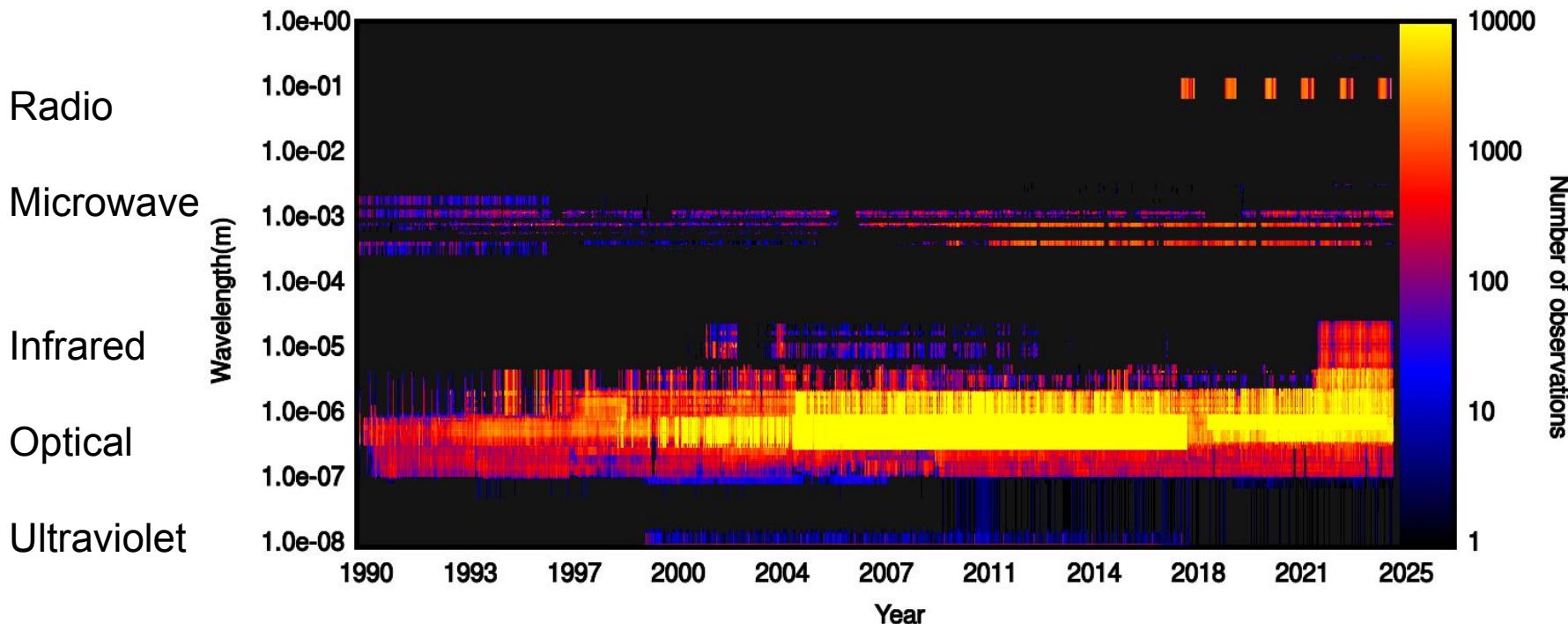


The Canadian Astronomy Data Center: an Independent Data Access Centre for the LSST


CADC: Canadian Astronomy Data Centre

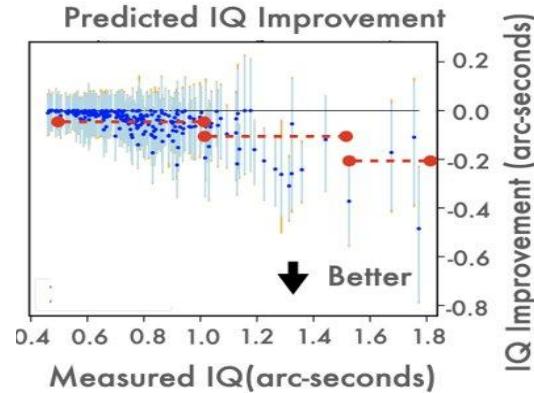
- Data distribution site for Canada's astronomical data
- We mirror some datasets (HST, JWST, Gemini, ...)
- We are the sole repository for other datasets (CFHT, JWST, OMM, NEOSSat, ...)
- 216 telescopes and instruments
- Current holdings:
 - 2.3 PB, 300 million files
 - Ceph ObjectStore back end
 - CADC layer on top: Storage Inventory
- Annual downloads:
 - 100 million files
 - 4.9 Petabytes
- Users are 15% Canadian, 85% international
- Upcoming datasets
 - LSST
 - Euclid
 - SKA

