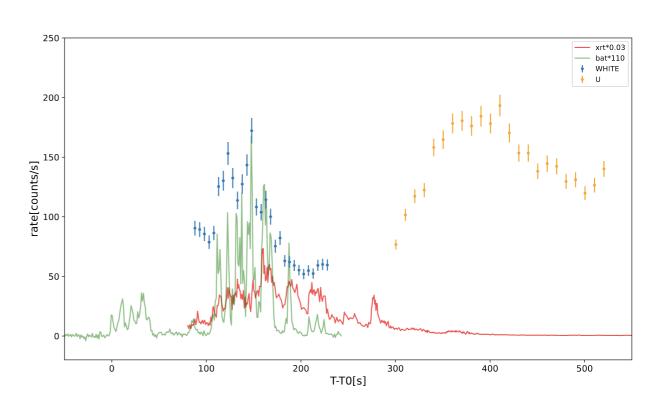
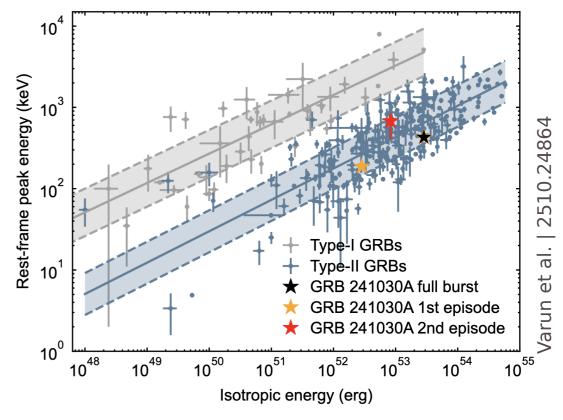

GRB 241030A: A puzzling afterglow in disguise

Jean-Grégoire Ducoin


CPPM, Aix-Marseille Université

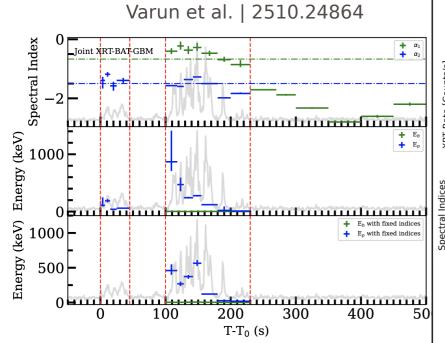
COLIBRI meeting - 02/01/2026

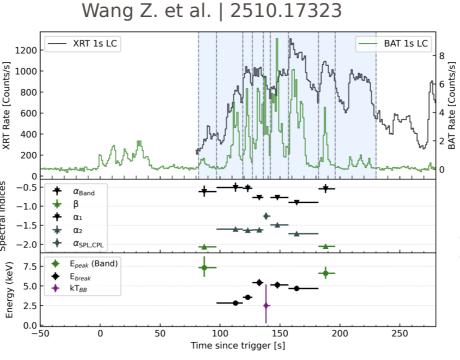
GRB 241030A: prompt emission


Varun et al. | 2510.24864

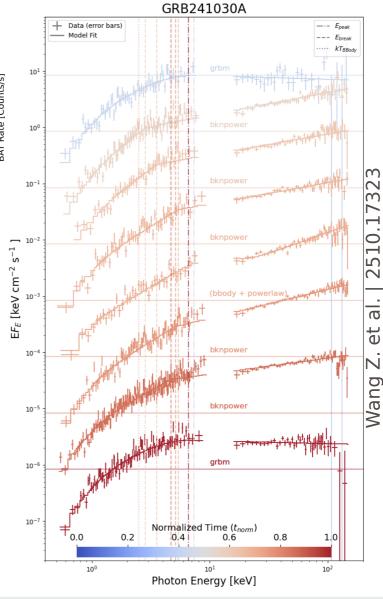
Wang Q.-L. et al. 2025 | ApJ 987, 129

GRB 241030A: prompt emission


T ₉₀	166s (50 – 300 keV, Fermi-GBM, 38015) 211s (18 keV – 1 MeV, Konus-Wind, 37982) 208s (80 – 950 keV, GRBAlpha, 38074) ? (15 keV – 5 MeV, SVOM-GRM, 37972) 173s (15 – 160 keV, Swift-BAT, 38010)
Redshift	z = 1.411 (spectroscopic, Zheng et al. 2024, 37959; Li et al. 2024, 38027)
E _{iso}	~ 4 x 10 ⁵³ erg

