

Searching for CP violation with a BDT in ttH multilepton final state with Run 3

Réunion du groupe Particules

Giorgio Mauceri[1][2]

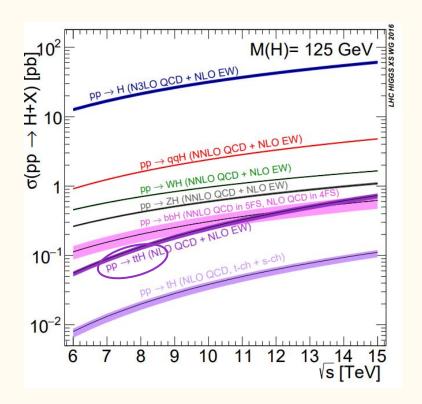
Adriano Di Florio[2], Andrea Giammanco[3], Jindrich Lidrych[3], Nicolas Chanon[1], Zak Lawrence[3]

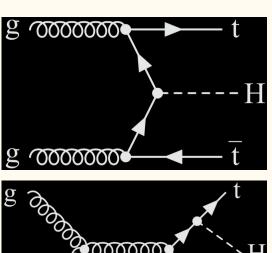
01/12/25

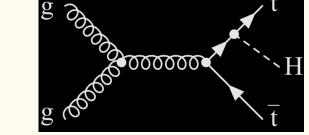
Summary

- 1. ttH process and CP-violation
- 2. ttH analysis and usage of the BDT
- 3. Dataset used
- 4. Training Method
- 5. Input Variables
- 6. Hyperparameters
- 7. Fine Tuning
- 8. Resulting Plots
- 9. Next Steps

ttH process and CP-violation



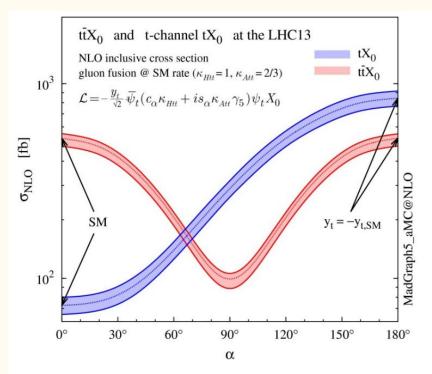




ttH process and CP-violation

$$\mathcal{L} = -\frac{y_t}{\sqrt{2}} \, \overline{\psi}_t (\underbrace{c_{\alpha} \kappa_{\mathit{Htt}}}_{\mathit{CP-even}} + \underbrace{i s_{\alpha} \kappa_{\mathit{Att}} \gamma_5}_{\mathit{CP-odd}}) \psi_t X_0$$

- α is the CP mixing angle (0 or 180° in SM)
- \bullet $~\kappa_{Htt,Att}^{}$ are dimensionless rescaling parameters
- \mathbf{c}_{α} and \mathbf{s}_{α} are respectively $\cos(\alpha)$ and $\sin(\alpha)$, meaning the CP-even and CP-odd terms of the interaction
- y_t is the Yukawa coupling constant of the top quark to the Higgs field
- X0 labels a generic spin-0 particle with CP-violating coupling (in this case, the Higgs boson)