Canadian Astronomy Data Centre

An alternate view of the archive

A brief history of the CADC

- Started in 1986 to host a copy of HST data. The idea was scientists would travel to Victoria to process data.
- Expanded its mandate to include other observatories
- Starting providing access to catalogs, both standard and user-provided
- Started processing data for users, providing science ready data products
- Evolved to 3 main activities:
 - Archives
 - Data expertise
 - Providing compute facilities

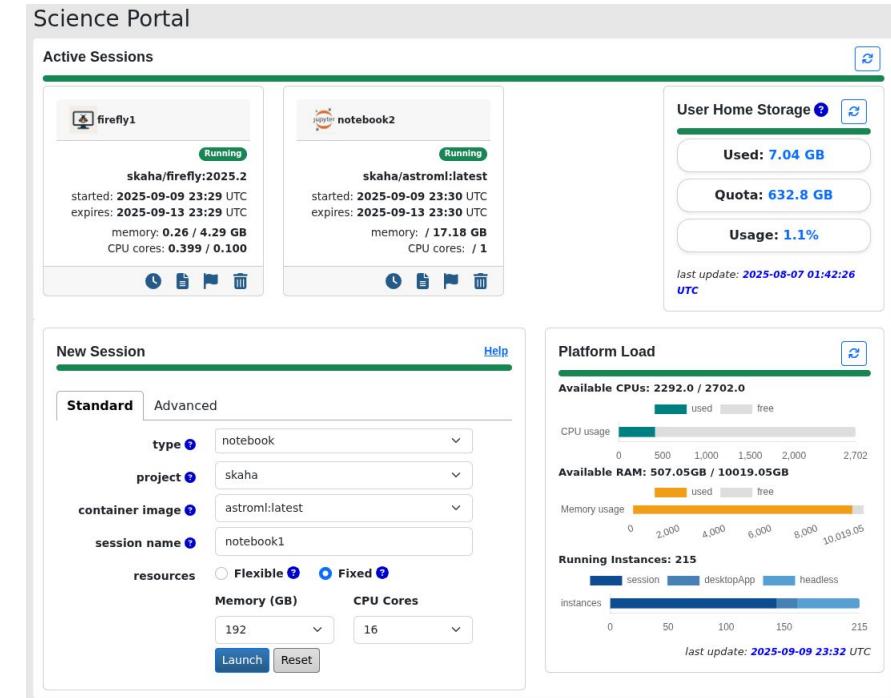

Canadian Astronomy Data Centre: Processing data and providing machine learning expertise

The CADC processes raw data into science-ready data products

- Makes the data significantly easier for scientists to use
- Increases data re-use
- Two modes
 - Off-the-shelf / prêt-à-porter processing of entire archives
 - Bespoke / tailored processing for particular projects
- Started with HST data in the early 1990s
- Expanded to CFHT in the early 2000s

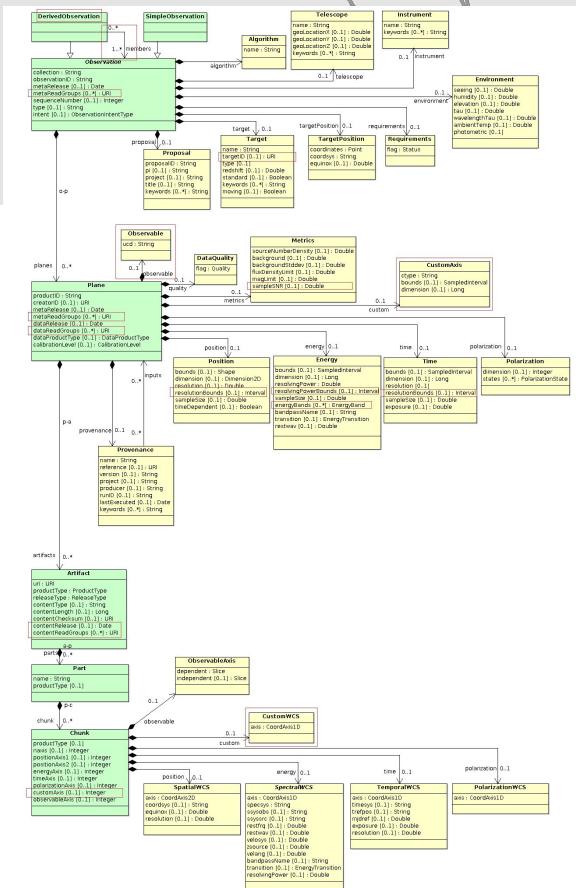
The CADC provides machine learning expertise to astronomers

