

Scientific Council of the CNRS Grid Institute

Production Grid

Credits to:

Jérôme Bernier (CC-IN2P3) Fabio Hernandez (CC-IN2P3) Philippe Olivero (CC-IN2P3) Hélène Cordier (CC-IN2P3) David Bouvet (CC-IN2P3) Frédéric Desprez (ENS Lyon - LIP) Jean-Pierre Meyer (CEA / Irfu)

June 1st 2010

Dominique Boutigny

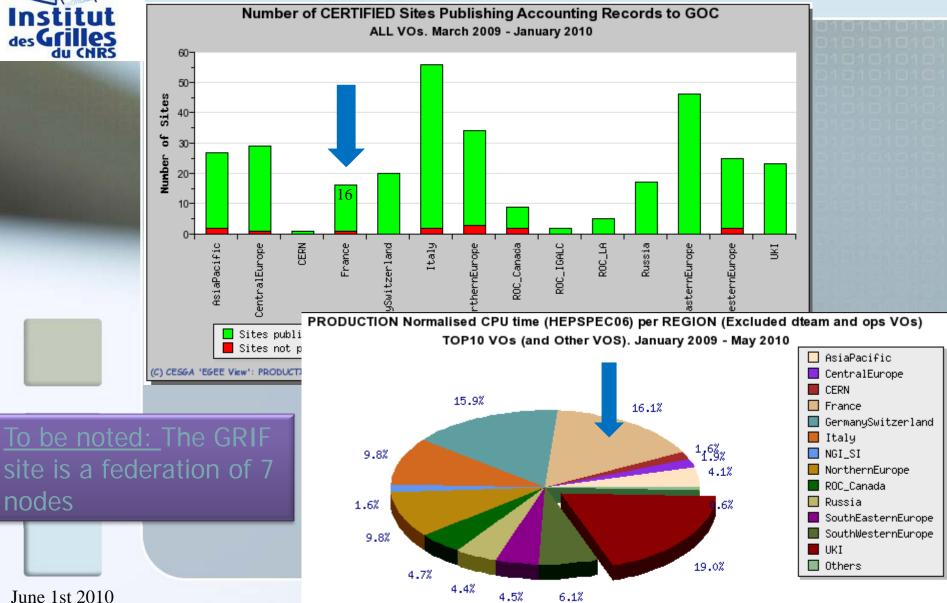
Production grid overview

- The production grid in France is mainly based on the EGEE middleware
- France has been very active in all 3 phases of EGEE ... and even before (Datagrid project !)
- We now have a fully operational production infrastructure based on Grid technology
- We are in the process to move from EGEE to EGI / NGI → This is a very important step which is not a simple continuation of the existing
- Other production grid projects:
 - Decrypthon based on the DIET middleware developed in the research grid framework
 - Several other regional or dedicated initiatives ...

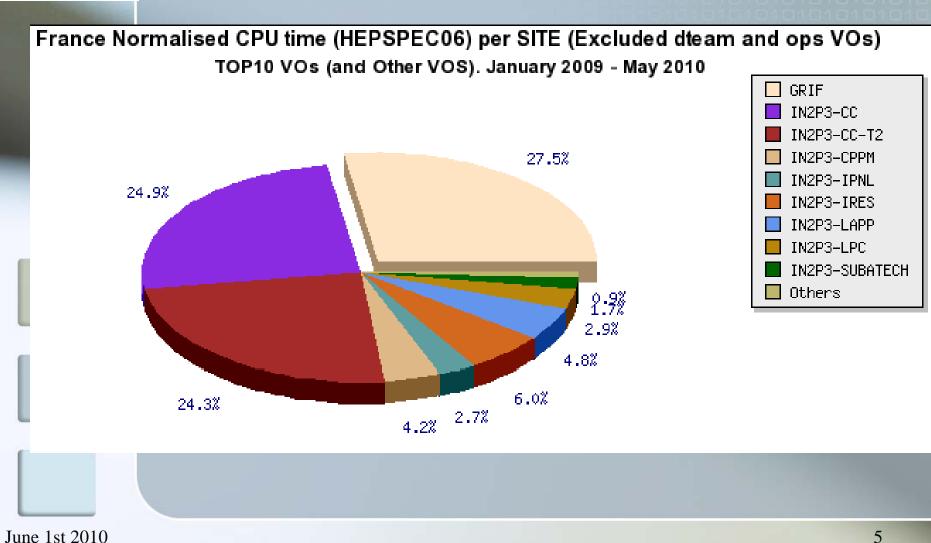
French activities in EGEE-III

Involvement in:

- ➢ NA2: Dissemination and business
- ➤ NA3: Training
- ➤ NA4: User community support and expansion
 - HEP, Life science, Earth science, Chemistry, Astronomy & Astrophysics, Grid Observatory
- ➢ SA1: Operations
- Network support


Activity	NA2	NA3	NA4	SA1	SA2
Person Months	39	24	245	426	96

A total of 827 Person Months over a total of 9010 Person Months for the whole project


nodes

France Vs other EGEE regions

CPU delivered by French sites

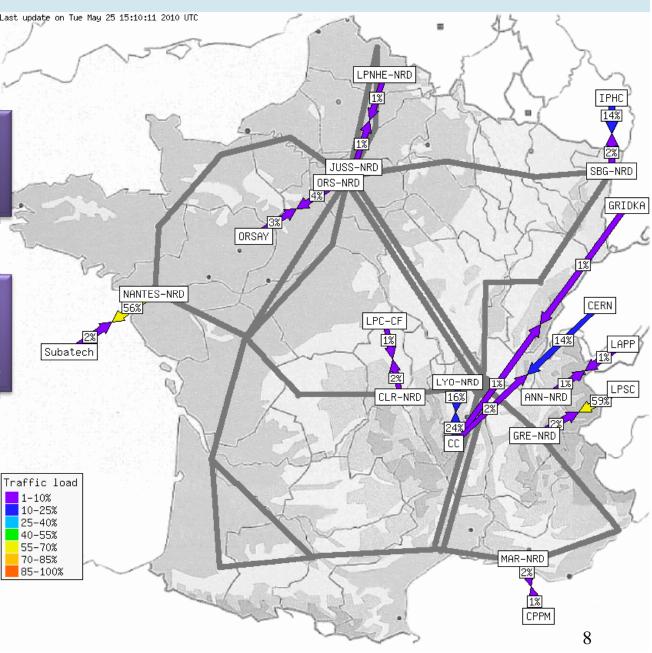
Provided resources

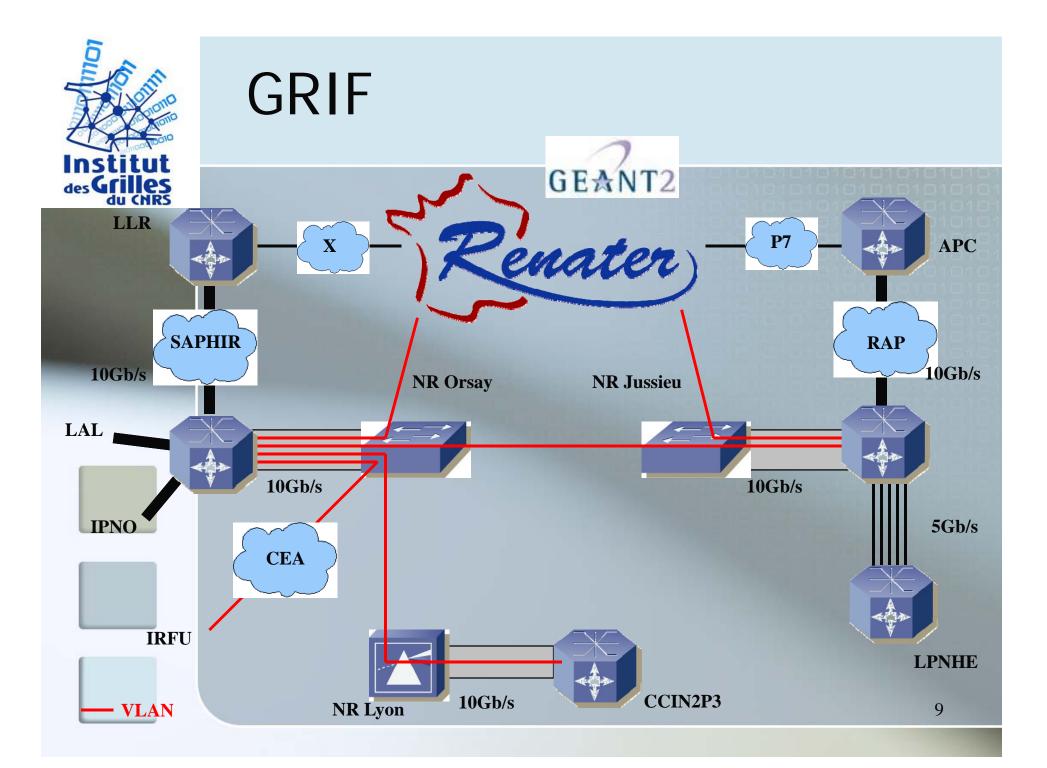
de	Grilles du CNRS					
			Target 200	9 (EGEE III D	OW) Contained	
		Nbr. sites	CPU (KSI2K)	Disk (TB)	Seed CPU (KSI2K)	Seed Disk (TB)
	CEA	1	615	208	30	2
	CGGV	1	66	0,5	0	0
	CNRS	16	22 879	7285	180	7
			23 560	7 494		
			Actually	provided in 20)10	
		Nbr. sites	CPU (KSI2K)	Disk (TB)	Seed CPU (KSI2K)	Seed Disk (TB)
		16	39 963	6 559	557	6,8
т	1 4 2010					

EGEE grid availability and reliability

du CNRS			April 2	010				
	Region	Avail- Reli- ability ability			1016	1010	1010	101
is 93% in	AsiaPacific	93 % 93 %		Availa Relia	Unkn	Availability History		
