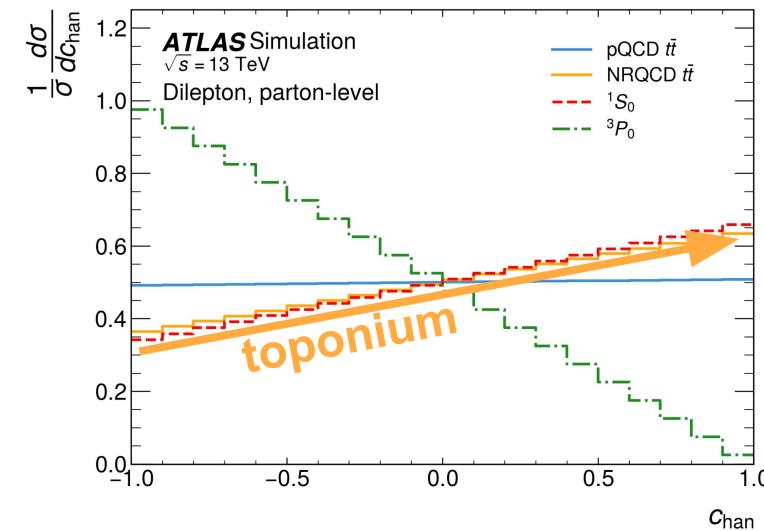
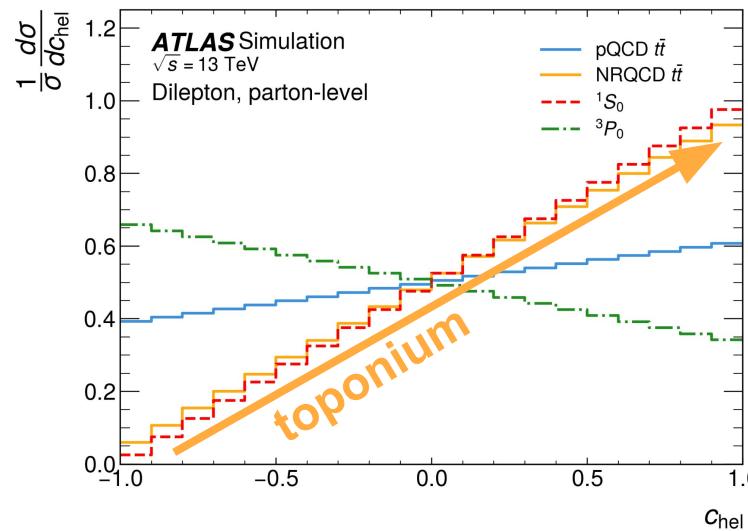
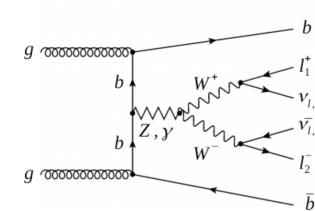
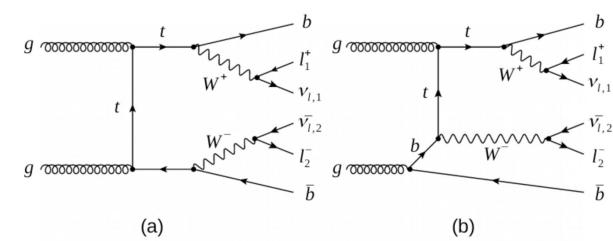


Toponium at the LHC

a new frontier in top-quark physics

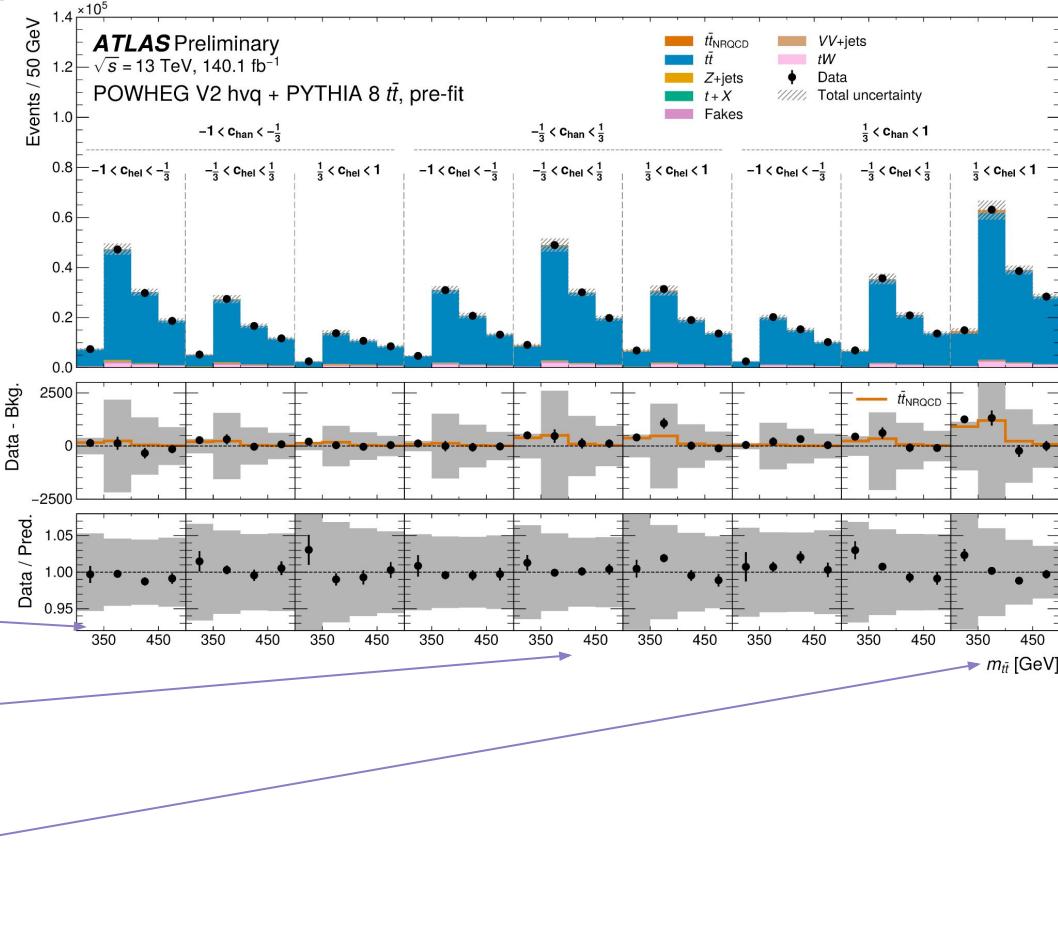


CEA/Saclay DPhP Seminar, 01/12/2025

Baptiste Ravina (CERN)



- All the relevant concepts have been introduced Benjamin's talk
 - the LHC is a top quark factory → Run 2 gives us access to **O(100M) $t\bar{t}$ events**
 - the top quark decays fast enough that the full spin information can be reconstructed from the decay products → **access to spin polarisations and correlations**
 - charged leptons are ideal spin analysers → reconstruct the **spin density matrix**
 - “**toponium**” is the quasi-bound state(s), manifesting mostly as a **localised cross section enhancement near threshold ($m \sim 2m_t$) with pseudo-scalar behaviour**
- I will now **focus on the experimental measurements**
 - analysis strategy, signal and background models, treatment of uncertainties
 - **comparing the ATLAS and CMS approaches and their findings**
 - highlighting current limitations and directions for improvements
- Observing toponium before an e^+e^- collider would be an unexpected discovery of “new SM physics” [F. Maltoni] → ***LHC as a precision machine***

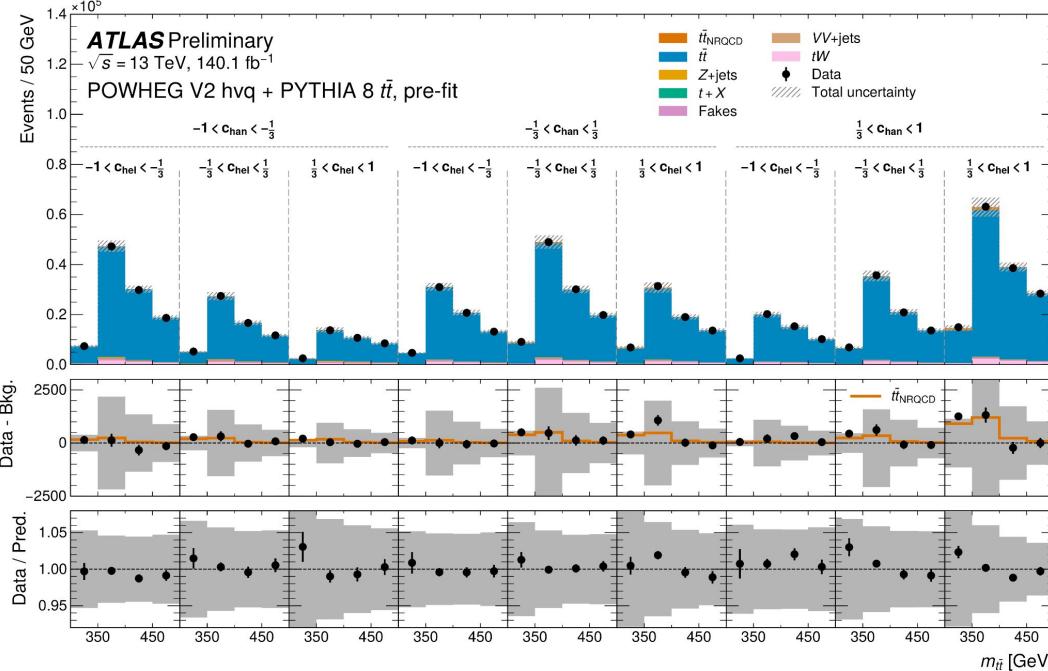
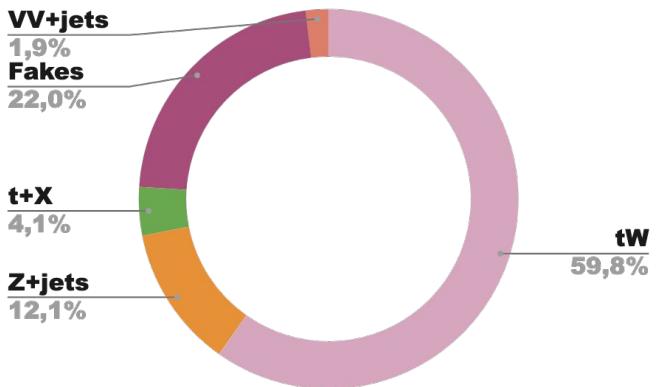
- Exploit the **di-leptonic final state**: very **pure $t\bar{t}$ selection**, clean measurement of **high-fidelity spin analysers**, but requires **difficult top reconstruction**
- Reconstruct the tops and **use spin-sensitive observables**
 - c_{hel} : angle between the leptons' directions of flight in their parent top quark's rest frame
→ *maximally sensitive to 1S_0* [this is same distribution we used for quantum entanglement, "D"]
 - c_{han} : same as c_{hel} , but with sign flip along the top direction → *maximally sensitive to 3P_0*