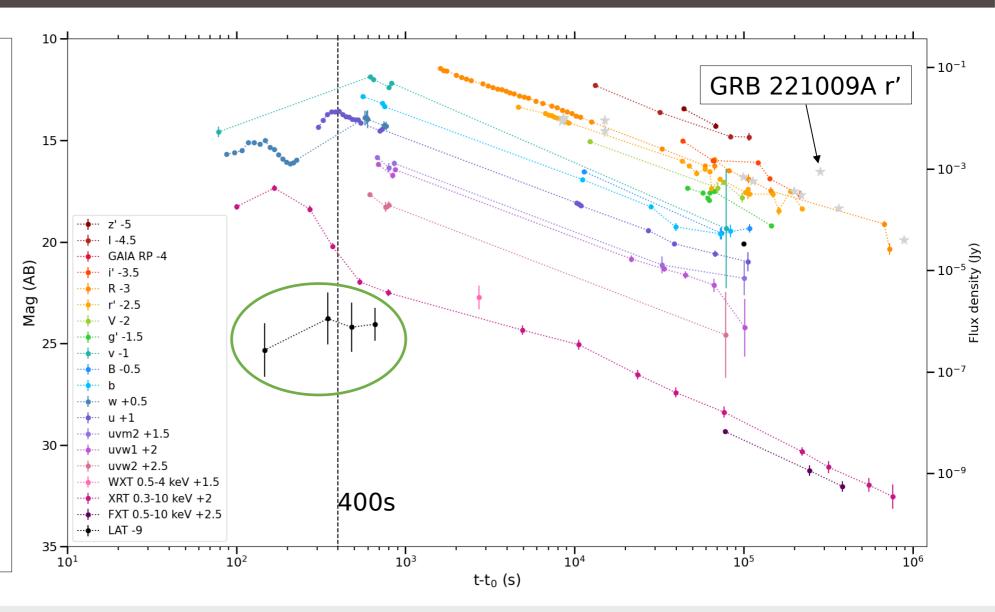

A quite standard long GRB with multiple emission episodes during the prompt

$$E_p - E_{iso}$$
 diagram


GRB 241030A: prompt emission

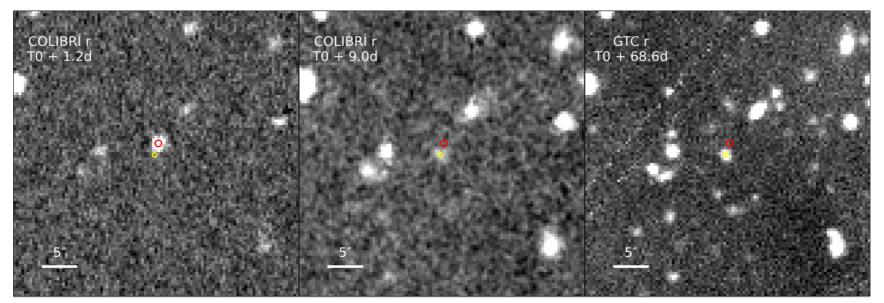
Study of time lags + joint gamma & X-ray data: Internal shocks with varying injection LF

Study of multiple (46)
GRBs (110 pulses total):
- 241030A has bursts 1 & 9
not consistent with Band

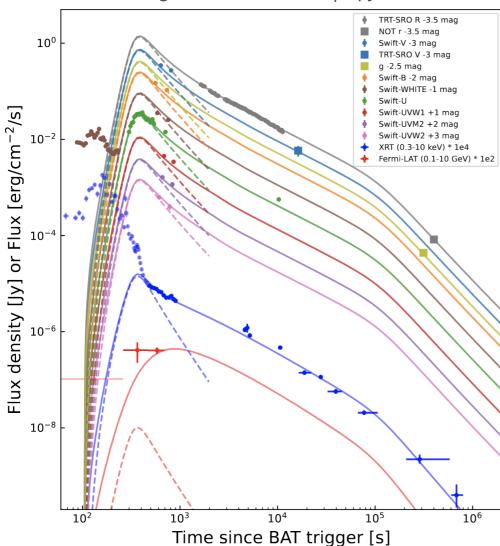

GRB 241030A: afterglow observations

Gamma/X-ray observations:

- Swift-XRT
- Fermi-LAT
- EP-WXT
- EP-FXT


Optical observations:

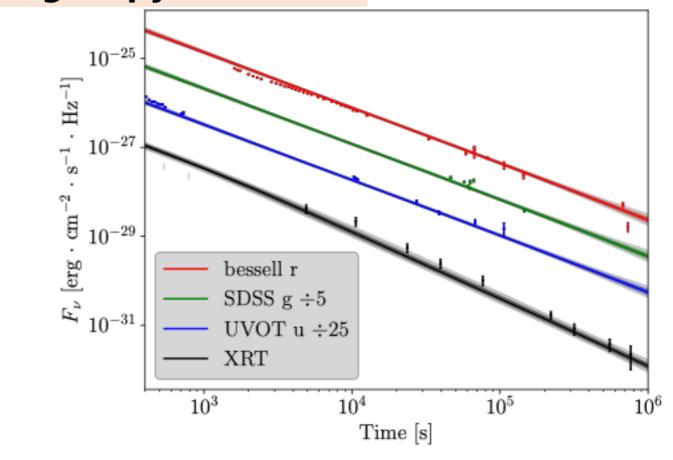
- Swift-UVOT (w, u, v, b, uvw1, uvw2, uvm2)
- TRT-SRO (B, V, R, I)
- COLIBRÍ (r')
- KNC (I, g', r', GAIA RP, V)
- AbAO-T70 (R)
- AbAO-T150 (i', r')
- KAO (i', r', z', g')
- HAO (R, g')
- FRAM-CTA-N (R)
- TNOT (i', r')
- NAO-1.5m (R)
- NAO-2m (R)



GRB 241030A: host galaxy?

- Using the long-term observation from COLIBRÍ when the afterglow is not detectable, an extended source is found close to GRB site
- Follow-up observations with CFHT-MegaCam and GTC-HiPERCAM, with clear source detection
- But at a redshift of z = 1.411, this corresponds to a source offset of 15.10 \pm 1.56 kpc, significantly larger than typical long GRBs offsets
- Galaxy SED fitting gives $z \sim 0.5$
- **Conclusion**: This is a foreground galaxy, and no host galaxy was detected down to magnitudes i < 25.62 and r < 25.82 (but this does not exclude the presence of a typical faint GRB host at > 26 mag)

Wang Q.-L. et al. 2025 | ApJ 987, 129


Afterglow fit by Wang et al. 2025 with a jet break at 10⁵ s Our data set is more complete, we do not see any jet break before 10⁶ s

Empirical analysis

- Temporal slope: $\alpha = -1.23 \pm 0.01$ (all bands)
- A slight steepening in X-rays after 10⁴ s
- Spectral slope: $\beta = -0.70 \pm 0.01$ (from optical to X-rays)
- ightharpoonup Temporal slope consistent with a slow-cooling ejecta propagating in a constant-density ISM, with optical and X-ray frequencies between ν_m and ν_c
- → A wind-like medium is disfavoured
- \rightarrow Slight inconsistency between α and β , giving p=2.64 and p=2.40 respectively (but consistent with particle acceleration theory)

Parameters	Symbol	Prior	NMMA/
			AFTERGLOWPY
cos inclination [rad]	$\cos(\iota)$	[0,1]	$0.97^{+0.02}_{-0.03}$
log isotropic kinetic energy [erg]	$\log_{10}(E_0)$	[50, 60]	56.9 ^{+1.6} _{-1.1}
jet core angle [rad]	$ heta_{ m c}$	$[0.001, \frac{\pi}{18}]$	$0.15^{+0.02}_{-0.04}$
wing factor	$lpha_{ m w}$	[0.2, 3.5]	$2.72^{+0.72}_{-1.02}$
log interstellar medium density [cm ⁻³]	$\log_{10}(n_{\mathrm{ism}})$	[-6,4]	2.9 ^{+1.0} _{-4.6}
electron spectrum power index	p	[2,3]	$2.62^{+0.05}_{-0.04}$
log electron energy fraction	$\log_{10}(\epsilon_{\mathrm{e}})$	[-4, 0]	$-2.25^{+0.67}_{-1.27}$
log magnetic energy fraction	$\log_{10}(\epsilon_{ m B})$	[-8, 0]	$-6.98^{+2.64}_{-0.90}$
log accelerated electrons fraction	$\log_{10}(\zeta)$	[-3, 0]	-
initial Lorentz factor	Γ_0	[50, 500]	-
systematic uncertainty [mag]	$\sigma_{ m sys}$	[0.01, 2]	$0.21^{+0.03}_{-0.03}$