CP transformation also affects m_t , $p_{\scriptscriptstyle T}$, and η

ttH Analysis and usage of the CP-BDT

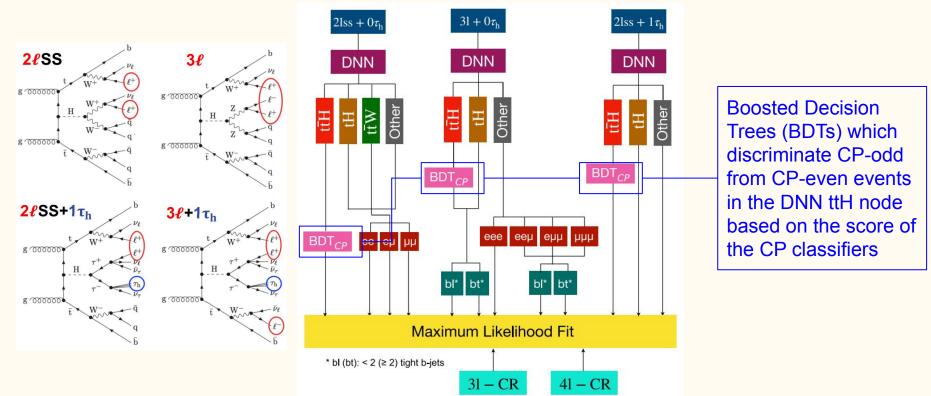


Diagram of the analysis process for ttH

The Dataset used

- The BDT was trained on the TTH CP MC samples (TTH_ctcvcp_4f_TuneCP5_13p6TeV_madgraph-pythia8)
- eras = 2022, 2022EE, 2023, 2023BPix, used all together for the training
- The signal regions analyzed are 2lss0tau and 3l0tau. For now, all events of the signal regions were used, without selecting the ttH node of the multi-target DNN
- The signal was taken as the events with the CP-odd weight, meanwhile the background was taken as the events with the SM weight
- Split into Training and Validation in a ratio 4:1

The Training Method

The BDT is trained using XGBoost, with the following functions:

clf = xgb.XGBClassifier(tree method="hist", objective="binary:logistic", eval metric="auc", #logloss The evaluation n estimators=5000. # early stopping will pick best n metric is the AUC subsample=0.8, colsample_bytree=0.8, learning_rate=0.1, max depth=4, min_child_weight=2.0, reg lambda=1.0, reg alpha=0.1, gamma=3., random state=42, n jobs=os.cpu count(), scale pos weight=scale pos weight, Early stopping is early_stopping_rounds=25 enabled. After the training is clf.fit(Xtr, ytr, stopped, the best sample_weight=wtr, iteration is eval set=[(Xtr, ytr), (Xva, yva)], sample_weight_eval_set=[wtr, wva], recorded. verbose=50

The Input Variables: Definitions

2lss0tau

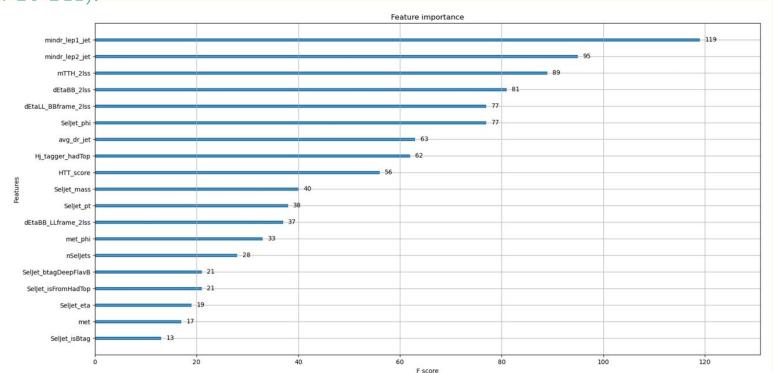
Tabella 5: Variables definitions $2 lss 0 \tau$			
Variable Name	Definition		
SelJet_pt	SelJet_pt pT of leading jet		
SelJet_Eta η of leading jet			
SelJet_Phi	ϕ of leading jet		
SelJet_Mass	Mass of leading jet		
SelJet_isBtag	Btag class of the leading jet		
SelJet_isFromHadTop	Whether the leading jet comes from the hadronic top		
SelJet_BTagDeepFlavB	Deep flavour Btag of the leading jet		
mindRlep1jet	dR of lep 1 to its closest jet		
mindRlep2jet	dR of lep 2 to its closest jet		
\mathbf{mTTH}	invariant mass of jets+met+leptons		
dEtaBB	dEta of two jets with highest b tagging score		
$dEtaLL_BBframe$	$d\eta$ of the two leptons in the B-B system frame		
avg_dr_jet	average dR distance among all jets		
dEtaBB_LLframe dEta BB in the l-l system frame			
Hj_tagger_hadTop Higgs-jet tagger			
HTT_score	highest BDT score of jet triplet from t		
met _ phi	net_phi ϕ of met		
nSelJets	number of jets passing the cuts		
met	missing transverse energy		

3l0tau

Tabella 4: Variables definitions 310τ		
Definition		
pT of leading jet		
η of leading jet		
ϕ of leading jet		
Mass of leading jet		
pT of subleading jet		
η of subleading jet		
ϕ of subleading jet		
Mass of subleading jet		
pT of lepton 1		
pT of lepton 2		
pT of lepton 3		
dR of lep 1 to its closest jet		
dR of lep 2 to its closest jet		
invariant mass of jets+met+leptons		
dEta of two jets with highest b tagging score		
$d\eta$ of leptons 1 and 3 in the B-B system frame		
$\mathrm{d}\eta$ of leptons 1 and 2 in the B-B system frame		
dR of lepton 1 and 2		
dR of lepton 2 and 3		
dR of lepton 3 and 1		