il 2009	CERN	98 % 99 %		bility bility		Jan-10	Feb-10	Mar-10
12007	CentralEurope	88 % 88 %	France)		1000			
	France	→ 97 % _{>} 97 %	AUVERGRID	99 % 99 %	0 %	95 %	99 %	99 %
Station of Concession, Name	GermanySwitzerland	93 % 93 %	CGG-LCG2	99 % 99 % 85 % 85 %	0 %	95 % 93 %	99 % 92 %	99 % 100 %
050/	Italy	94 % 94 %	GRIF	100 % 100 %	0 %	99 %	98 %	100 %
95% in	NGI_GRNET	96 % 97 %	IBCP-GBIO	99 % 99 %	0 %	98 %	91 %	100 %
2009	NGI_PL	94 % 95 %	IN2P3-CC IN2P3-CC-T2	95 % 95 %	0 %	93 %	90 %	94 %
	NorthernEurope	91 % 91 %	IN2P3-CPPM	95 % 95 % 97 % 97 %	0 % 0 %	85 % 99 %	88 % 90 %	93 % 99 %
	ROC_Canada	92 % 92 %	IN2P3-IPNL	99 % 99 %	0 %	97 %	96 %	93 %
	ROC_IGALC	79 % 90 %	IN2P3-IRES	91 % 91 %	0 %	89 %	95 %	93 %
	ROC_LA	89 % 89 %	IN2P3-LAPP IN2P3-LPC	97 % 97 %	0 %	97 %	95 %	98 %
	– Russia	86 % 89 %	IN2P3-LPC	99 % 99 % 98 % 98 %	0 % 0 %	97 % 91 %	100 % 90 %	100 % 93 %
	SouthEasternEurope		IN2P3-SUBATECH	99 % 99 %	0 %	98 %	98 %	99 %
	SouthWesternEurope		IPSL-IPGP-LCG2	90 % 90 %	0 %	98 %	89 %	96 %
	UKI	91 % 91 %	M3PEC	99 % 99 %	0 %	96 %	93 %	98 %
		93 % 96 %	MSFG-OPEN	90 % 90 %	19 %	N/A	62 %	99 %
		New	V Montpellier site	e ramping ur				