- Suppress reducible backgrounds, and use either **state-of-the-art MC modelling** or **data-driven techniques** for the remaining contributions
 - in ee/ $\mu\mu$ selections, can reject low- m_{\parallel} events and cut away the Z peak
 - Drell-Yan and fake lepton backgrounds can be obtained from data
 - **interference of tW and t\bar{t}** at **NLO QCD** treated with **Diagram Removal (DR)** or **Diagram Subtraction (DS)** approaches, or with **dedicated 2→6 simulation (bb4I)**
- Perform a **profile-likelihood fit at detector-level**
 - using the **3 sensitive observables $m_{t\bar{t}}$, c_{hel} , and c_{han}**

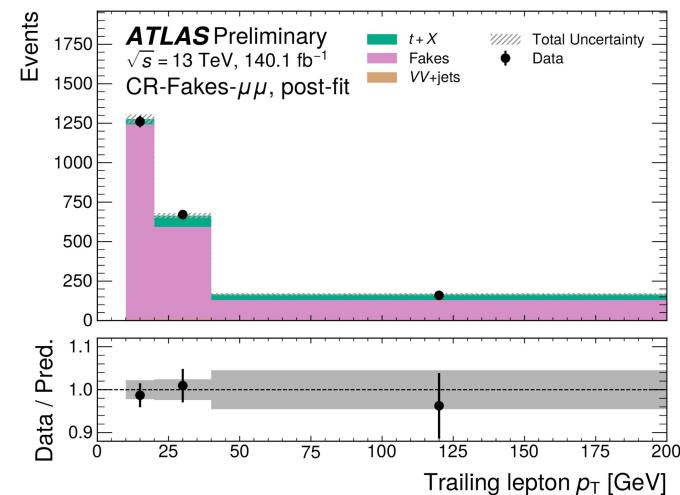
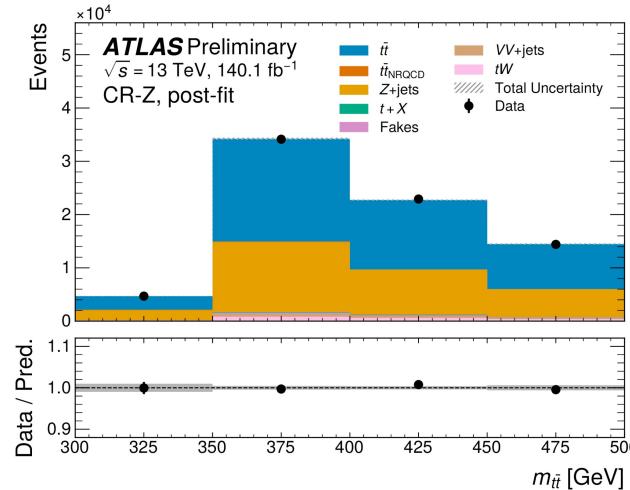


SRs	CR-Z	CR-Fakes
$= 2\ell$ with $p_T(\ell) \geq 10$ GeV		
	≥ 1 trigger-matched lepton with $p_T \geq 25/27/28$ GeV	
	≥ 2 jets with $p_T \geq 25$ GeV	
	≥ 1 b -tagged jet (70% efficiency WP)	
	$m_{\ell\ell} \geq 15$ GeV	
	$m_{t\bar{t}} \leq 500$ GeV	
<hr/>		
$E_T^{\text{miss}} \geq 60$ GeV for OSSF events		—
<hr/>		
$\ell^{\pm}\ell'^{\mp}$	$e^{\pm}e^{\mp}/\mu^{\pm}\mu^{\mp}$	$\ell^{\pm}\ell'^{\pm}$
$ m_{\ell\ell} - m_Z \geq 10$ GeV	$ m_{\ell\ell} - m_Z \leq 10$ GeV	$ m_{\ell\ell} - m_Z \geq 10$ GeV

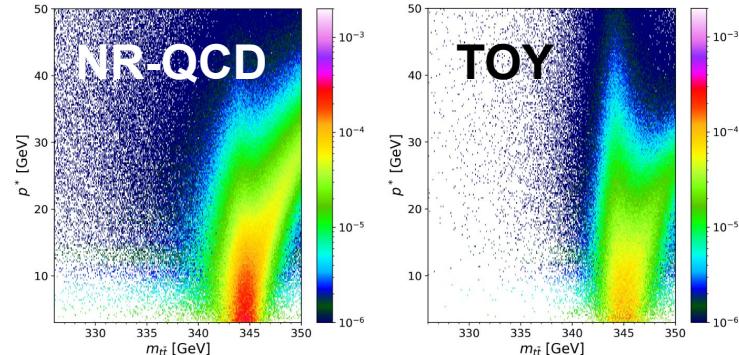
Doubly-, singly-, and non-resonant $bb\ell\ell\nu\nu$ final states



Signal regions

- Split the event selection according to the reconstructed values of c_{hel} and c_{han}
 - 9 SRs with different S/B ratios
 - idea from the original [CMS BSM A/H \$\rightarrow\$ t \$\bar{t}\$ search](#): enhance sensitivity to A and H bosons in different bins



Background estimation

- Expect $\sim 700k$ $t\bar{t}$ events and $\sim 40k$ additional background events
 - for only about $\sim 7k$ signal events!
- tW is mostly irreducible, taken from MC with detailed set of systematic uncertainties
- $t+X$ and diboson are negligible

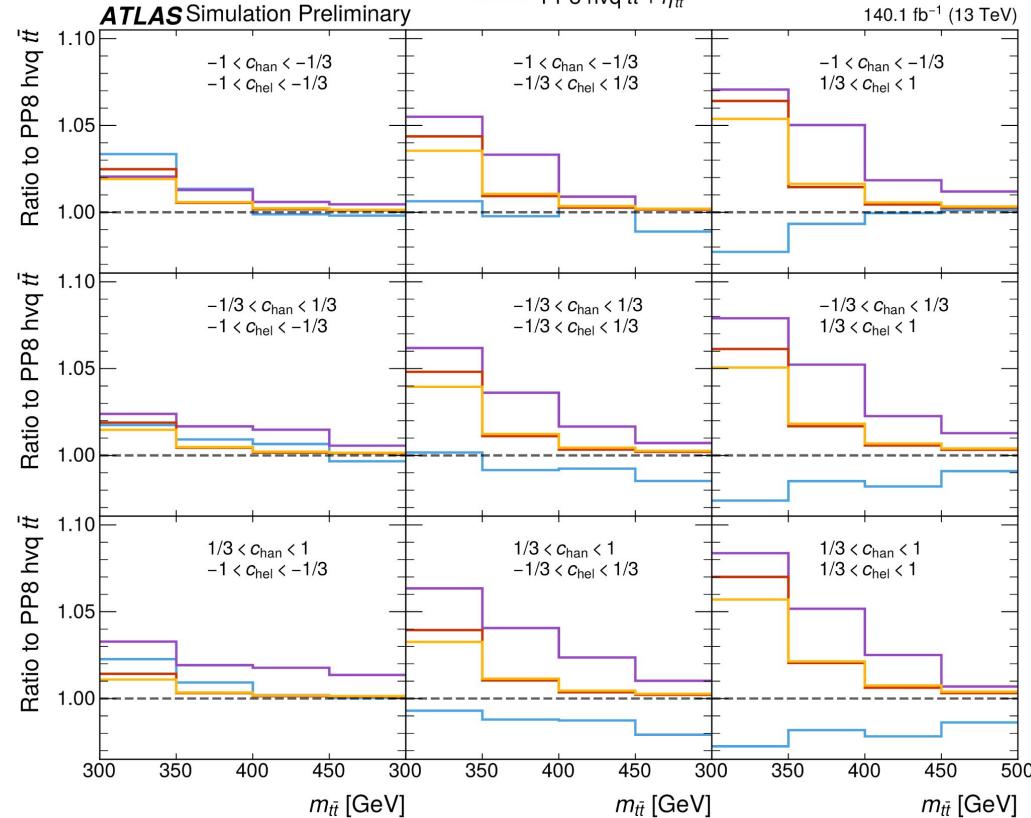

- **CMS:** model contribution of fake leptons directly from MC, use data to normalise $Z+jets$ events
- **ATLAS:** normalise both fake and $Z+HF$ to data, but closer to the SR kinematic space