Analysis with NMMA / afterglowpy

Posterior light curve contours in three optical bands + X-rays

Parameters	Symbol	Prior	NMMA/
			AFTERGLOWPY
cos inclination [rad]	$\cos(\iota)$	[0,1]	$0.97^{+0.02}_{-0.03}$
log isotropic kinetic energy [erg]	$\log_{10}(E_0)$	[50,60]	56.9 ^{+1.6} _{-1.1}
jet core angle [rad]	$ heta_{ m c}$	$[0.001, \frac{\pi}{18}]$	$0.15^{+0.02}_{-0.04}$
wing factor	$lpha_{ m w}$	[0.2, 3.5]	$2.72^{+0.72}_{-1.02}$
log interstellar medium density [cm ⁻³]	$\log_{10}(n_{\mathrm{ism}})$	[-6, 4]	2.9 ^{+1.0} _{-4.6}
electron spectrum power index	p	[2,3]	$2.62^{+0.05}_{-0.04}$
log electron energy fraction	$\log_{10}(\epsilon_{\mathrm{e}})$	[-4, 0]	$-2.25^{+0.67}_{-1.27}$
log magnetic energy fraction	$\log_{10}(\epsilon_{ m B})$	[-8, 0]	$-6.98^{+2.64}_{-0.90}$
log accelerated electrons fraction	$\log_{10}(\zeta)$	[-3, 0]	-
initial Lorentz factor	Γ_0	[50, 500]	-
systematic uncertainty [mag]	$\sigma_{ m sys}$	[0.01, 2]	$0.21^{+0.03}_{-0.03}$

Analysis with NMMA / afterglowpy

Extremely large jet energy

- Even correcting for jet opening angle we get $E_k \sim 1.6 \times 10^{54} \text{ erg}$
- Assuming accretion-to-jet efficiency of 1% (BZ, optimistic scenario), that means 2 x 10^{55} 7 x 10^{56} erg of accreted energy
- This is the rest-mass energy of 11 400 M_{sun} !
- Compared to the prompt $E_{iso} \sim 4 \times 10^{53}$ erg, this leads to a prompt efficiency of $< 10^{-2}$

Large jet opening angle

- Close to 10°, upper bound of our prior
- Not impossible, but not standard

Large external density

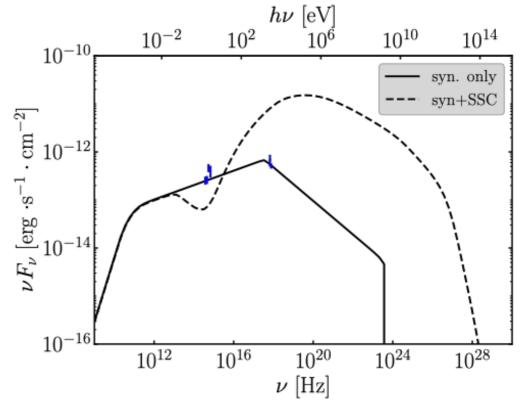
- Again very unusual

Low $\epsilon_{\rm e}$ and $\epsilon_{\rm B}$

- Again, very unusual. is typically 0.1 with little variability.
- This means we have an extremely energetic, but extremely inefficient jet unable to accelerate particles efficiently

Why is this afterglow hard to fit?

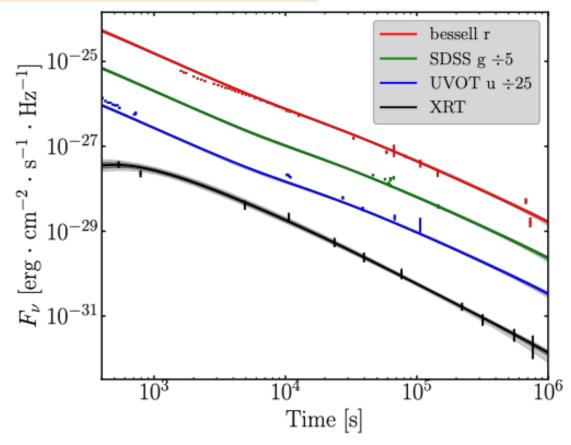
In a synchrotron-only scenario, this is due to the combination of:


- A very luminous afterglow intrinsically
- The necessity to be in the slow cooling regime and between ν_m and ν_c in optical and X-rays, in particular :
 - v_m must be below the optical band at the earliest times
 - ν_c must pass in the X-ray band at 10^4 s

SSC emission with our parameters

With $\epsilon_B \sim 10^{-6}$ naturally $\frac{\epsilon_e}{\epsilon_B} \gg 1$,

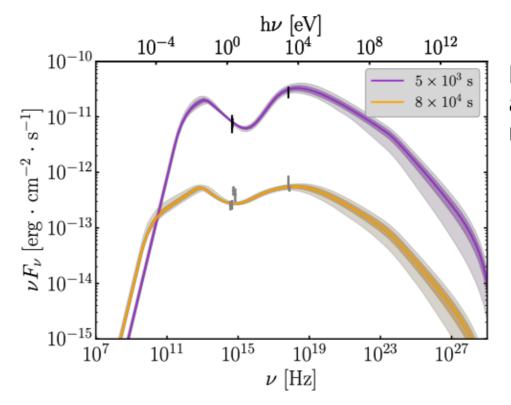
which implies strong SSC emission


The results obtained with NMMA / afterglowpy are impacted by SSC!