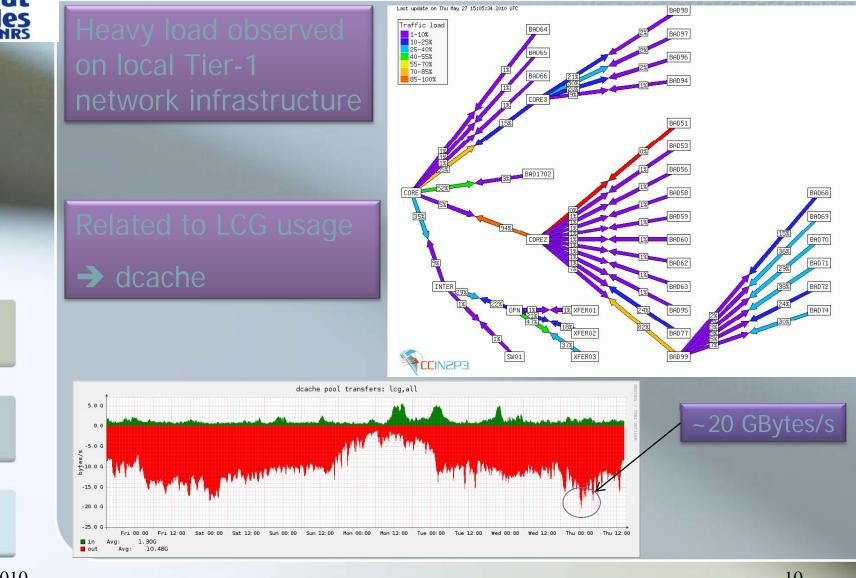
New Montpellier site ramping up

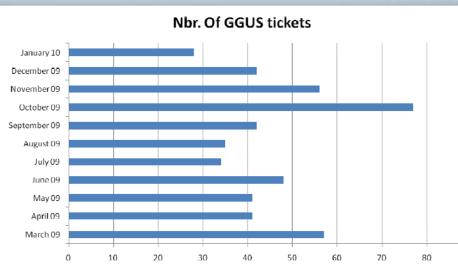



June 1st 2010

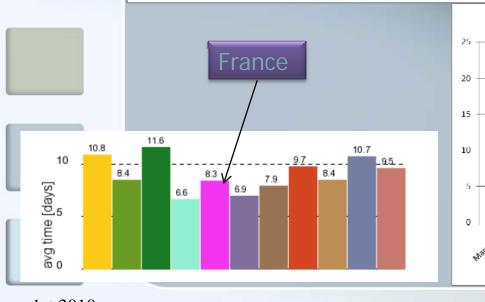
Network

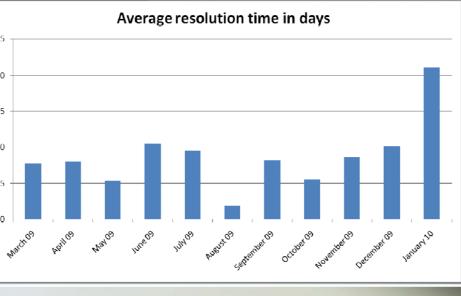
The French production Grid crucially depends on RENATER