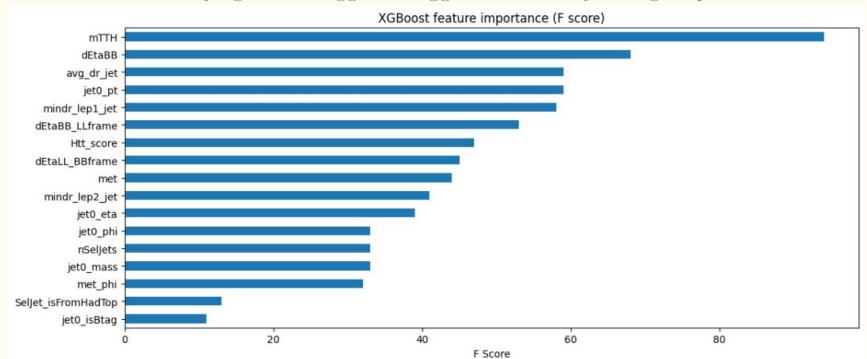
The Input Variables: Variable ranking in Run 2 (2lss0tau)

All features used for the 2lss0tau CP-BDT, with relative importance (from the CMS AN-20-241):



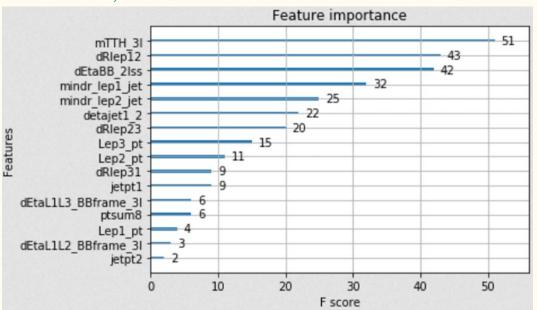
My Input Variables: Variable ranking (2lss0tau)

All features used for the 2lss0tau CP-BDT, with relative importance. The missing features are those relying on the Higgs-Jet tagger, and the Seljet_btagDeepFlavB



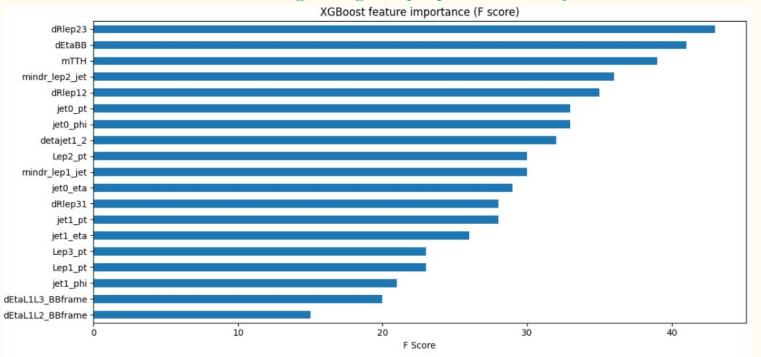
The Input Variables: Variable ranking in Run 2 (310tau)

All features used for the 3l0tau CP-BDT in Run2, with relative importance (from the CMS AN-20-241):



My Input Variables: Variable ranking (310tau)

Features used for the 3l0tau BDT, with relative importance. All variables from Run2 were used, and extra variables regarding the properties of the jets were added



The Hyperparameters: Ranges and values used in Run 2

The hyperparameters used in the Run 2 analysis (from the CMS AN-20-241):

Table 10: Range of tested hyperparameters			
Hyperparameter	Range	Explanation	
learning_rate	[0.01,4]	the rate at which the algorithm learns	
n_estimators	[100,1000]	the number of estimators (trees) used	
max_depth	[3,6]	the depth of each tree (max. number of features per tree)	
subsample	[0.8,1]	the amount of examples used to build each tree	
colsample_bytree	[0.8,1]	the amount of features used to build each tree	
gamma	0,1,5	a regularization parameter (either 0,1 or 5)	
early_stopping	True,False	stops adding new trees if val. loss stops decreasing	