- Detection of post-merger galaxies in (CFHT)
- CFHT image quality forecasting
- Extragalactic star-formation studies (SDSS)
- Detection of gravitational lenses (HST)
- Image assessment and recommendation (CFHT)
- Photometric redshifts (HSC)
- Adaptive optics predictive controls
- Extragalactic metallicity studies
- Moving object detection (CFHT, HSC)
- Spectral analysis of nearby galaxies (MaNGA IFU)
- Delirium problem in COVID-19 patients



CANFAR: Canadian Advanced Network For Astronomical Research

The CANFAR Science Platform:


- Kubernetes-based
- Notebooks
- Browser-based VNC desktops
- Data visualization
- Scalable resources
 - up to 192 GB RAM / 16 cores per instance
- Multiple software container options (key!)
 - ALMA / JWST / LSST / ...
 - user generated
 - ability to share containers
- Batch processing (now uses Kueue)
- Very successful: most Canadian astronomers are users

Astronomical metadata

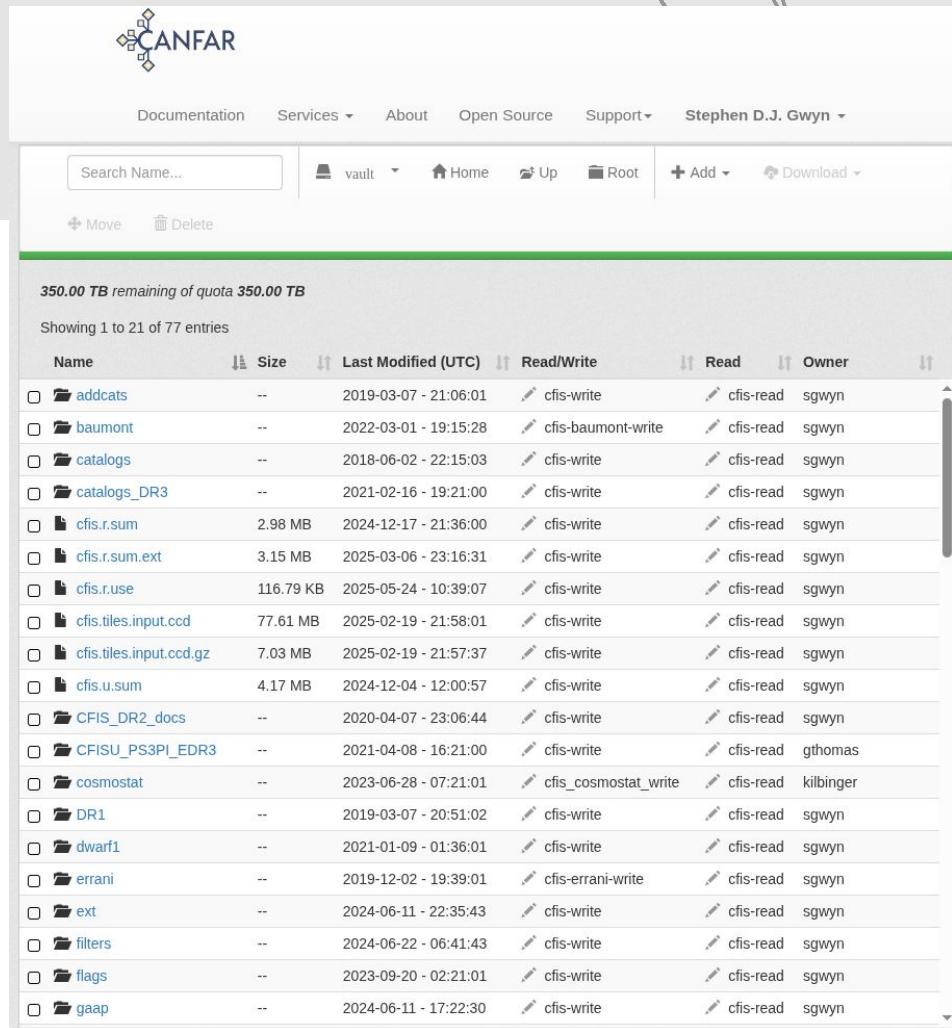
Metadata indexing

- 219 telescopes and instruments / 1 metadata system
 - CAOM2: Common Astronomical Observation Model
 - Very comprehensive
- Reduces effort needed to manage existing archives
- Low overhead to ingest new archives
- Not all data findable at via CADC search resides at the CADC
- Allows "one stop shopping" for astronomical data
- Initial development lasted ~1 year
 - multiple stakeholders
- Significant changes will be required as we pivot towards radio astronomy
- Each new telescope/instrument requires a period of data engineering (DE)
- Initial model: Astronomers (domain experts) drive DE
- Current model: Developers (model experts) drive DE

