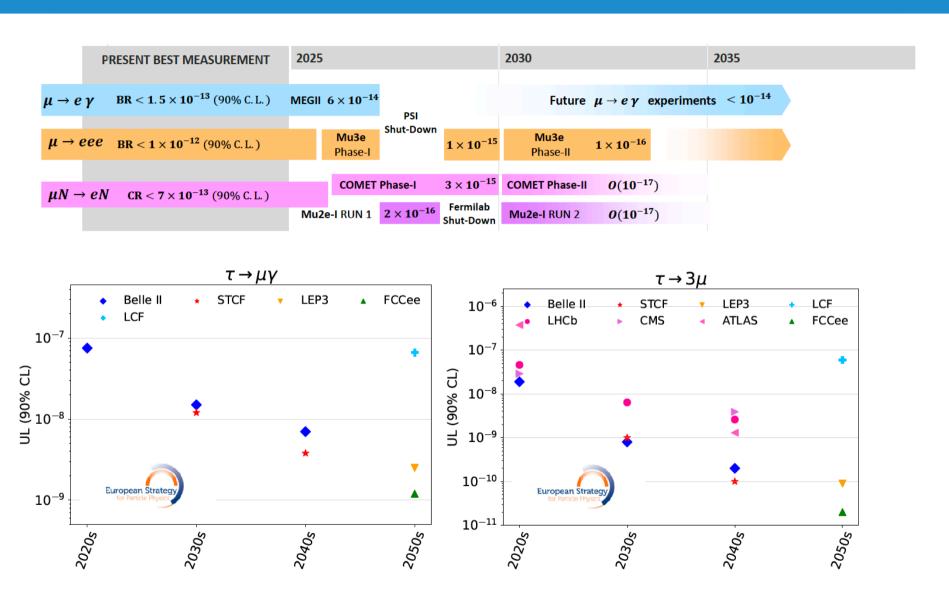
(In b-bar is right handed)


Rw

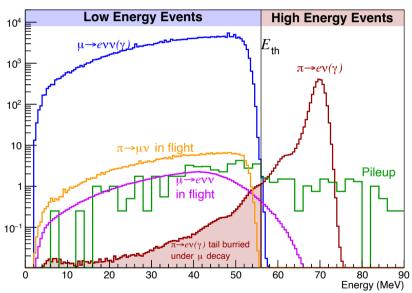
 $\mathbf{R_{w}}$: ratio of forward production cross


$$\frac{\mathcal{B}(W+\to e^+\nu_e)}{\mathcal{B}(W+\to \mu^+\nu_\mu)} = 1.024 \pm 0.003 \pm 0.019$$

$$\frac{\mathcal{B}(W - \to e^- \bar{\nu}_e)}{\mathcal{B}(W - \to \mu^- \bar{\nu}_\mu)} = 1.014 \pm 0.004 \pm 0.022$$

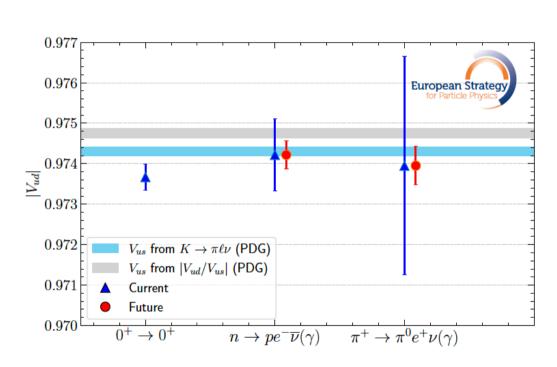

$$\frac{\mathcal{B}(W \to e\nu)}{\mathcal{B}(W \to \mu\nu)} = 1.020 \pm 0.002 \pm 0.019$$