Table 11: Optimal choice of BDT hyperparameters

Hyperparameter	$2\ell ss + 0\tau_h$	$2\ell ss + 1\tau$	$3\ell ss + 0\tau_{\rm h}$
learning_rate (=eta)	0.1	0.05	4
n_estimators	120	120	200
max_depth	4	4	2
subsample	0.8	0.8	1
colsample_bytree	1	1	1 /
gamma	1	5	0
early_stopping	True	False	True

The Hyperparameters: Ranges used for retraining

The hyperparameter configurations from Run 2 were tried. After some further work, I made the following modifications:

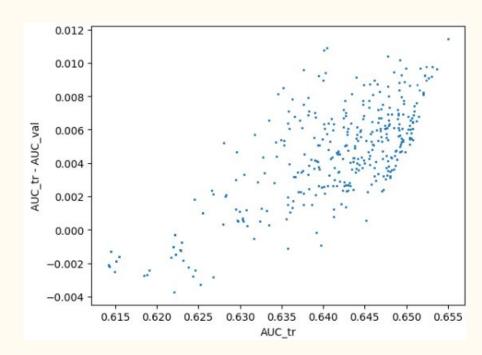
- 1. always used early_stopping, which in turn made a large number of estimators redundant
- 2. gamma = 5 was removed, as it gave overall worse results, and often different gamma values give the same output
- 3. the learning rate was capped at 2.5

Tabella 1: HyperParameters			
Hyperparameter	Range	Explanation	
learning_rate	[0.01, 2.5]	the rate at which the algorithm learns	
$n_{estimators}$	[1000]	the number of estimators (trees) used	
\max_depth	[3, 6]	the depth of each tree (max. number of features per tree)	
subsample	[0.8, 1]	the amount of examples used to build each tree	
$colsample_bytree$	[0.8, 1]	the amount of features used to build each tree	
gamma	[0, 1]	a regularization parameter (either 0,1 or 5)	
$early_stopping$	[True]	stops adding new trees if val. loss stops decreasing	

Fine Tuning: Best model choice (2lss0tau)

Since each BDT took only a few seconds to train, a grid search was used to look for the best combinations of hyperparameters, by running over hundreds of possible combinations.

Afterwards the following plot was made. On the x-axis, the AUC for the training set for all hyperparameter combinations used. On the y axis, the difference between the AUC of the training and validation sets.



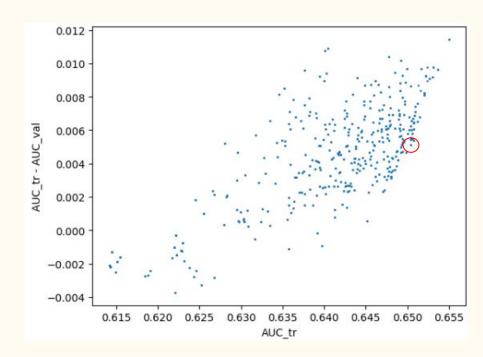
Fine Tuning: Best model choice (2lss0tau)

Since each BDT took only a few seconds to train, a grid search was used to look for the best combinations of hyperparameters, by running over hundreds of possible combinations.

Afterwards the following plot was made. On the x-axis, the AUC for the training set for all hyperparameter combinations used. On the y axis, the difference between the AUC of the training and validation sets.

Tabella 2: HyperParameters $2lss0\tau$

Range
0.26
1000
3
0.95
1.0
1
True



Fine Tuning: Best model choice (3l0tau)

Since each BDT took only a few seconds to train, a grid search was used to look for the best combinations of hyperparameters, by running over hundreds of possible combinations.

Afterwards the following plot was made. On the x-axis, the AUC for the training set for all hyperparameter combinations used. On the y axis, the difference between the AUC of the training and validation sets.