- Define a **CR-Z** equivalent to the SR, but **inverting the Z-mass cut**
 - extract the normalisation of Z+b-jets (1 NF), the leading component in the SR
 - still a large contribution of pQCD $t\bar{t}$ in the CR-Z, but no toponium due to high m_{\parallel} requirement!
- Define **CR-Fakes-ee/ $\mu\mu$ /e μ** equivalent to the SR, but **with same-sign leptons**
 - extract the normalisation of electron and muon fakes from HF decays, and electron fakes from photon conversions (3 NFs)
 - sub-leading lepton p_T provides good enough separation power between types of fakes

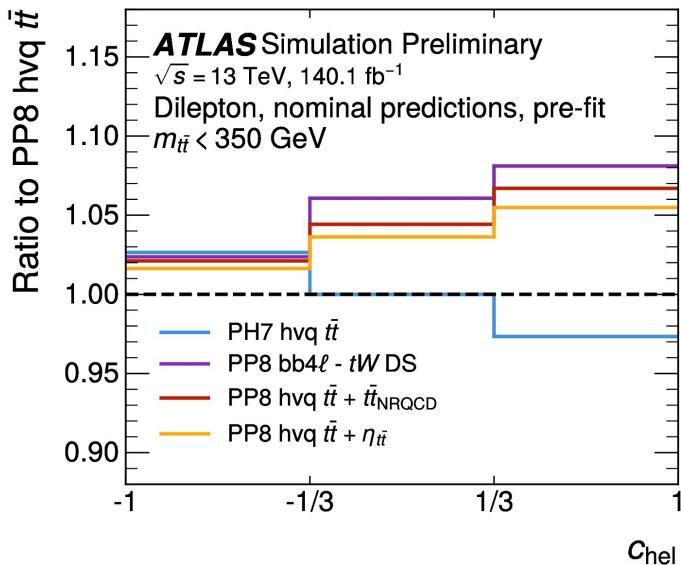
- Slightly different techniques are used, but both make similar assumptions to constrain the neutrino kinematics [on-shell top quarks and W bosons, and $p_T(vv)=p_T(\text{miss})$]
- CMS:
 - identify the b-quark and anti-b-quark from b-jets in the event and a maximum-likelihood fit to simulated templates of m_{lb} [use a light-jet for events with only one b-tagged jet]
 - solve a set of analytical equations under the above mass and MET assumptions
 - take the solution that yields lowest m_{tt} value (unbiased)
 - repeat the solving process over 100 random smearings of the detector-level momenta
 - final solution is a weighted average of all valid solutions within this set
 - resolution of 15% at low m_{tt} , increasing up to 25% at high m_{tt}
- ATLAS:
 - pick the two highest- p_T b-tagged jets [use a light-jet for events with only one b-tagged jet]
 - for each pairing of b-jet and lepton, solve a similar set of analytical equations
 - repeat the solving process over 100 random smearings of the top and W mass constraints
 - take the solution that yields lowest m_{tt} value (unbiased)
 - resolution of 22% at low m_{tt} , decreasing to about 18% at 500 GeV

- **ATLAS setup** according to B. Fuks et al. in [Eur. Phys. J. C 85 \(2025\) 157](#)
 - **directly inspired by NR-QCD:** Green's function reweighting + PS matching
 - apply 2D mass/momentum cut to retain validity of NR-QCD calculations
 - claims to accurately represent the LO S-wave colour-singlet contributions
 - MC cross section: 5.60 pb → scaled to theory estimate of 6.43 pb, which includes also P-waves and colour-octet contributions
- **CMS setup** according to F. Maltoni et al. in [JHEP 03 \(2024\) 099](#)
 - generate $gg \rightarrow \eta \rightarrow WbWb$ in MG at LO, use $M(\eta)=343$ GeV, $\Gamma(\eta)=2.8$ GeV + tune the couplings to reproduce 1-dimensional NR-QCD results in m_{tf}
 - **no Green's function reweighting, no mass cuts** → differences in top kinematics
 - this model is also tested by ATLAS

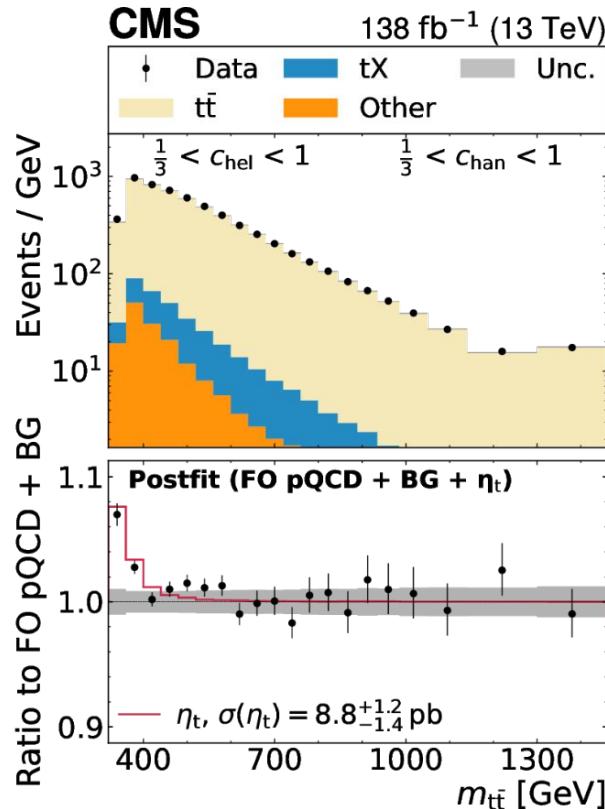
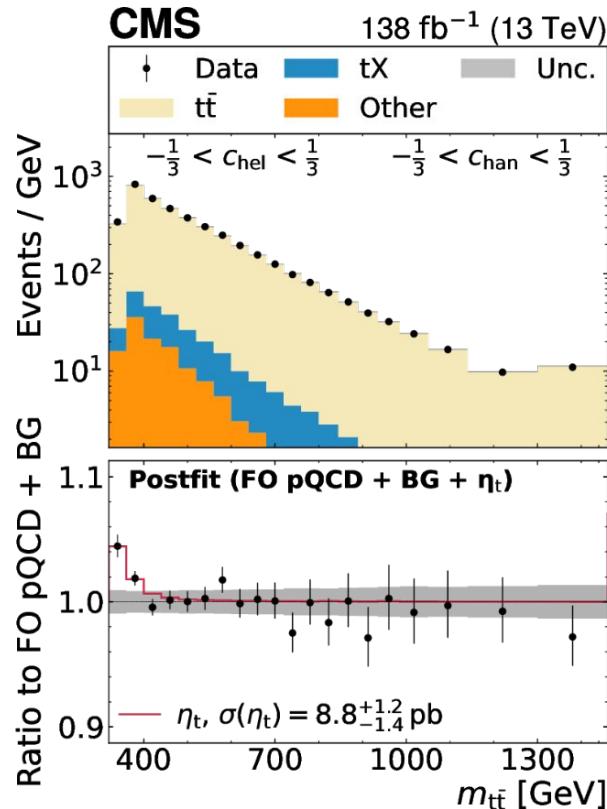
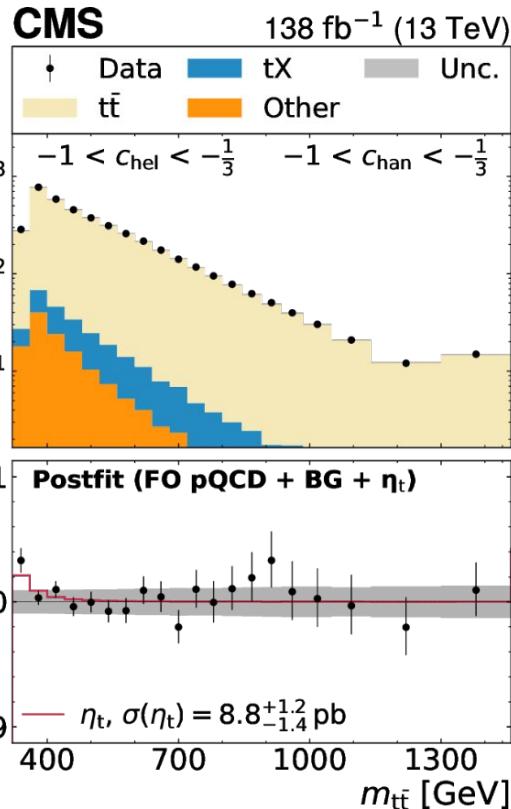
- **Powheg+Pythia8 hvq $t\bar{t}$** (NLO production, LO decay): **nominal setup**
 - well-understood by both ATLAS and CMS, entire set of systematics built around it, standard $t\bar{t}$ sample for Run 2 analyses
 - needs dedicated NNLO QCD and NLO EW reweighting
- **Powheg+Pythia8 bb4l** (NLO $2\rightarrow 6$ production): **alternative setup**
 - decay is NLO-accurate and off-shell effects are accounted for properly
 - **open questions:** dedicated tuning? different Powheg settings from hvq? **how to reweight to NNLO?** how to normalise inclusively? [[DPA NNLO calculation](#) only very recently became available!]
- **MadGraph5_aMC@NLO FxFx** (NLO+1,2j production, LO decay): **CMS only**
 - better description of events with higher jet multiplicities
- **Kinematic reweighting to higher order predictions**
 - NNLO QCD with MATRIX, NLO EW with HATHOR
 - 2D reweighting in $(\cos\theta^*, m_{t\bar{t}})$ with associated uncertainties
 - extensive validation → can reproduce fixed-order predictions, as well as MiNNLOps