Unified Modeling Language
diagram of CAOM2

CANFAR: User storage

Cavern / arc:


- Suitable for processing
- Each user gets a small home directory
- Project directory on request, quota can be expanded
- Persistent, stable, but not suitable for archival
- Looks like a POSIX file system
- Backed by CephFS

Vault / vos:

- Suitable for data publication and long term curation
- Data mirrored at two sites
- Backed by Ceph Object Store
- Available by request
- Self-serve DOIs also available

Both:

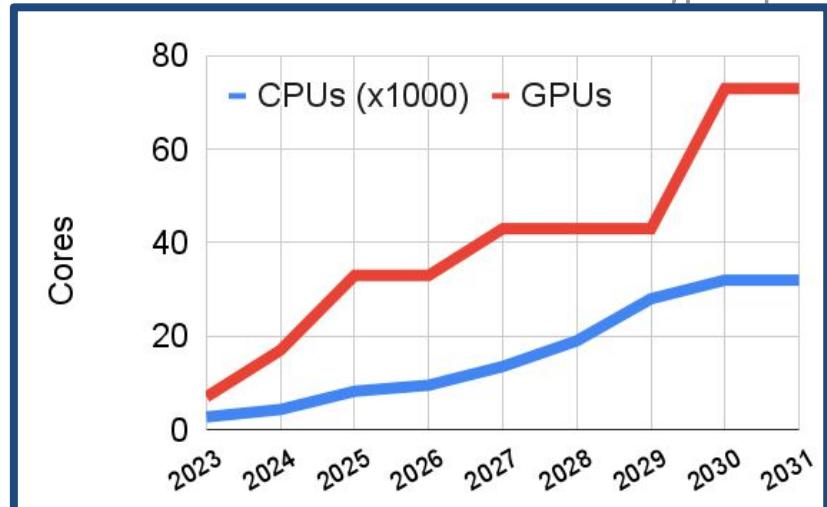
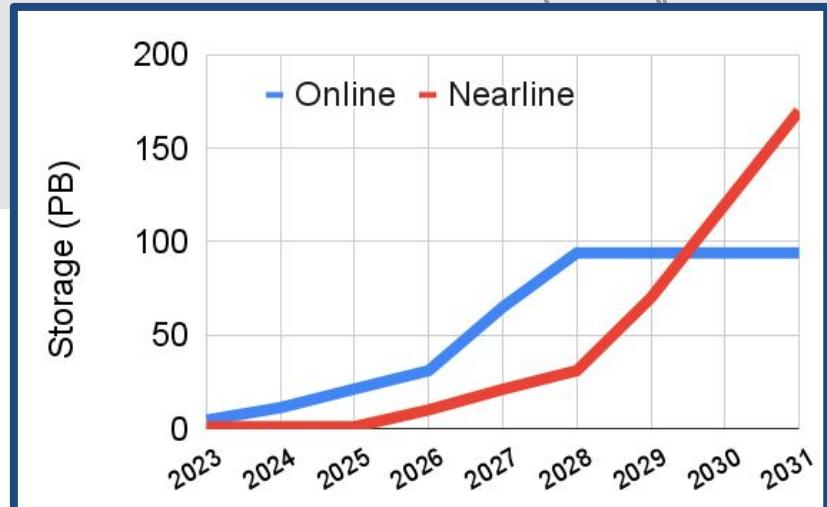
- Accessible via
 - VOSpace API
 - Python Client
 - Web UI
- Fine grained access control