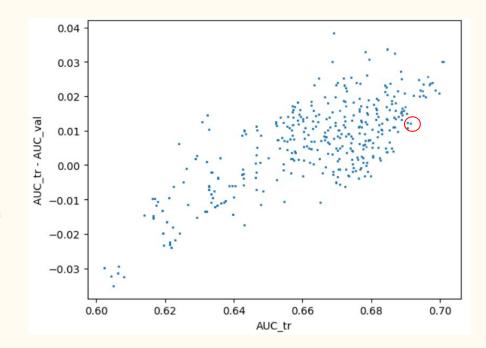


Fine Tuning: Best model choice (3l0tau)

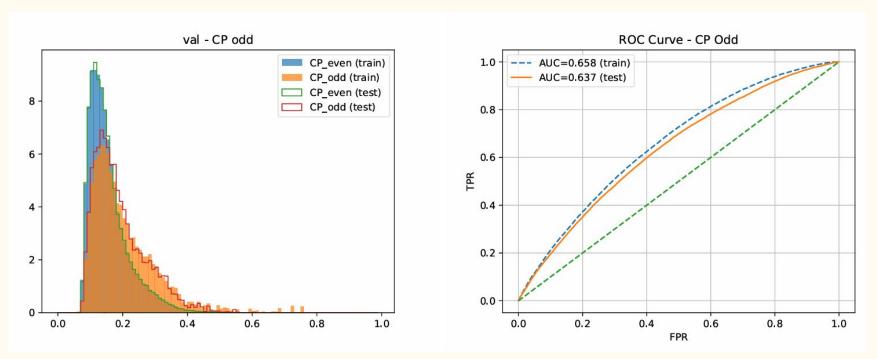
Since each BDT took only a few seconds to train, a grid search was used to look for the best combinations of hyperparameters, by running over hundreds of possible combinations.

Afterwards the following plot was made. On the x-axis, the AUC for the training set for all hyperparameter combinations used. On the y axis, the difference between the AUC of the training and validation sets.

Tabella 3: HyperParameters 3l07
Hyperparameter Best value
learning_rate 0.26
n_estimators 1000
max_depth 4
subsample 0.9
colsample_bytree 0.8
gamma 1
early_stopping True

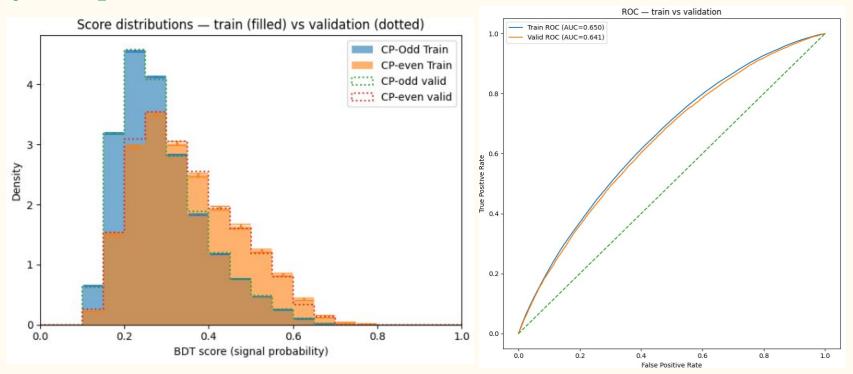


The Output: score and ROC curve in Run 2 (2lss0tau)



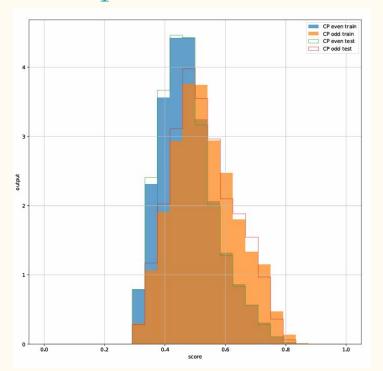
BDT score distributions for 2lss0tau for CP-even and CP-odd (left) and corresponding ROC curve with AUC=0.637 (right)

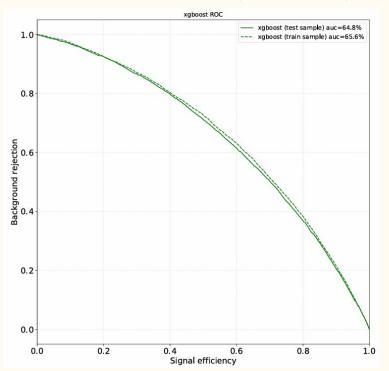
My Output: score and ROC curve (2lss0tau)



Predicted distributions for 2lss0tau for CP-even and CP-odd (left) and corresponding ROC curve with AUC=0.661 (right)