- Perform a **binned detector-level profile-likelihood fit** in the 9 SRs
 - ATLAS also includes the CR-Z and 3 CR-Fakes directly in the likelihood, CMS propagates the normalisation factors for Z+jets from an auxiliary measurement
 - **20 bins of m_{tf} per SR for CMS**, only **4 bins per SR for ATLAS**
- **Different assumptions can be tested**
 - background-only fit
 - **ATLAS**: check the two different toponium signal models, check also bb4l instead of $t\bar{t}+tW$
 - **CMS**: check pseudo-scalar only vs pseudo-scalar + scalar, check also alternative generators
- **Strong constraints of some $t\bar{t}$ modelling uncertainties are observed** – and indeed expected from previous measurements
 - due to different descriptions of both the m_{tf} distribution and spin-sensitive observables in different MC generators [mostly Herwig and bb4l]
 - ATLAS applies a “**partial decorrelation by region**” approach to these problematic uncertainties
 - split the nuisance parameter into 1 fully correlated part (retaining 50% of the effect) and N uncorrelated parts (another 50%) in each region [here $N=9+4=13$]
 - many other approaches were also tested, no effect on the central values, but constraints can be relaxed and goodness-of-fit (GoF) improved

Key differences in MC predictions

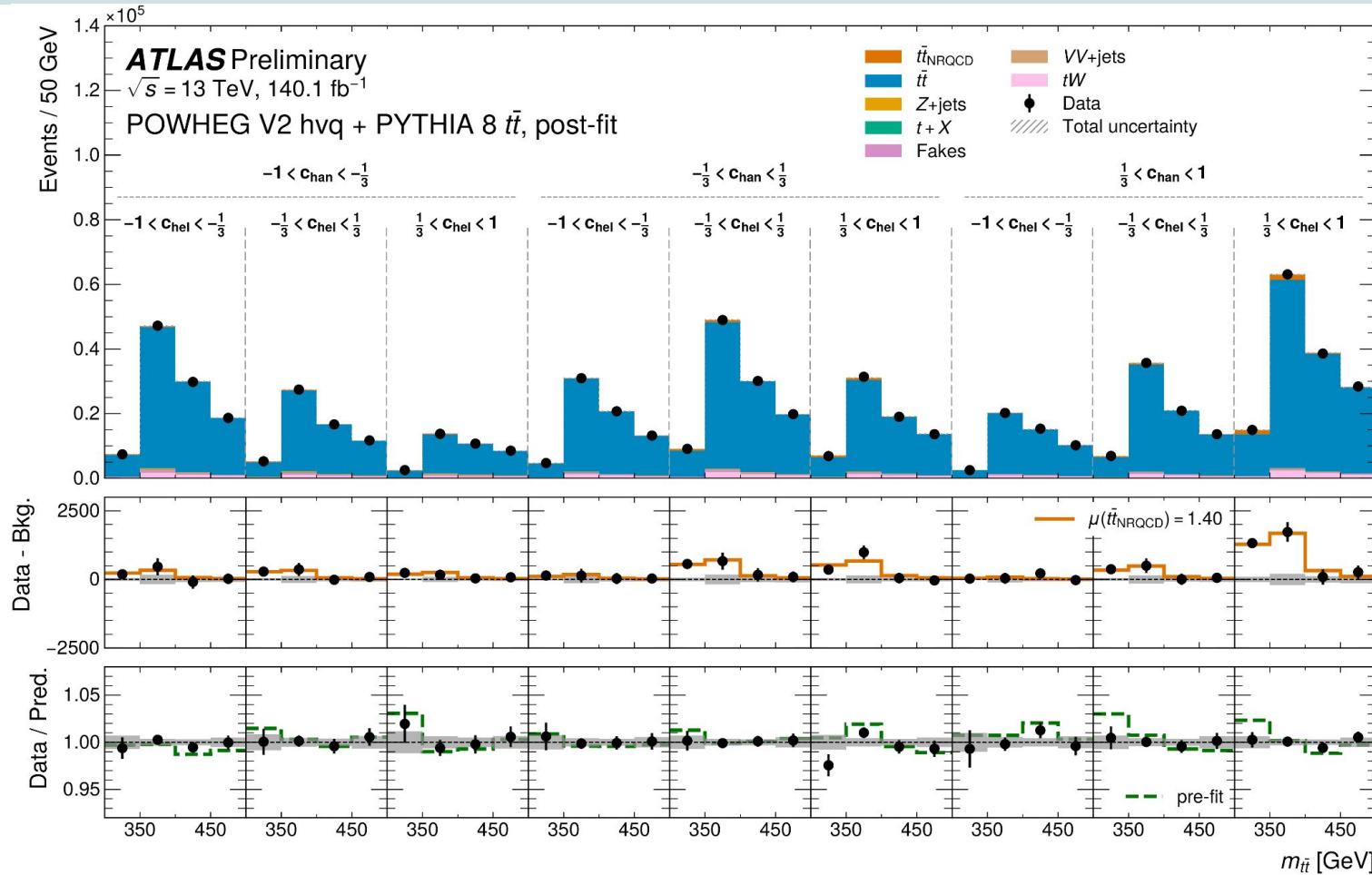

Dilepton, nominal predictions, pre-fit
 $m_{t\bar{t}} \in [300, 500] \text{ GeV}$

ATLAS Simulation Preliminary




- PH7 hvq $t\bar{t}$
- PP8 bb4 ℓ - tW DS
- PP8 hvq $t\bar{t}$ + $t\bar{t}_{\text{NRQCD}}$
- PP8 hvq $t\bar{t}$ + $\eta_{t\bar{t}}$

- Slight differences in **toponium** predictions for the first bin of $m_{t\bar{t}}$
- **Herwig** similarly observed to have lower acceptance and opposite slope in c_{hel}
- **bb4l** behaves even more “like toponium”
 \rightarrow due to the differences in higher-order reweighting

Main results of the ATLAS & CMS analyses



Clear excess near threshold, behaving like pseudo-scalar toponium

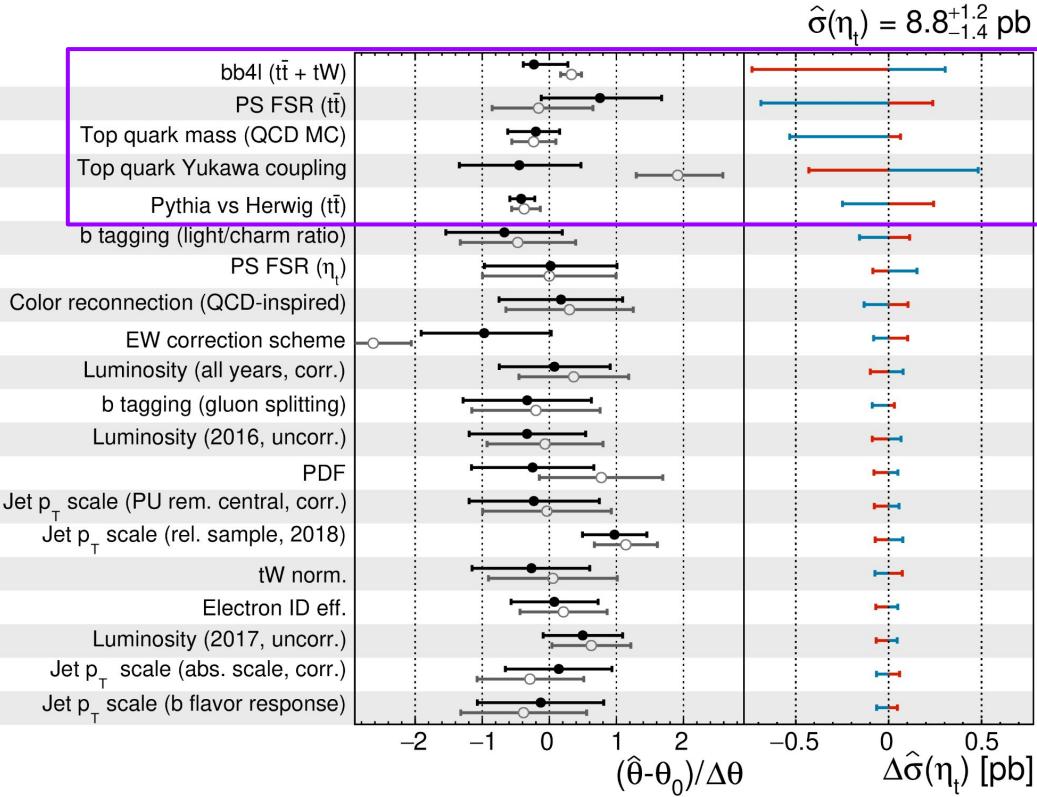
Main results of the ATLAS & CMS analyses