The screenshot shows a web-based interface for managing user storage. At the top, there is a navigation bar with links for Documentation, Services, About, Open Source, Support, and a user account for Stephen D.J. Gwyn. Below the navigation bar is a search bar labeled "Search Name..." and a toolbar with buttons for "vault", "Home", "Up", "Root", "Add", and "Download". The main content area displays a table of files in a vault, showing 350.00 TB remaining of a quota of 350.00 TB. The table includes columns for Name, Size, Last Modified (UTC), Read/Write permissions, Read access, and Owner. The table lists various files and directories, such as "addcats", "baumont", "catalogs", "catalogs_DR3", "cfis.r.sum", "cfis.r.sum.ext", "cfis.r.use", "cfis.tiles.input.ccd", "cfis.tiles.input.ccd.gz", "cfis.u.sum", "CFIS_DR2_docs", "CFIS_PS3PI_EDR3", "cosmostat", "DR1", "dwarf1", "errani", "ext", "filters", "flags", and "gaap". Most files have a size of "--" and were last modified in 2024. The "cosmostat" file was last modified in 2023. The "DR1" file was last modified in 2019. The "dwarf1" file was last modified in 2021. The "errani" file was last modified in 2019. The "ext", "filters", "flags", and "gaap" files were last modified in 2024. The "catalogs", "catalogs_DR3", "cfis.r.sum", "cfis.r.sum.ext", "cfis.r.use", "cfis.tiles.input.ccd", "cfis.tiles.input.ccd.gz", "cfis.u.sum", "CFIS_DR2_docs", "CFIS_PS3PI_EDR3", and "cosmostat" files have "cfis-write" permissions. The "DR1" file has "cfis-read" permissions. The "dwarf1" file has "cfis-read" permissions. The "errani" file has "cfis-read" permissions. The "ext", "filters", "flags", and "gaap" files have "cfis-read" permissions. The "catalogs", "catalogs_DR3", "cfis.r.sum", "cfis.r.sum.ext", "cfis.r.use", "cfis.tiles.input.ccd", "cfis.tiles.input.ccd.gz", "cfis.u.sum", "CFIS_DR2_docs", "CFIS_PS3PI_EDR3", and "cosmostat" files have "sgwyn" as the owner. The "DR1" file has "kilbinger" as the owner. The "dwarf1" file has "sgwyn" as the owner. The "errani" file has "sgwyn" as the owner. The "ext", "filters", "flags", and "gaap" files have "sgwyn" as the owner.

Name	Size	Last Modified (UTC)	Read/Write	Read	Owner
addcats	--	2019-03-07 - 21:06:01	cfis-write	cfis-read	sgwyn
baumont	--	2022-03-01 - 19:15:28	cfis-baumont-write	cfis-read	sgwyn
catalogs	--	2018-06-02 - 22:15:03	cfis-write	cfis-read	sgwyn
catalogs_DR3	--	2021-02-16 - 19:21:00	cfis-write	cfis-read	sgwyn
cfis.r.sum	2.98 MB	2024-12-17 - 21:36:00	cfis-write	cfis-read	sgwyn
cfis.r.sum.ext	3.15 MB	2025-03-06 - 23:16:31	cfis-write	cfis-read	sgwyn
cfis.r.use	116.79 KB	2025-05-24 - 10:39:07	cfis-write	cfis-read	sgwyn
cfis.tiles.input.ccd	77.61 MB	2025-02-19 - 21:58:01	cfis-write	cfis-read	sgwyn
cfis.tiles.input.ccd.gz	7.03 MB	2025-02-19 - 21:57:37	cfis-write	cfis-read	sgwyn
cfis.u.sum	4.17 MB	2024-12-04 - 12:00:57	cfis-write	cfis-read	sgwyn
CFIS_DR2_docs	--	2020-04-07 - 23:06:44	cfis-write	cfis-read	sgwyn
CFIS_PS3PI_EDR3	--	2021-04-08 - 16:21:00	cfis-write	cfis-read	gthomas
cosmostat	--	2023-06-28 - 07:21:01	cfis_cosmostat_write	cfis-read	kilbinger
DR1	--	2019-03-07 - 20:51:02	cfis-write	cfis-read	sgwyn
dwarf1	--	2021-01-09 - 01:36:01	cfis-write	cfis-read	sgwyn
errani	--	2019-12-02 - 19:39:01	cfis-errani-write	cfis-read	sgwyn
ext	--	2024-06-11 - 22:35:43	cfis-write	cfis-read	sgwyn
filters	--	2024-06-22 - 06:41:43	cfis-write	cfis-read	sgwyn
flags	--	2023-09-20 - 02:21:01	cfis-write	cfis-read	sgwyn
gaap	--	2024-06-11 - 17:22:30	cfis-write	cfis-read	sgwyn

Enhancements to infrastructure

Currently:



- 10PB
- 3000 CPUs
- 10 V100 + 1 A100 GPUs
- 20TB database

Arrived for 2025

- 8PB
- 3900 CPUs
- 16 H100 GPUs
- 200TB federated database

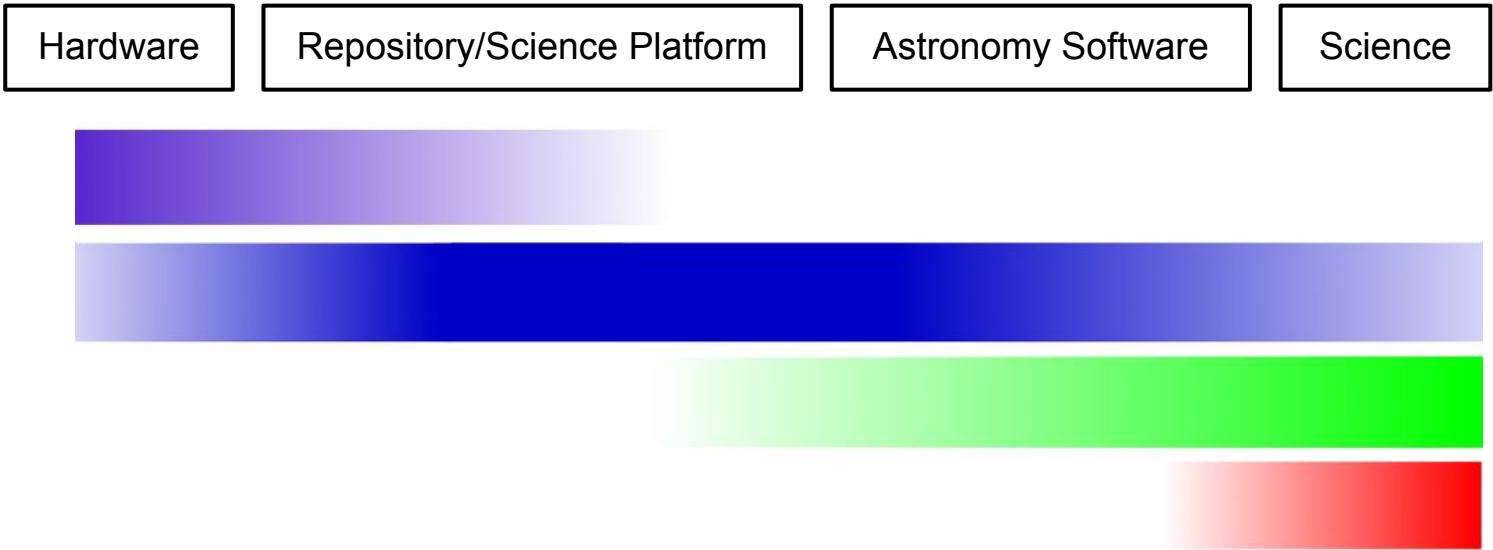
Steady state 2030

- 32000 CPUs
- 72 GPUs
- 90 PB online storage
- 170 PB nearline storage
 - (growing 50PB/year)

Digital Research Alliance of Canada

- Provide research IT infrastructure to Canadian academics
- Long-standing partnership with CADC
- Initially through a resource allocation through university-based astronomers
- Expansion driven through funds transferred from CADC