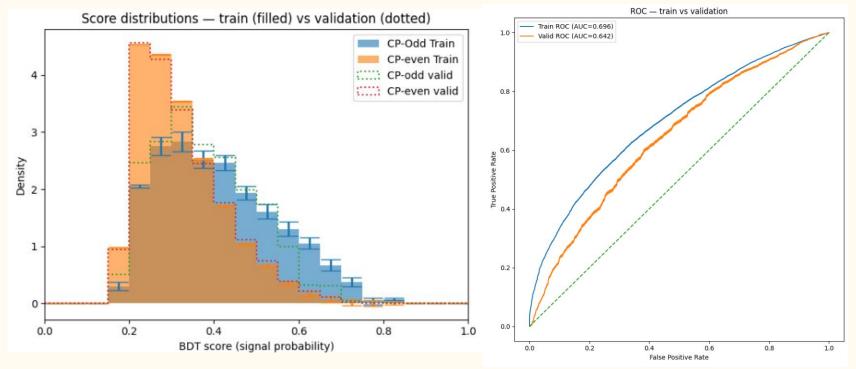
The Output: score and ROC curve in Run 2 (3l0tau)





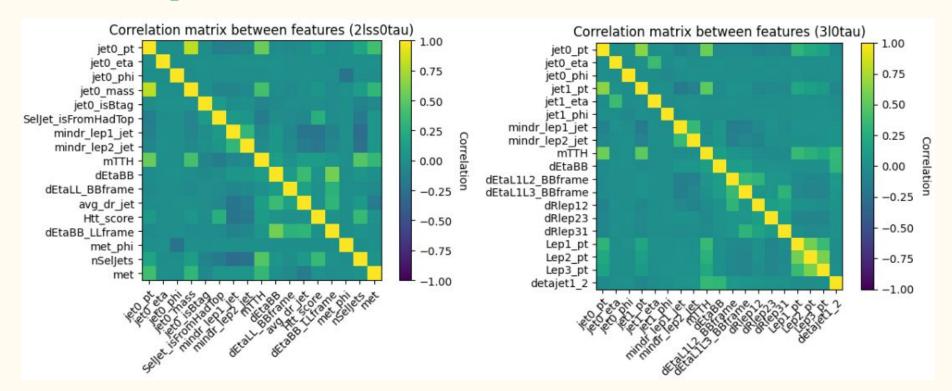
ROC curve for 3l0tau for CP-even and CP-odd with AUC = 0.648 (right) and corresponding predicted distribution (left)

My Output: score and ROC curve (3l0tau)



ROC curve for 3l0tau for CP-even and CP-odd (right) and corresponding predicted distribution with AUC = 0.696 (left)

The Output: Correlation matrices in Run3



Next steps:

- Try new variables suggested for CP-sensitive observables in the STXS formalism (from <u>arxiv:2406.03950</u>)

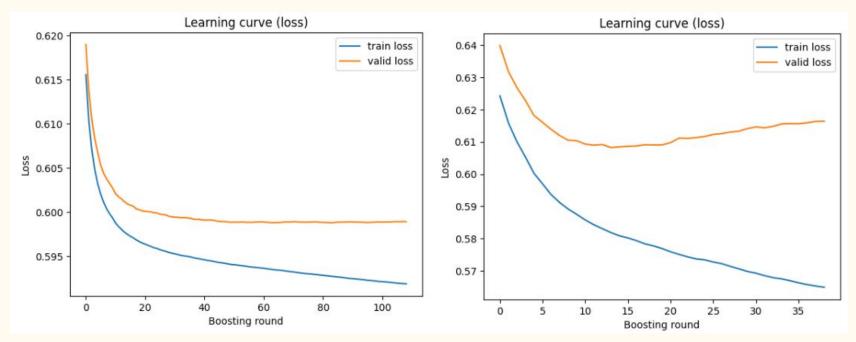
- Apply (and maybe train) the BDT in the ttH node of the DNNs

- Implement the postmortem reweighting for the tHq and tHW samples, and retrain the BDT on those channels too