ATLAS-CONF-2025-008

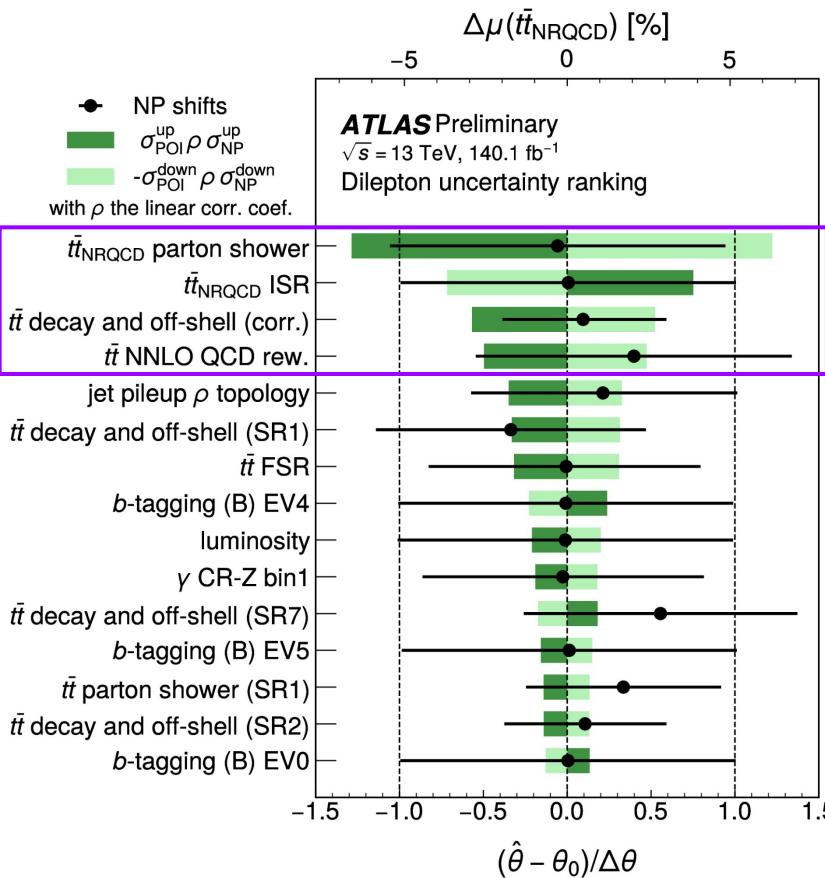
14

- The predicted NRQCD toponium cross section is 6.4 pb
- **ATLAS:** 7.7σ obs. (5.7σ exp.), with a GoF of 0.93 [7×10^{-5} for background-only hypothesis]
- **CMS:** $>5\sigma$ obs.
- **Measured cross sections are compatible with each other and with the NRQCD prediction**, although roughly $(40 \pm 20)\%$ larger
 - *Do recall that two different signal models are used!*
- Large impact of $t\bar{t}$ modelling systematics on both results

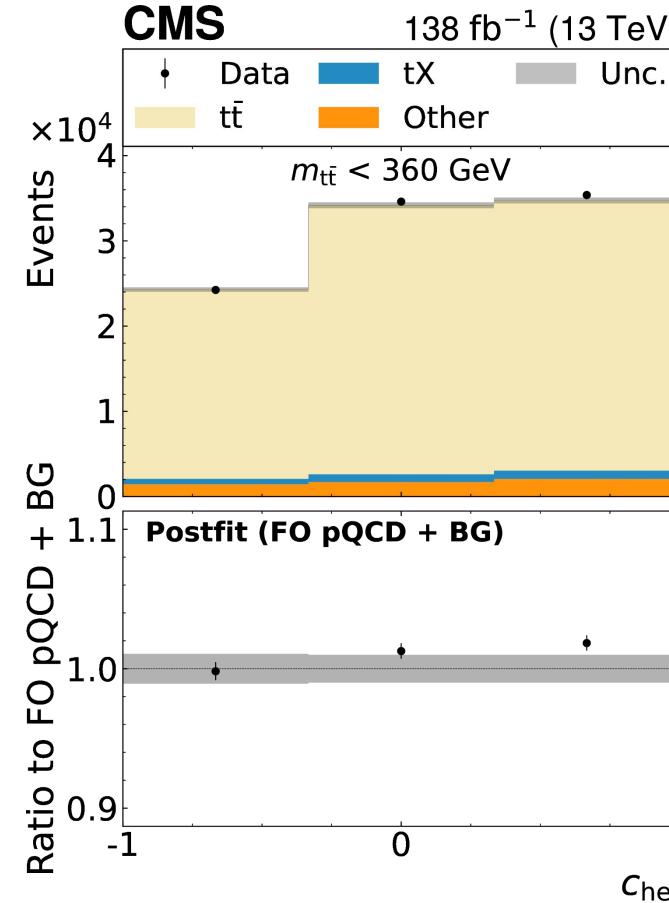
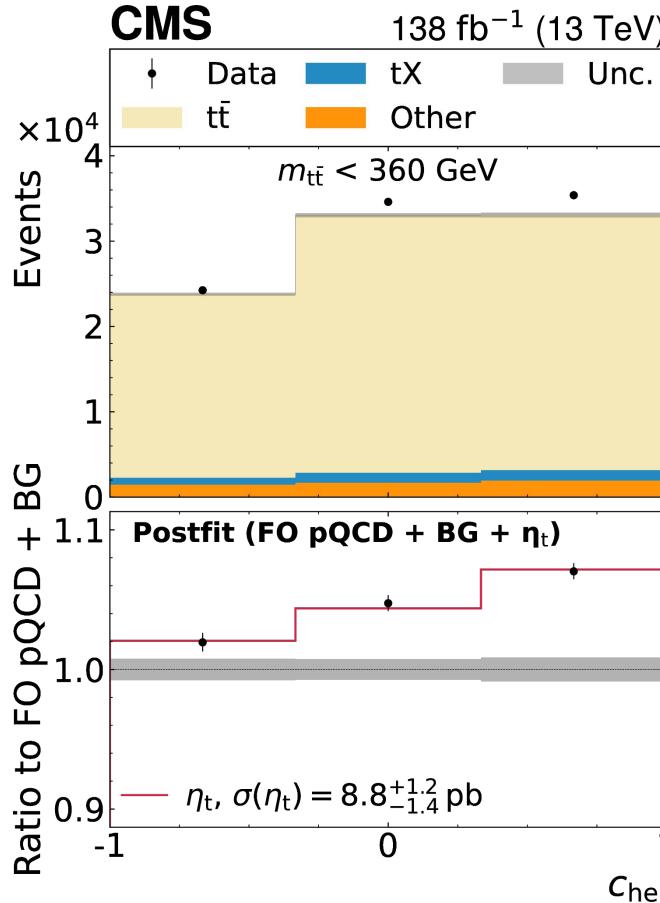
$$\sigma(t\bar{t}_{\text{NR-QCD}}) = 9.0 \pm 1.3 \text{ pb} = 9.0 \pm 1.2 \text{ (stat.)} \pm 0.6 \text{ (syst.)}$$



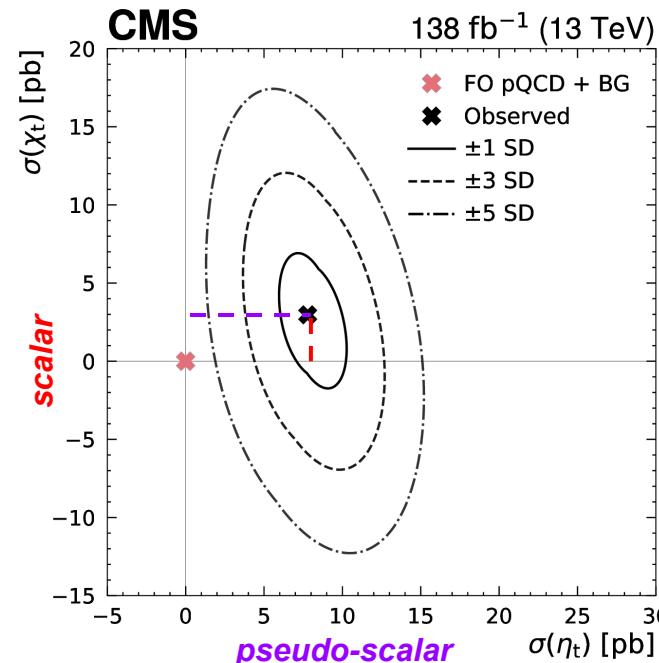
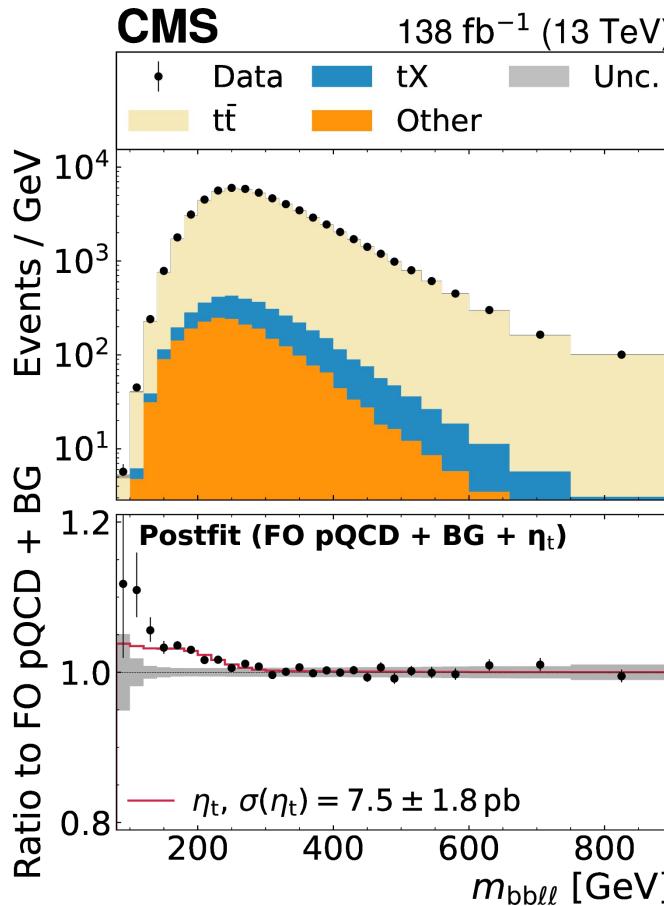
$$\sigma(\eta_t) = 8.8 \pm 0.5 \text{ (stat)} {}^{+1.1}_{-1.3} \text{ (syst)} \text{ pb} = 8.8 {}^{+1.2}_{-1.4} \text{ pb.}$$


Impact of systematic uncertainties

CMS



—●— Fit constraint (FO pQCD + BG + η_t)
—○— Fit constraint (FO pQCD + BG only)
—+— +1 σ impact (FO pQCD + BG + η_t)
—— -1 σ impact (FO pQCD + BG + η_t)

● NP shifts
 $\sigma_{\text{POI}}^{\text{up}} \rho \sigma_{\text{NP}}^{\text{up}}$
 $-\sigma_{\text{POI}}^{\text{down}} \rho \sigma_{\text{NP}}^{\text{down}}$
with ρ the linear corr. coeff.