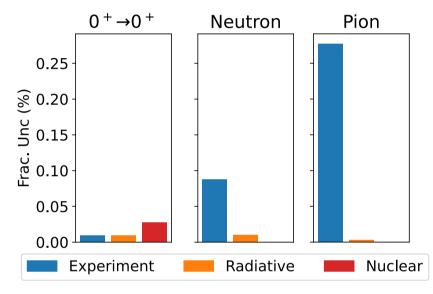

All experiments in agreement among them and with SM expectations



PROSPECTS FOR OTHER cLFV DECAYS

PIONEER




LANDSCAPE OF Vud MEASUREMENTS

PIONEER vs neutron/nuclei:

a competitive probe with a completely different error budget

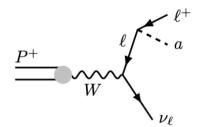
Brodeur et al, arXiv:2301.03975

$$V_{ud}^{0^{+} \to 0^{+}} = 0.97367 (11)_{\text{exp}} (13)_{\Delta_{k}^{R}} (27)_{NS} [32]_{\text{total}}$$

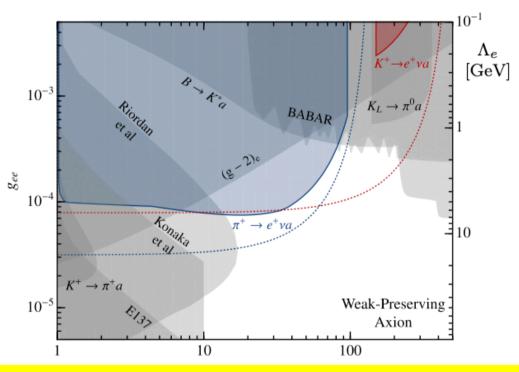
$$V_{ud}^{n,\text{PDG}} = 0.97430 (2)_{\Delta_{f}} (13)_{\Delta_{R}} (82)_{\lambda} (28)_{\tau_{n}} [88]_{\text{total}}$$

$$V_{ud}^{\pi} = 0.97386 (281)_{\text{BR}} (9)_{\tau_{\pi}} (14)_{\Delta_{k}^{\pi}} (28)_{\Delta_{f}} [283]_{\text{total}}$$

PIONEER: EXOTICS

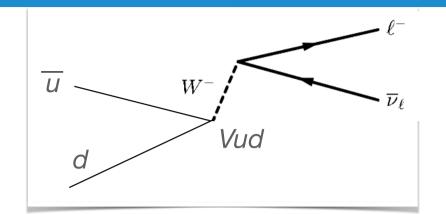

PIONEER will collect an unprecedented set of pion decays:

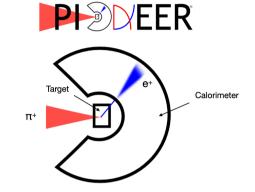
- surpassing existing sample by at least a factor 10
- opportunity to search for feeble interactions producing new particles in the pion decay
- look for deviation of SM quantities or modification of the energy spectrum lineshape


Many signatures explored by TRIUMF PIENU

```
\begin{array}{ll} \pi \to e \nu_H & \text{Physical Review D 97(7) 072012 (2018)} \\ \pi \to \mu \nu_H & \text{Physics Letters B 798 134980 (2019)} \\ \pi \to \ell \nu_\ell \nu \overline{\nu} & \text{Phys. Rev. D 102, 012001 (2020)} \\ \mu \to e X & \text{Phys. Rev. D 101, 052014 (2020)} \\ \pi \to e \nu X & \text{Phys. Rev. D 103, 052006 (2021)} \\ \end{array}
```


Recent development with Lepto-philic axion-like particles


> W. Altmannshofer, J. Dror, and S. Gori Phys. Rev. Lett. **130**, 241801



PIONEER can improve feeble interacting new particle searches (ALPs, heavy neutrinos) by an order of magnitude in the 10-100 MeV range

LFU TEST IN RARE PION DECAYS

$$R^\pi_{e/\mu} = rac{\Gammaig(\pi^+ \! o e^+
u_e(\gamma)ig)}{\Gammaig(\pi^+ \! o \mu^+
u_\mu(\gamma)ig)}$$

$$R_{e/\mu} = \frac{m_e^2}{m_\mu^2} \times \left(\frac{m_\pi^2 - m_e^2}{m_\pi^2 - m_\mu^2}\right)^2 \times \left[1 + \text{EW corrections}\right] = 1.23524(015) \times 10^{-4}$$

'Helicity suppression' Phase space term: ~2.3 x10⁻⁵ term: ~ 5.5

Fully computed at NLO O(10-4) uncertainties at NNLO