Interfaces between Production and Research Grids

Frédéric Suter

Conseil Scientifique de l'Institut des Grilles 1er Juin 2010

Outline

• Research Grids vs. Production Grids

Objectives

Types of jobs

Job Life Cycle

Load

Resource Sharing

Behavior

Administration Constraints

Research Grids and Production Grids

The Interface Program

Possible Collaboration Points

Different Objectives

Production Grids

► Goal: Feasibility

▶ Means: Toolboxes

► Keyword: Transparency

► Example: EGEE/EGI

Execute the applications of today

Research on Grids

► Goal: Performance

► Means: Algorithms

Keyword: Control

► Example: Grid'5000

Prepare the environments of tomorrow

Different Types of Jobs

Production Grids

- Driven by LHC and High Energy Physic
- A vast majority of 1-CPU jobs
- ▶ 100% on the AuverGrid trace¹
- ► Longer jobs (> 7h on average)

Grid'5000

- Driven by the HPC community
- Many parallel jobs
- ▶ 53/46 on the Grid'5000 trace²
- ► Shorter jobs (< 1h on average)

¹ http://gwa.ewi.tudelft.nl/pmwiki/pmwiki.php?n=Workloads.Gwa-t-4

²http://gwa.ewi.tudelft.nl/pmwiki/pmwiki.php?n=Workloads.Gwa-t-2

Different Job Life Cycles

Grid'5000 for a 1-proc job

- ▶ Look at Monika or the Gantt chart
- ▶ Select one site that has at least one node available
- ► Go there (maybe with my data)
- ► call oarsub (maybe with -I)
- get my machine quite immediatly
- Deploy my environment
- run my application
- Get the results or fail

Different Job Life Cycles

On Production Grids (EGEE)

- ▶ Before submission, have to specify the requirements (in JSDL for instance)
- ▶ No deployment, have to find a suitable node
- The waiting state can be neglected

Different Loads

Grid'5000

- Not heavily loaded
 - by design, dimensionning experiments can still run
- ► Always some nodes available
- ▶ Jobs can wait (for hours) if
 - ► They require many cores
 - ► They asked for a specific (and demanded) resource
 - ► There is a big conference deadline

Production Grids

- ► Always overloaded!
- Example of the IN2P3 Computing Center
 - ▶ 10 jobs for 8 CPUs
 - CPUs at full speed 80% of the time
 - Inactivity only due to data staging
 - ▶ 8,000 jobs running and 16,000 jobs waiting (for days) in queue

Different Resource Sharing

Grid'5000

- Once you get an account and have signed the charter
- Do what you want (with respect to the charter)
- Your behavior is traced by Kaspied

Production Grids

- Rely on VOs (Virtual Organizations)
- You can only access to resources where your VO is allowed
- Sharing among VOs is decided beforehand
- At a computing center level
 - Applications make resource requests each year
 - Consensus has to be found

Different behaviors

Performance comparison across platform

- Same (workflow-based) application running on reserved resources (G5K) and in production (EGEE)
- Two parallelization modes (DP and DSP)

Different Administration Constraints

Grid'5000

- Users can deploy their own image
 - Admins "only" have to maintain the default image
- ▶ Three critical services: OAR, Kadeploy, and Kvlan

Production Grid

- ► No virtualization (yet)
- Admins have to maintain
 - Operating System(s)
 - Libraries
 - Middleware stack
 - Licensed software
- Upgrade is a long process
 - 1 year to move from SL4 to SL5 at CC IN2P3
 - 2 or 3 concurrent versions of the OS
 - Scientifics often keep the sources, compiler and even binary
 - ▶ To ensure data processing under similar conditions somtimes years after

Conclusion

Grid'5000 is not a (production) Grid

- ▶ It's an scientific instrument
- ▶ Going to a production mode is not trivial
- Because the focus are different
 - ► Grid'5000: Controlled environment, you know everything
 - ▶ Production Grid: execution platform, (almost) everything is hidden

Outline

- Research Grids vs. Production Grids
- Research Grids and Production Grids
 The Interface Program
 Possible Collaboration Points

Interfaces

Making connections

- One of the missions of the Institut des Grilles
- ▶ In cooperation with Aladdin/Grid'5000
- In both directions
 - ▶ Research → Production
 - ▶ Production → Research

First call to proposal in 2009

- Supported by C. Germain-Renaud and F. Desprez
- ► Total funding: 20,000 euros (10 from IdG, 10 from Aladdin)
- ▶ Lightweight procedure: scientific program on 3 pages
- Objective: establish consortiums and submit bigger proposals
- ▶ Selection ratio: 7/9

Selected Projects

- SimGlite, when SimGrid meets gLite
 - ▶ F. Suter CC IN2P3
 - 5.000 euros
- Simulating Data-Intensive Applications
 - ► M. Quinson LORIA/Nancy University
 - ▶ 5,000 euros
- ▶ Efficacité énergétique dans les grilles: de la recherche à la production
 - L. Lefevre INRIA, LIP, ENS Lyon
 - ▶ 4,000 euros
- ▶ XWHEP : une grille de calcul globale securisee et interconnectee à EGEE
 - O. Lodygensky LAL
 - ▶ 2,000 euros
- Criblage Virtuel de Semences
 - ▶ G. Da Costa Uni. Toulouse
 - ▶ 2.000 euros
- Modélisations, Simulations et Calculs Hautes Performances pour l'énergie solaire
 - M. Daumas ELIAUS
 - ▶ 1.000 euros
- Calcul à hautes performances sur processeurs GPU pour la biologie intégrative
 - D. Hill Univ. Clermont
 - ▶ 1,000 euros

Next call in 2010

What is unchanged

- ► Lightweight procedure
- ► Calendar (at fall)
- ▶ Number of selected project (less than 10)

Some new propositions

- ► Fund a Master internship
- Setup a collaboration forum
 - As for European projects
 - Researchers can propose some ideas
 - Production can submit some problems

What Research Can Bring?

- A new middleware
- A better TCP protocol
- ► A High-Performance MPI
- ► An OS deployment solution
- A new programming paradigm
- ► A task scheduling algorithm
- Virtualization
- Energy savings
- A platform simulator
- A trustful emulator

What Production May Answer?

- ► A new middleware. Not if I have to rewrite all my codes
- ► A better TCP protocol. Get it integrated in Scientific Linux first
- ► A High-Performance MPI. Will it help my sequential jobs?
- ► An OS deployment solution. I may deploy twice a year at most
- ▶ A new programming paradigm. Fortran is just fine
- A task scheduling algorithm. Round robin works well for my workload
- ► Virtualization. only if it adds flexibility and reliability
- ► Energy savings. to compute more for less, but no resource shut down
- A platform simulator. I care only for my results, not how they were obtained
- ► A trustful emulator. Why would I slowdown my machines?

What Production Does Expect?

- Reliability, Reliability, Reliability
- ► Transparency, Transparency
- Recovering gracefully of a failure
 - Better than trying to prevent it
- ▶ Improving an existing tool should be better perceived.
- Hot Topics
 - Large databases.
 - Virtualization (for administration comfort)
 - Interoperability
 - Production grids start to connect each other
 - Mastering the energy consumption
 - Preventing the anticipated crash into the memory wall
 - Memory does not grow linearly with the number of cores
 - This will become a problem for 1-proc jobs

What Production Can Bring?

- Realism!
- Real Applications (some with large societal impact)
- ▶ Real users, with concrete needs and expects
- Different use cases
 - ▶ Often harder than the comfortable ones we use in research
- ► A way to promote research results

Final Word

Research and production communities have to work hand by hand even though they look in opposite directions