Further checks: background-only fits

- **Residual slope** clearly visible in the fit without any toponium template
- Large unphysical pulls of many uncertainties
- Significantly degraded GoF for ATLAS

⇒ **toponium-like signal is needed to explain the data!**

Further checks: alternative templates

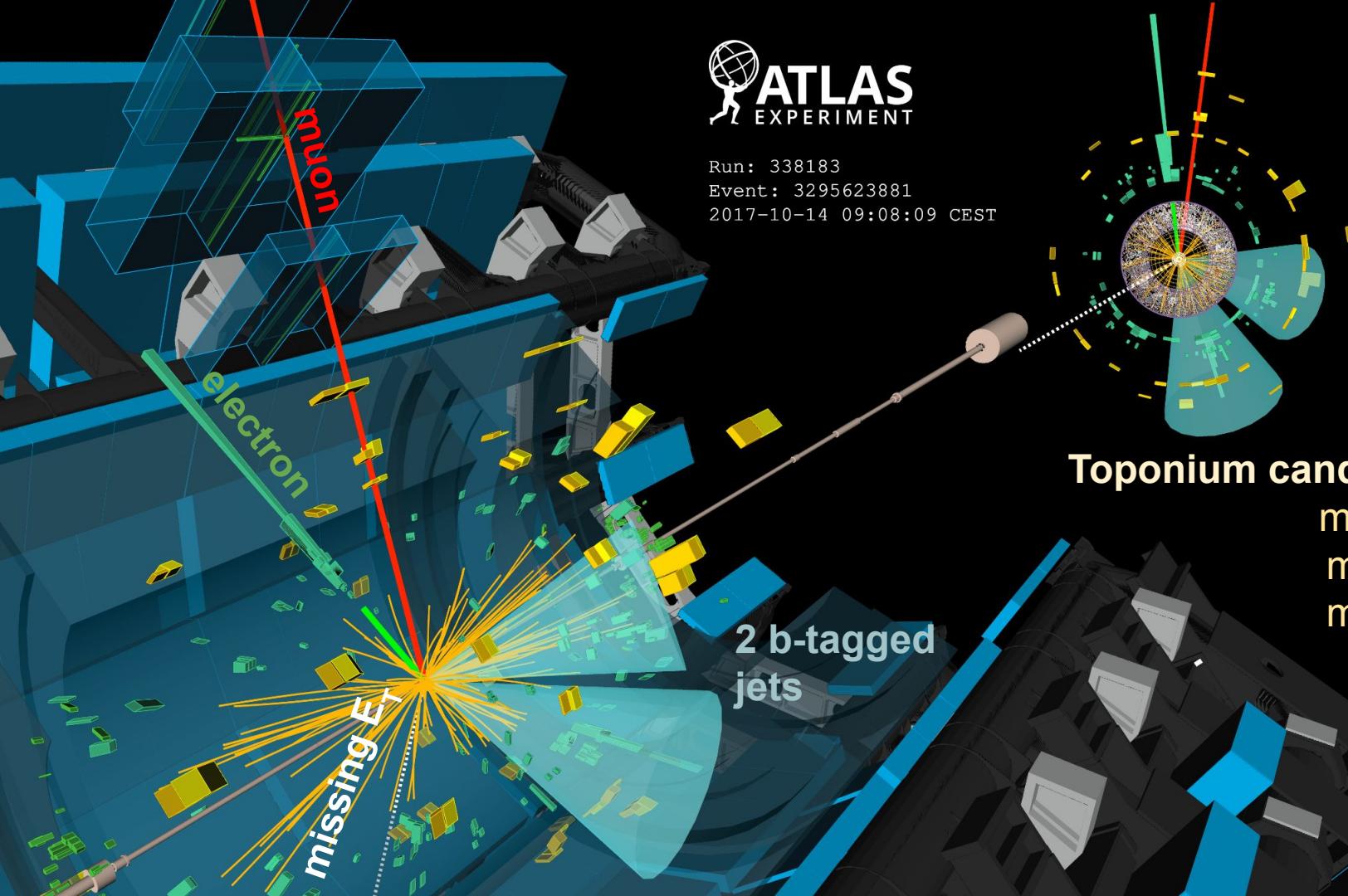
- Fit to m_{bbll} instead of m_{tf} is less precise but still returns compatible cross section
- Fit to both scalar and pseudo-scalar components prefers the pseudo-scalar hypothesis to $>5\sigma$

- Various combinations of toponium and pQCD $t\bar{t}$ models have been checked by **ATLAS** and **CMS**
- The extracted toponium cross sections (in pb) are reported below

Models	Powheg hvq + Pythia 8	Powheg hvq + Herwig 7	aMC@NLO FxFx + Pythia 8	Powheg bb4l + Pythia 8
NRQCD [Fuks et al.]	9.0 \pm 1.3	—	—	4.2 \pm 1.0
η_t [Maltoni et al.]	8.8 \pm 1.3 13.4 \pm 1.9	8.6 \pm 1.1	9.8 \pm 1.3	6.6 \pm 1.4

- All models point to an excess compatible with toponium formation, with two caveats
 - ATLAS sees slightly different results between the two toponium models, likely due to the differences in top kinematics affecting the reconstruction → $\sim 2\sigma$ tension with CMS if both use the same model
 - the results obtained with bb4l are weaker: still need to study and validate this model [tuning?], but kinematic reweighting to higher-order already identified as a current limitation → *follow-up ATLAS paper to adopt new recommendations from theorists*

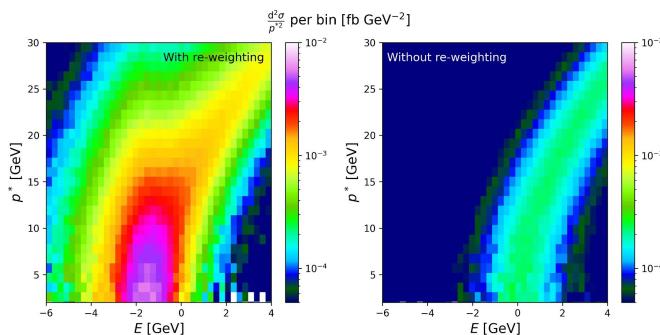
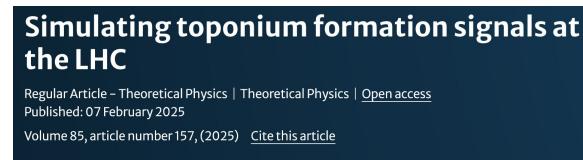
- **Extremely challenging measurement:** need precise models of the threshold region and toponium signal, understanding of NLO EW and NNLO QCD corrections to production, NLO and off-shell effects in decay, etc.
- Both ATLAS and CMS **observe a significant excess** seemingly compatible with **toponium formation**
 - many checks have been performed: different selection cuts, observables, signal and background models, splitting datasets by year and by lepton flavour, etc. → robust!
 - future improvements to come from better top reconstruction [$m_{t\bar{t}}$ resolution] and modelling, enabling also a possible observation in the lepton+jets channel
 - alternative fit results with **bb4l** raise some important questions that warrant further studies


$$\sigma(t\bar{t}_{\text{NR-QCD}}) = 9.0 \pm 1.3 \text{ pb} = 9.0 \pm 1.2 \text{ (stat.)} \pm 0.6 \text{ (syst.)}$$

$$\sigma(\eta_t) = 8.8 \pm 0.5 \text{ (stat)} {}^{+1.1}_{-1.3} \text{ (syst)} \text{ pb} = 8.8 {}^{+1.2}_{-1.4} \text{ pb.}$$

Run: 338183
Event: 3295623881
2017-10-14 09:08:09 CEST

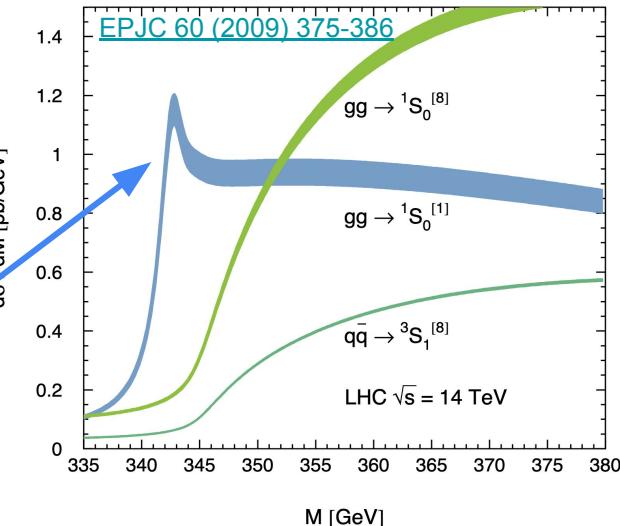
Toponium candidate event



$m_{t\bar{t}} = 342 \text{ GeV}$
 $m_t = 167 \text{ GeV}$
 $m_{\bar{t}} = 172 \text{ GeV}$
 $p^* = 25 \text{ GeV}$
 $c_{\text{hel}} = 0.97$
 $c_{\text{han}} = 0.94$