Canada's Advanced Research Computing Platform

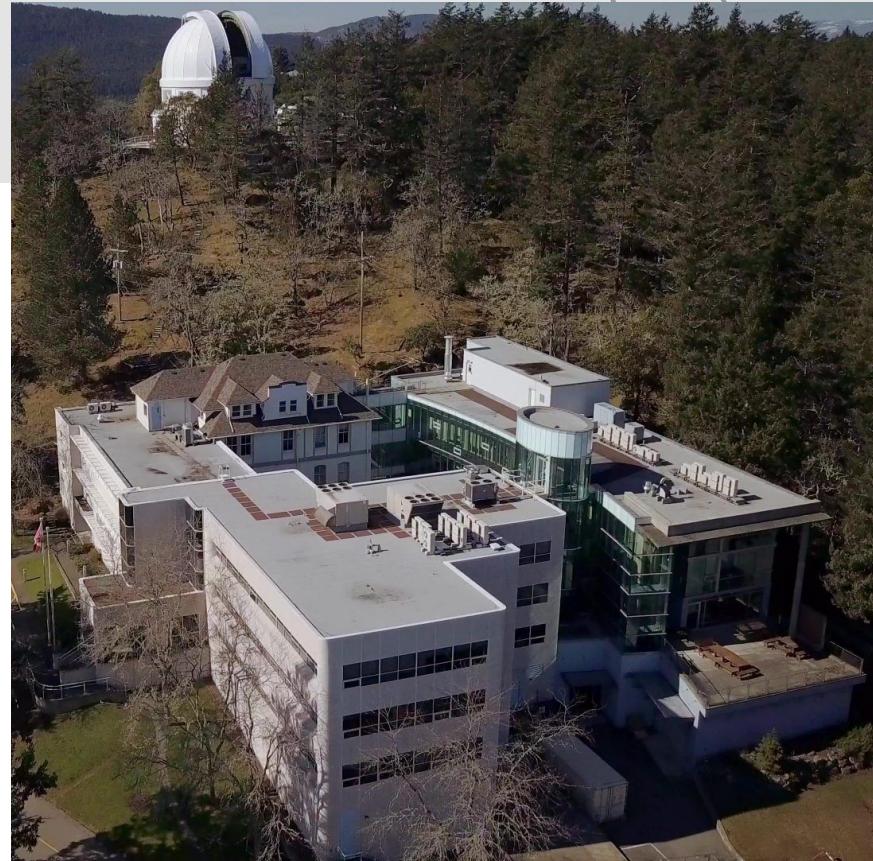


Digital Research
Alliance of Canada

- National Host Sites
- Local Support Sites

A spectrum of competancies

The Canadian IDAC


- The CADC is building an IDAC
- DP1 and DP2 will be available through CANFAR
- For the DRs we will host
 - coadded images: 2.7 PB
 - ObjectLite catalog
 - providing 3000 cores (may change some to GPUs)
 - providing 2PB of user storage
- One set of resources for Rubin data-rights holders
- One set of resources for the wider astronomical community when the data becomes public

The Canadian IDAC

Interfaces:

- CADC tools
 - Data storage / retrieval
 - StorageInventory
 - VOSSpace
 - Database interface
 - CADC TAP service
 - Processing
 - CANFAR Science Platform
- LSST tools
 - DataButler
 - LSSTpipe container
- Data visualization
 - Rubin Science Portal

CADC's place in the LSST computing landscape

- Based on our experience with CANFAR, usage is evenly distributed in log space
 - most users require very few resources: Rubin Science Platform
 - some users require some resources
 - a few users require a lot of resources: IN2P3, NERSC, EPCC
- For the Rubin data rights holders
 - we best serve users who require a more power than RSP provides
 - not (currently) optimized for large single-user allocations
 - “First come, first serve” provides maximum flexibility
- For the public releases, the “first come, first serve” method is the only option
- Besides LSST, the CADC is hosting:
 - SKA
 - Euclid
 - CFHT (UNIONS = LSST of the North)
 - All available through a common set of tools and interfaces

Current status

- DP1 is ingested into the CADC
 - Access via CADC tools
 - Access via Rubin tools / DataButler
- Access control is by CADC username
 - Need to be manually linked to Rubin rights
- Working on a general solution:
 - Same login as RSP will get you access to the CADC
- Rubin users currently have full access to all CANFAR resources
 - Separate allocations not yet in place
- Test users welcome!

Group Management Stephen D.J. Gwyn ▾

Search ObsCore Search Results Error ADQL Help

Download complete query results: VOTable CSV TSV [Bookmark URL](#)