- Add missing variables from the AN
 - Higgs-Jet tagger needs synchronization

Thank you for the Attention

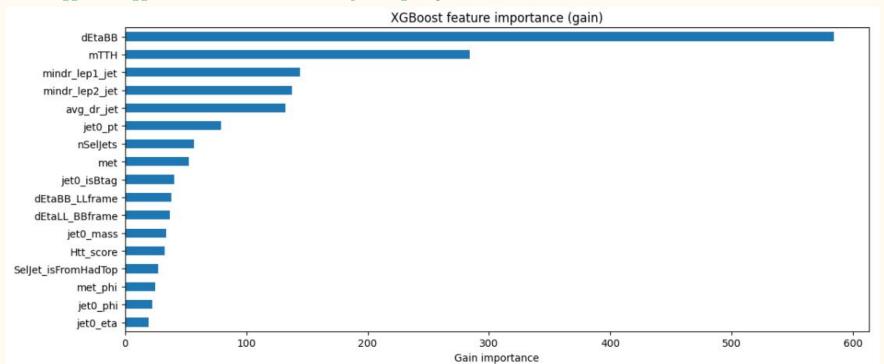
The Output: Loss function



Loss functions along the boosting rounds for the 2lss0tau (left) and 3l0tau (right) BDTs

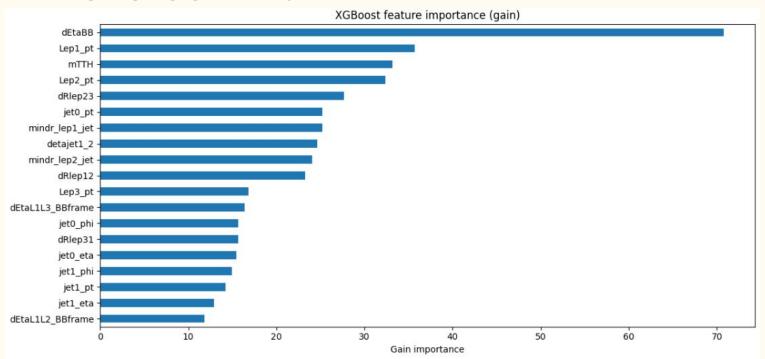
The Input Variables: Variable ranking in Run 3 (2lss0tau)

All features used for the 2lss0tau CP-BDT, with relative importance. The missing features are those relying on the Higgs-Jet tagger, the Htt_score, and the Seljet_btagDeepFlavB



The Input Variables: Variable ranking in Run 3 (310tau)

Features used for the 3l0tau BDT, with relative importance. All variables from Run2 were used, and extra variables regarding the properties of the jets were added



Variables from arXiv:2406.03950v2

Except this one

observable	definition	frame
$p_{T,H}$	-	lab, $t\bar{t}$, $t\bar{t}H$
$\Delta\eta_{tar{t}}$	$ \eta_t - \eta_{\bar{t}} $	lab, H , $t\bar{t}H$
$\Delta\phi_{tar{t}}$	$ \phi_t - \phi_{ar{t}} $	lab, $H, t\bar{t}H$
$m_{tar{t}}$	$(p_t + p_{\bar{t}})^2$	frame-invariant
$m_{tar{t}H}$	$(p_t + p_{\bar{t}} + p_H)^2$	frame-invariant
$ \cos \theta^* $	$rac{ oldsymbol{p}_t\cdotoldsymbol{n} }{ oldsymbol{p}_t \cdot oldsymbol{n} }$	$tar{t}$
b_1	$rac{(oldsymbol{p}_{oldsymbol{t}}{ imes}oldsymbol{n})\cdot(oldsymbol{p}_{ar{t}}{ imes}oldsymbol{n})}{p_{T,t}p_{T,ar{t}}}$	all
b_2	$rac{(oldsymbol{p}_{oldsymbol{t}}{ imes}oldsymbol{n}\cdot(oldsymbol{p}_{ar{t}}{ imes}oldsymbol{n})}{ oldsymbol{p}_{oldsymbol{t}} \ oldsymbol{p}_{ar{t}} }$	all
b_3	$\frac{p_t^x \ p_{\bar{t}}^x}{p_{T,t}p_{T,\bar{t}}}$	all
b_4	$rac{p_t^z \ p_{ar{t}}^z}{ oldsymbol{p_t} \ oldsymbol{p_{ar{t}}} }$	all
ϕ_C	$\arccos\left(\frac{ (\boldsymbol{p}_{p_1}\!\times\!\boldsymbol{p}_{p_2})\!\cdot\!(\boldsymbol{p}_t\!\times\!\boldsymbol{p}_{\bar{t}}) }{\left \boldsymbol{p}_{p_1}\!\times\!\boldsymbol{p}_{p_2}\right \left \boldsymbol{p}_t\!\times\!\boldsymbol{p}_{\bar{t}}\right }\right)$	Н