BACKUP

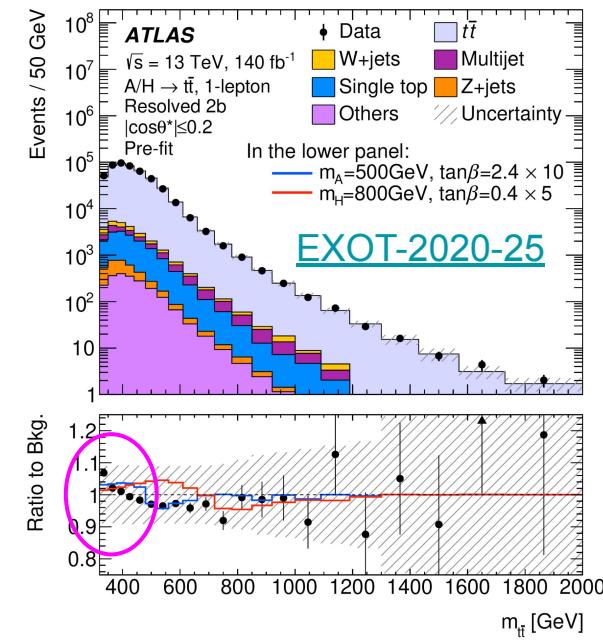
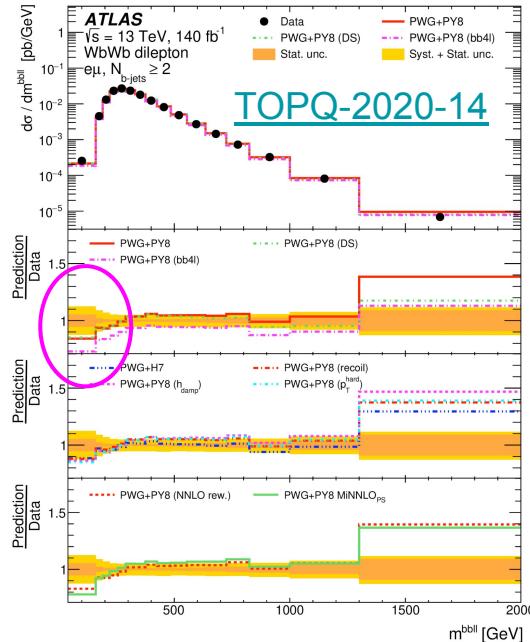
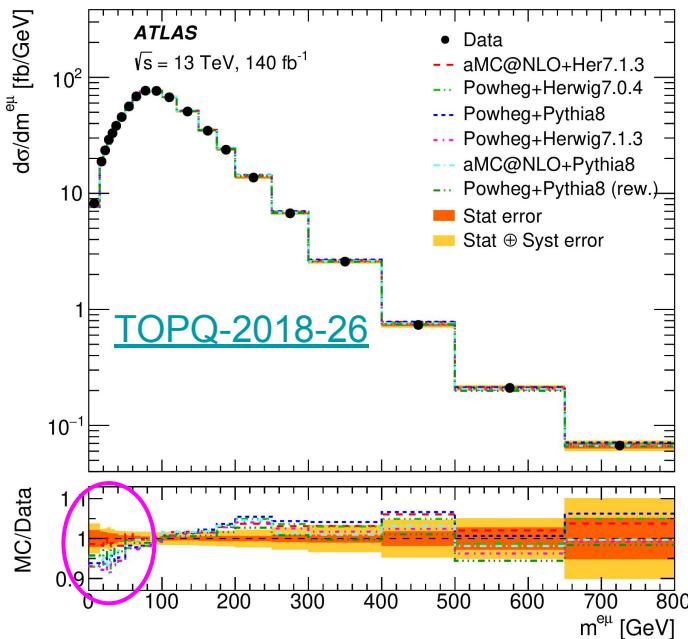
What is toponium?

23


- Standard Model predicts a **quasi-bound state below the $t\bar{t}$ threshold**
 - “*toponia*” were not expected to be visible at the LHC!
 - Coulomb potential with gluon and soft-gluon emissions between the tops $\sim (a_s/\beta)^n$
 - can be computed in potential non-relativistic QCD (**NR-QCD**) at next-to-leading power in β
- It behaves dominantly like a **pseudoscalar** [important for spin correlations!] but crucially is **NOT an s-channel resonance** [no destructive interference terms!]

Benjamin Fuks Kaoru Hagiwara, Kai Ma & Ya-Juan Zheng

$$|\mathcal{M}|^2 \rightarrow |\mathcal{M}|^2 \left| \frac{\tilde{G}(E; p^*)}{\tilde{G}_0(E; p^*)} \right|^2$$




modelling full S-wave contributions

Previous hints: differential cross sections & BSM searches

24

- **Slight excess** in data near production threshold
 - the inclusive toponium cross section is roughly 0.6% that of inclusive $t\bar{t}$ at 13 TeV
 - we don't have the resolution to see it directly in $m_{t\bar{t}}$
 - **need to use spin-sensitive observables** to leverage the pseudoscalar component

Normalisation of bb4l: HO $t\bar{t}$ + HO tW vs DPA NNLO

From the recent paper by Jonas Lindert et al.: [arXiv:2507.11410](https://arxiv.org/abs/2507.11410)

The **DPA NNLO cross section** for bb4l dilepton is:

$$10278 \pm 55 \text{ (MC/extrapolation)} \pm 152 \text{ (NWA)} \text{ fb} = \mathbf{10278 \pm 162 \text{ fb}}$$

The branching ratio they use is $\text{BR}(W \rightarrow l\nu) = 10.8598\%$

Therefore the inclusive cross section is: **$871.5 \pm 13.7 \text{ pb}$**

The **HO $t\bar{t}$ cross section** is: $833.9 \pm 30 \text{ (scales)} \pm 21 \text{ (PDF)} \pm 23 \text{ (m}_{\text{top}}\text{)} \text{ pb}$

The **HO tW cross section** is: $79.3 \pm 1.9 \text{ (scales)} \pm 2.2 \text{ (PDF)} \pm 1.2 \text{ (m}_{\text{top}}\text{)} \text{ pb}$

The total HO cross section is: $913.2 \pm 30 \text{ (scales)} \pm 21 \text{ (PDF)} \pm 23 \text{ (m}_{\text{top}}\text{)} \text{ pb} = \mathbf{913.2 \pm 43.4 \text{ pb}}$

Therefore the **ratio DPA/sum(HO)** is: **0.954 ± 0.048** [assuming no correlation]

or: **0.954 ± 0.030** [assuming full correlation]

Quote from Jonas Lindert: “proper comparison would require careful alignment of all input parameters”

	SR1	SR2	SR3	SR4	SR5	SR6	SR7	SR8	SR9		CR-Z	CR-Fakes- $e\mu$	CR-Fakes- ee	CR-Fakes- $\mu\mu$
$t\bar{t}$	97000 \pm 4000	55600 \pm 3100	31500 \pm 2100	65100 \pm 3200	100000 \pm 5000	65000 \pm 4000	44500 \pm 2500	72000 \pm 4000	135000 \pm 7000	$t\bar{t}$	43500 \pm 2000	460 \pm 230	220 \pm 110	—
tW	3650 \pm 240	2430 \pm 180	1620 \pm 140	2590 \pm 180	4060 \pm 280	2930 \pm 240	1870 \pm 160	2840 \pm 190	5400 \pm 400	tW	1830 \pm 130	—	—	—
$t\bar{t} + tW$ (bb41)	102000 \pm 5000	59600 \pm 3100	34000 \pm 2100	68900 \pm 3300	108000 \pm 5000	70000 \pm 4000	47100 \pm 2600	77000 \pm 4000	147000 \pm 6000	$t\bar{t} + tW$ (bb41)	46000 \pm 2000	480 \pm 240	240 \pm 120	< 0.1
$t\bar{t}_{\text{NRQCD}}$	476 \pm 26	489 \pm 27	374 \pm 20	255 \pm 13	1030 \pm 50	990 \pm 40	121 \pm 6	685 \pm 31	2430 \pm 90	$t\bar{t}_{\text{NRQCD}}$	204 \pm 12	—	—	—
$\eta_{t\bar{t}}$	476 \pm 21	503 \pm 24	392 \pm 20	264 \pm 11	1060 \pm 40	990 \pm 40	128 \pm 6	704 \pm 28	2380 \pm 90	$\eta_{t\bar{t}}$	237 \pm 11	< 0.1	< 0.1	< 0.1
Z+jets	990 \pm 140	880 \pm 130	870 \pm 110	490 \pm 80	680 \pm 90	520 \pm 90	230 \pm 50	350 \pm 50	540 \pm 90	Z+jets	33000 \pm 6000	—	—	—
$t + X$	320 \pm 100	180 \pm 50	105 \pm 32	200 \pm 60	280 \pm 80	170 \pm 50	140 \pm 40	190 \pm 60	310 \pm 90	$t + X$	330 \pm 100	370 \pm 110	109 \pm 33	160 \pm 50
Fakes	1480 \pm 50	1200 \pm 40	1020 \pm 40	1090 \pm 40	1430 \pm 60	996 \pm 34	803 \pm 27	950 \pm 60	1127 \pm 33	Fakes	484 \pm 23	4890 \pm 130	1640 \pm 70	1650 \pm 60
$VV + \text{jets}$	120 \pm 40	104 \pm 32	92 \pm 29	79 \pm 25	120 \pm 40	104 \pm 32	54 \pm 17	80 \pm 25	140 \pm 40	$VV + \text{jets}$	1100 \pm 350	110 \pm 60	30 \pm 15	30 \pm 15
Total	104000 \pm 5000	60900 \pm 3300	35600 \pm 2200	69800 \pm 3400	108000 \pm 5000	71000 \pm 4000	47800 \pm 2600	77000 \pm 4000	145000 \pm 7000	Total	80000 \pm 7000	5830 \pm 340	2000 \pm 160	1840 \pm 80
Total (bb41)	106000 \pm 5000	62500 \pm 3200	36500 \pm 2200	71100 \pm 3400	111000 \pm 5000	73000 \pm 4000	48400 \pm 2600	79000 \pm 4000	152000 \pm 6000	Total (bb41)	81000 \pm 7000	5850 \pm 350	2020 \pm 170	1840 \pm 80
Data	103095	61071	35514	69602	107995	70917	48258	77123	145030	Data	76127	6120	2013	2091

Largest background: single-top tW production (4%) \rightarrow detailed systematic model

Smaller backgrounds: Z+jets (0.8%) and fake leptons (1.5%) \rightarrow decent pre-fit description from MC templates, normalisation to data in CRs.