Who is extremely helpful in providing an adequate infrastructure

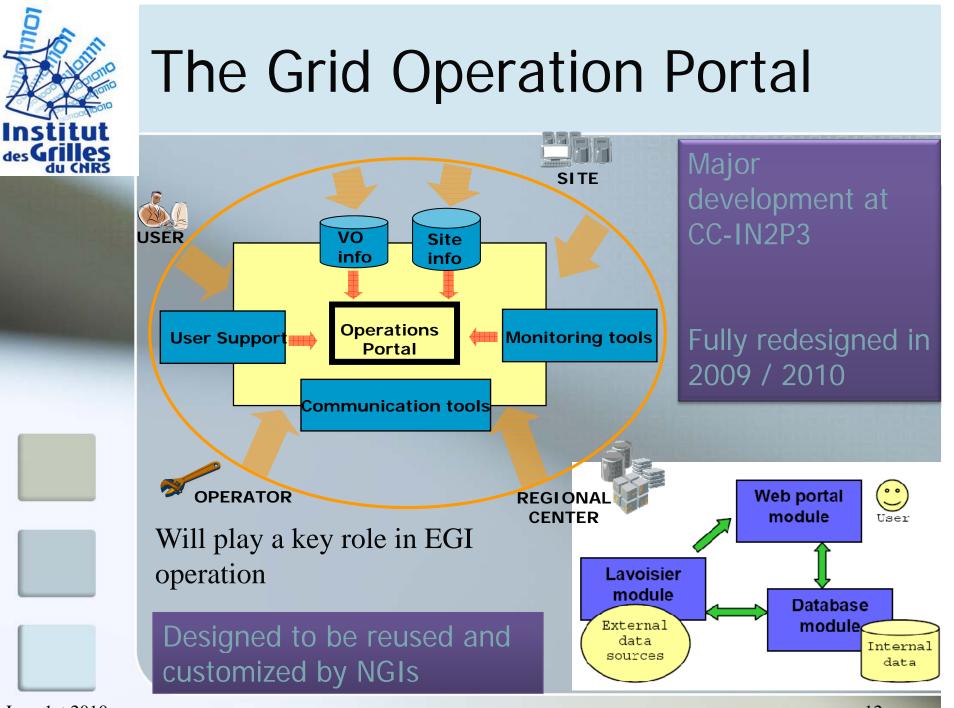


Grid activity is I/O intensive





Incident resolution (GGUS)



All French sites are involved in ticket treatment

90

Regional Grids

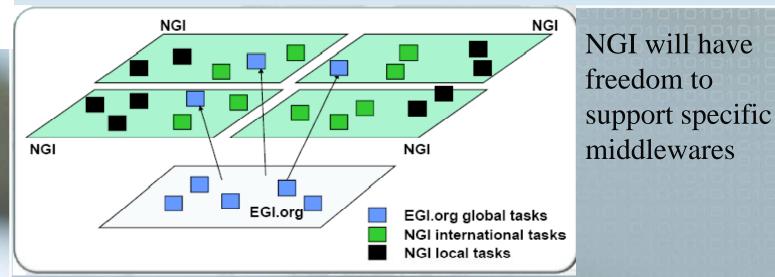
- The regional grids will be the corner stones of the French National Grid
 - Much more than within the EGEE centralized model
- Of course LCG T1/T2/T3 will continue to be top users of the NGI for some time but...
- In the French grid will tend toward a federation of regional grids providing resources for multidisciplinary projects
 - IdG is going to help these regional projects
- Regional grids will be
 - A must to attract regional funds
 - in phase with current politics toward large University poles

Keeping the coherence of the whole system will be a major task

Regional grids

AUVERGRID

- Historically the first in France
- Strong involvement in biology and biomedical applications
- GRIF (Paris)
 - 5 IN2P3 labs + CEA/Irfu
 - 80% LHC oriented 20% opened to Life Science, Earth Science, Astrophysics...
- In Rhône-Alpes
 - CIRA for HPC
 - TIDRA for data storage and analysis
- Some initiatives in
 - Marseille
 - Montpellier
 - Bordeaux



A focus on GRIF

kSI2k	APC 354	IPNO 1274	Irfu 3754	LAL 770	LLR 1955	LPNHE 1293	ISC-PIF 1342	Total 10742	
ТВ	21	153	913	431	296	303	47	2164	
12000,0 10000,0 8000,0 X 6 000,0 4000,0 2000,0 0,0	■ksi2k	GRIF ressourd		2008 2009	1800,0 1600,0 1400,0 1200,0 1000,0 800,0 600,0 400,0 200,0 0,0	> I > A > H > O > O > I	LHC Vos Auvergrid Biomed Calice CompChe D0 Egeode	> H > H > H > H > G m > I	Esr Embrace Fusion GEANT4
>7 >7 >4	ployed 1 CE (2750 SRM SE WMS top BDII	resource:	► ►1 M ►1 Pr	ONBOX oxy serv OMS ser FC	er ver Thi	s is a v	aged b rery sigr technica	nificant	effort