Mark	Download	Preview	Collection	Obs. ID	Product ID	RA (J2000.0)	Dec. (J2000.0)	Instrument
Filter:						H:M:S	D:M:S	
N/A	LSST.DP1	lsst_cells_v1-4848-60	lsst.deep.coadd-1	03:32:01.19	-28:45:20.0	LSSTComC		
N/A	LSST.DP1	lsst_cells_v1-4848-70	lsst.deep.coadd-4	03:32:00.86	-28:35:20.1	LSSTComC		
N/A	LSST.DP1	lsst_cells_v1-4848-71	lsst.deep.coadd-3	03:31:15.31	-28:35:23.9	LSSTComC		
N/A	LSST.DP1	lsst_cells_v1-4848-71	lsst.deep.coadd-5	03:31:15.31	-28:35:23.9	LSSTComC		
N/A	LSST.DP1	lsst_cells_v1-4848-73	lsst.deep.coadd-5	03:29:44.21	-28:35:28.6	LSSTComC		
N/A	LSST.DP1	lsst_cells_v1-4848-80	lsst.deep.coadd-3	03:32:00.53	-28:25:20.2	LSSTComC		
N/A	LSST.DP1	lsst_cells_v1-4848-81	lsst.deep.coadd-3	03:31:15.06	-28:25:23.9	LSSTComC		
N/A	LSST.DP1	lsst_cells_v1-4848-83	lsst.deep.coadd-1	03:29:44.10	-28:25:28.7	LSSTComC		
N/A	LSST.DP1	lsst_cells_v1-4848-83	lsst.deep.coadd-3	03:29:44.10	-28:25:28.7	LSSTComC		
N/A	LSST.DP1	lsst_cells_v1-4848-90	lsst.deep.coadd-1	03:32:00.20	-28:15:20.3	LSSTComC		
N/A	LSST.DP1	lsst_cells_v1-4848-90	lsst.deep.coadd-3	03:32:00.20	-28:15:20.3	LSSTComC		
N/A	LSST.DP1	lsst_cells_v1-4848-90	lsst.deep.coadd-4	03:32:00.20	-28:15:20.3	LSSTComC		
N/A	LSST.DP1	lsst_cells_v1-4848-91	lsst.deep.coadd-2	03:31:14.80	-28:15:24.1	LSSTComC		
N/A	LSST.DP1	lsst_cells_v1-4848-91	lsst.deep.coadd-5	03:31:14.80	-28:15:24.1	LSSTComC		
N/A	LSST.DP1	lsst_cells_v1-4848-92	lsst.deep.coadd-2	03:30:29.40	-28:15:26.9	LSSTComC		
N/A	LSST.DP1	lsst_cells_v1-4848-93	lsst.deep.coadd-3	03:29:43.99	-28:15:28.8	LSSTComC		
N/A	LSST.DP1	lsst_cells_v1-4848-93	lsst.deep.coadd-4	03:29:43.99	-28:15:28.8	LSSTComC		
N/A	LSST.DP1	lsst_cells_v1-4849-68	lsst.deep.coadd-4	03:32:39.93	-28:45:23.8	LSSTComC		
N/A	LSST.DP1	lsst_cells_v1-4849-78	lsst.deep.coadd-0	03:32:40.19	-28:35:23.9	LSSTComC		
N/A	LSST.DP1	lsst_cells_v1-4849-78	lsst.deep.coadd-3	03:32:40.19	-28:35:23.9	LSSTComC		
N/A	LSST.DP1	lsst_cells_v1-4849-79	lsst.deep.coadd-2	03:31:54.64	-28:35:20.1	LSSTComC		
N/A	LSST.DP1	lsst_cells_v1-4849-88	lsst.deep.coadd-4	03:32:40.44	-28:25:23.9	LSSTComC		
N/A	LSST.DP1	lsst_cells_v1-4849-89	lsst.deep.coadd-0	03:31:54.97	-28:25:20.2	LSSTComC		
N/A	LSST.DP1	lsst_cells_v1-4849-89	lsst.deep.coadd-5	03:31:54.97	-28:25:20.2	LSSTComC		
N/A	LSST.DP1	lsst_cells_v1-4849-97	lsst.deep.coadd-0	03:33:26.10	-28:15:26.9	LSSTComC		
N/A	LSST.DP1	lsst_cells_v1-4849-97	lsst.deep.coadd-2	03:33:26.10	-28:15:26.9	LSSTComC		
N/A	LSST.DP1	lsst_cells_v1-4849-97	lsst.deep.coadd-4	03:33:26.10	-28:15:26.9	LSSTComC		
N/A	LSST.DP1	lsst_cells_v1-4849-98	lsst.deep.coadd-0	03:32:40.70	-28:15:24.1	LSSTComC		
N/A	LSST.DP1	lsst_cells_v1-4849-98	lsst.deep.coadd-3	03:32:40.70	-28:15:24.1	LSSTComC		

← → Date modified: 2025-03-24

LSST activities in Canada

- Canadian LSST project lead: Renée Hložek, University of Toronto
- In-kind contributions
 - Directable development
 - Skilled software development (science pipelines)
 - Dark energy science
 - Galaxies science
 - Transients
 - Solar system science
 - RAFTS (Research Announcements For The Solar system)
 - CanDIAPL = Canadian Data-Intensive Astrophysics PLatform
 - 17 PI slots
- CADC IDAC: 30 PI slots
- Total 47 PI slots + 4x postdocs+students/PI
- ICRADA is (finally) signed

Summary

- The CADC is the astronomical data repository for Canada
- CANFAR provides a compute/user storage platform to support multiple projects through a common set of tools
- CADC/CANFAR is growing by a factor of 30 to support SKA+LSST
- The CADC supports LSST with
 - data hosting
 - user processing and storage
 - software development
- CANFAR provides an intermediate level of resources relative to RSP or IN2P3 / NERSC / EPCC