Category	Impact
$t\bar{t}$ NRQCD modelling	5.3%
$t\bar{t}$ modelling	3.5%
Jet energy scale (pileup)	1.3%
b -tagging	1.2%
Instrumental (other)	0.9%
Limited MC statistics	0.7%
Jet energy scale (flavour)	0.5%
Background normalisations	0.4%
tW modelling	0.4%
Jet energy scale (η inter-calibration)	0.4%
Jet energy scale (other)	0.3%
Jet energy resolution	0.3%
Leptons	0.2%
Total syst. uncertainties	6.8%
Total stat. uncertainties	13%

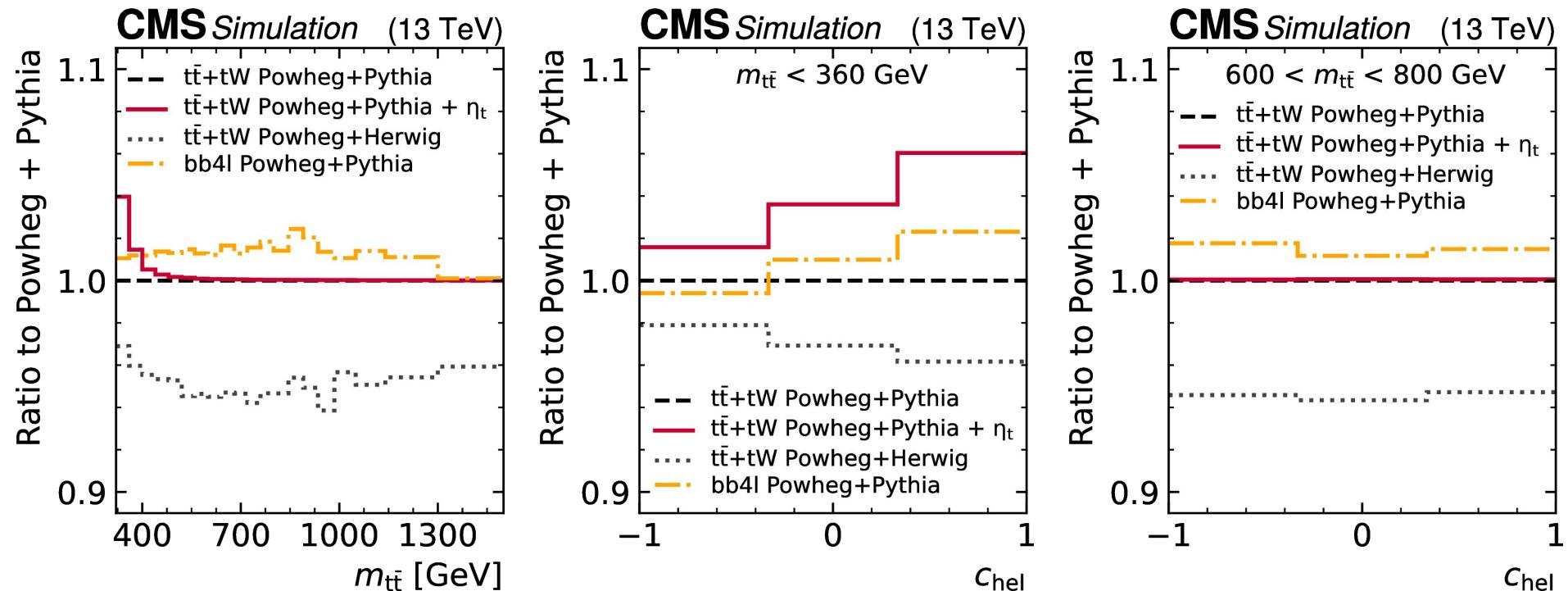
Parameter	Setting
POWHEG-BOX-RES version	bb4l-beta
PDF (ME)	NNPDF30_NLO
h_{damp}	258.75
Γ_t [GeV]	1.32733
Matching factor between 4FS ME and 5FS PDF	$Q_R = m_b$
ptsqmin	1.44
Inverse-width-correction	yes
Resonance history	$t\bar{t}, tW^-\bar{b}, tW^+b$
Pythia version	8.312
PS tune	A14
PDF (PS)	NNPDF2.3LO
POWHEG:veto	1
POWHEG:vetoCount	3
POWHEG:pThard	0
POWHEG:pTemt	0
POWHEG:emitted	0
POWHEG:pTdef	2
POWHEG:nFinal	-1
POWHEG:MPIveto	1
POWHEG:QEDveto	1
POWHEG:bb4l:FSREmission:veto	1
POWHEG:bb4l:vetoQED	0
POWHEG:bb4l:FSREmission:vetoDipoleFrame	0
POWHEG:bb4l:pTpythiaVeto	0
POWHEG:bb4l:ScaleResonance:veto	0
POWHEG:bb4l:pTminVeto	1.2
SpaceShower:pTmaxMatch	2
TimeShower:pTmaxMatch	2
TimeShower:recoilStrategyRF	3 (recoil-to-top)

Event selection

Selection requirement	ATLAS	CMS
Leptons	Exactly 2 $p_T \geq 25/27/28, 10$ GeV	Exactly 2 $p_T \geq 25, 20$ GeV
Jets	At least 2 $p_T \geq 25$ GeV	At least 2 $p_T \geq 30$ GeV
b-tagged jets	At least 1 (70% efficiency)	At least 1 (77% efficiency)
Range of reconstructed $m_{t\bar{t}}$	300 to 500 GeV <i>no overflow above!</i>	300 to ~ 1400 GeV <i>with overflow above</i>
Only for OSSF ee/$\mu\mu$		
Dilepton invariant mass	$m_{ } \geq 15$ GeV $ m_{ } - m_Z \geq 10$ GeV	$m_{ } \geq 20$ GeV $ m_{ } - m_Z \geq 15$ GeV
Missing ET	$\text{MET} \geq 60$ GeV	$\text{MET} \geq 40$ GeV

Systematic uncertainties

Type	ATLAS	CMS
Experimental	electrons, muons, jets, b-tagging, MET, pileup, luminosity	
Minor backgrounds	normalisation unc. only	normalisation unc. μ_R/μ_F and ISR/FSR for Drell-Yan
Fake background	normalised in data shape variations	shape variations only
tW background	aNNLO normalisation with 4% unc. parton shower [Herwig 7.2], matching [pThard, hdamp], interference scheme [DR/DS], top mass [± 0.5 GeV]	aNNLO normalisation with 15% unc. μ_R/μ_F and ISR/FSR
Signal toponium modelling	μ_R/μ_F , PDF + α_s PS [Herwig 7.2] and ISR/FSR obtained from particle-level reweighting	μ_F [μ_R irrelevant because of contact interaction] top mass [± 1 GeV], corr. with pQCD $t\bar{t}$ ISR/FSR PDF found to be negligible


Systematic uncertainties: $t\bar{t}$ modelling

Type	ATLAS	CMS
Scales & PDF	— PDF + α_S [PDF4LHC15]	μ_R/μ_F [NLO QCD] PDF + α_S [NNPDF3.1], with PCA
Higher-order reweighting	NNLO QCD: scales NLO EW: additive vs multiplicative schemes [top Yukawa variation tested, irrelevant]	— NLO EW: additive vs multiplicative schemes, and $\pm 11\%$ variation of top Yukawa
Top quark mass	± 0.5 GeV	± 1 GeV
Top quark decay and off-shell effects	compare hvq+tW DS and bb4l [bb4l is reweighted independently to HO]	compare hvq+tW DR and bb4l [bb4l is reweighted like hvq to HO]
Parton shower and hadronisation	Powheg+Herwig 7.2	Powheg+Herwig 7.2
ME/PS matching (Powheg)	$hdamp = 1.5m_t \rightarrow 2m_t$ $pThard = 0 \rightarrow 1$	$hdamp = 1.58m_t + 0.66m_t - 0.59m_t$ —

Systematic uncertainties: $t\bar{t}$ modelling

Type	ATLAS	CMS
Initial state radiation (Pythia)	Var3c variation of the A14 tune (α_s)	μ_R variation in the PS
Final state radiation (Pythia)	μ_R variation in the PS	μ_R variation in the PS
Recoil scheme (Pythia)	recoil-to-colour \rightarrow recoil-to-top	—
Colour reconnection (Pythia)	maximum of CR1 [QCD-based] and CR2 [gluon-move] compared to CR0 [MPI-based] [CR2-based unc. found negligible]	CR1 and CR 2 compared to CR0, and CR0 + EarlyResonanceDecay compared to CR0 [CR2-based unc. found negligible]
Underlying event (Pythia)	Var1 variation of the A14 tune	variations of the CP5 tune

Key differences in MC predictions

- **Toponium** localised near threshold, with strong positive slope in c_{hel}
- **Herwig** predicts fewer $t\bar{t}$ events overall, with negative slope in c_{hel} near threshold → *should be constrained but without affecting the extracted signal*
- **bb4I** predicts more events overall, and positive slope in c_{hel} near threshold → *should be constrained and decrease the extracted signal*