New services

In order to match the goal to develop multidisciplinary activities we have to provide:

Tools which are fitting the needs well

Keep things as simple as possible

Provide an efficient user assistance

iRODS an alternative solution for grid data storage and access

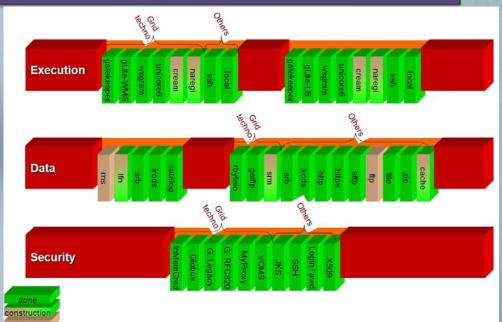
integrated Rule Oriented Data System

- □ Storage virtualization
- Data management (transfer replication metadata integrity checks)
- □ Supports VO roles groups
- Definition of data management rules at the server level
- □ Relatively easy to deploy and maintain

and... Considerable expertise at CC-IN2P3

A very popular solution for astroparticle, biology and humanities applications at CC-IN2P3

We would like to make iRODS part of the NGI standard "kit"



Interoperability – User interfaces

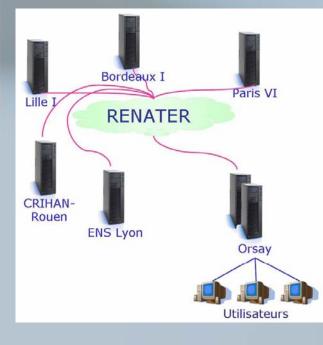
JSAGA is an interoperability tool developed at CC-IN2P3 based on the OGF standards SAGA and JSDL

The main idea is to hide the grid complexity to the user

Handle both program execution and data management

A standard central piece for user interface and portals

A JSAGA – DIRAC interface is being written – It will allow to use the pilot job concept on any grid



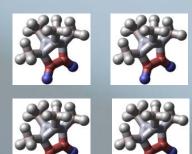
http://www.decrypthon.fr/

A collaboration between AFM – IBM – CNRS

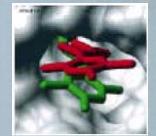
Genomics computation to better understand genetic diseases Molecular docking to find drugs to cure muscular dystrophy

Power G5 computers given by IBM to 6 universities (500 Gflops)

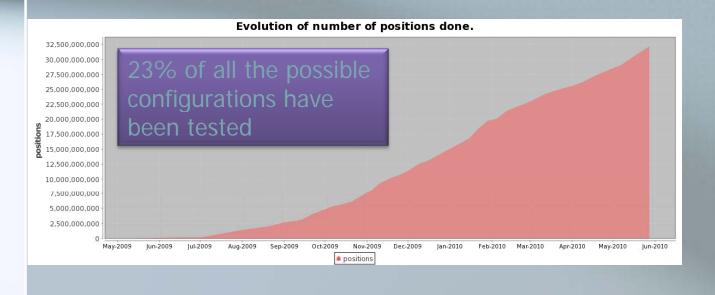
Decrypthon is running the DIET middleware developed at ENS Lyon (IT research team)


Connection with the community grid: WCG

Project to interface DIET and JSAGA \rightarrow interesting bridge between the 2 communities


Results on the HCMD-II project

Ligand DB



Protein

Ligand docked on the protein

Conclusions

- The French production grid organization is now working well, thanks to many expert people who know each others since a long time
- We are in the process to move from the EGEE organization to the EGI / NGI one
 - No special problems are expected from the operational point of view
- The focus will now be put on multidisciplinary activities running in regional grids
 - While supporting LCG who is going to stay the major resource consumer for a few years
- We need to provide flexible and simple tools if we want this to be a success
- While dominated by EGEE / gLite up to now, the French NGI is also integrating other grid activities like Decrypthon and other lightweight grids