Spectrum at 8 x 10⁴ s (after the temporal break in X-rays)

Parameters	Symbol	Prior	PD24
cos inclination [rad]	$\cos(\iota)$	[0,1]	0.99 ^{+0.01} _{-0.00}
log isotropic kinetic energy [erg]	$\log_{10}(E_0)$		56.2 ^{+0.7} _{-0.7}
jet core angle [rad]	$ heta_{ m c}$	$[0.001, \frac{\pi}{18}]$	$0.17^{+0.00}_{-0.03}$
wing factor	$lpha_{ m w}$	[0.2, 3.5]	-
log interstellar medium density [cm ⁻³]	$\log_{10}(n_{\rm ism})$	[-6, 4]	2.5 ^{+0.7} _{-0.7}
electron spectrum power index	p	[2,3]	$2.57^{+0.16}_{-0.06}$
log electron energy fraction	$\log_{10}(\epsilon_{\mathrm{e}})$	[-4, 0]	$-3.32^{+0.67}_{-0.66}$
log magnetic energy fraction	$\log_{10}(\epsilon_{\mathrm{B}})$	[-8,0]	$-4.17^{+0.76}_{-0.72}$
log accelerated electrons fraction	$\log_{10}(\zeta)$	[-3,0]	$-0.70^{+0.67}_{-0.65}$
initial Lorentz factor	Γ_0	[50, 500]	432 ⁺⁶⁵ ₋₁₃₇
systematic uncertainty [mag]	$\sigma_{ m sys}$	[0.01, 2]	-

Analysis with Pellouin & Daigne 2024



Posterior light curve contours in three optical bands + X-rays

D	0 -1 1	D.	DD24
Parameters	Symbol	Prior	PD24
			τ
cos inclination [rad]	$\cos(\iota)$	[0, 1]	$0.99^{+0.01}_{-0.00}$
log isotropic kinetic energy [erg]	$\log_{10}(E_0)$	[50, 60]	56.2 ^{+0.7} _{-0.7}
jet core angle [rad]	$ heta_{ m c}$	$[0.001, \frac{\pi}{18}]$	$0.17^{+0.00}_{-0.03}$
wing factor	$lpha_{ m w}$	[0.2, 3.5]	-
log interstellar medium density [cm ⁻³]	$\log_{10}(n_{\mathrm{ism}})$	[-6, 4]	2.5 ^{+0.7} _{-0.7}
electron spectrum power index	p	[2,3]	2.57 ^{+0.16} _{-0.06}
log electron energy fraction	$\log_{10}(\epsilon_{\mathrm{e}})$	[-4, 0]	$-3.32^{+0.67}_{-0.66}$
log magnetic energy fraction	$\log_{10}(\epsilon_{ m B})$	[-8, 0]	$-4.17^{+0.76}_{-0.72}$
log accelerated electrons fraction	$\log_{10}(\zeta)$	[-3, 0]	$-0.70^{+0.67}_{-0.65}$
initial Lorentz factor	Γ_0	[50, 500]	432+65
systematic uncertainty [mag]	$\sigma_{ m sys}$	[0.01, 2]	-

Analysis with Pellouin & Daigne 2024

Including SSC does not resolve the issues raised before

Posterior spectra before and after the break in X-rays

The X-ray emission is dominated by SSC

- Again, extremely unlikely

GRB 241030A: Discussion

What we can say

- GRB 241030A is a long GRB ($T_{90} \sim 200s$) with multiple emission episodes, with standard E_{iso} / E_{p} for a long GRB
- Redshift z = 1.411
- The GRANDMA collaboration gathered an exquisite multiwavelength observational dataset of the afterglow
- The afterglow is non-standard: it is bright (comparable to GRB 221009A), while the prompt luminosity is standard
- If we interpret this afterglow with typical forward shock emission, the model faces several challenges, difficult to overcome:
 - Large jet energies and opening angles
 - Low particle acceleration and magnetic field amplification energies
 - High circumburst densities
- Most likely, emission behind the forward shock is not the explanation for this afterglow

GRB 241030A: Discussion

What solutions?

- If optical emission is powered by a long-lasting reverse shock, then the constraint on ν_m can be released, potentially leading to more physical solutions
- Any scenario with a high velocity jet will be constrained by the absence of jet break up to $10^6\,\text{s}$
- Any other scenario needs to accomodate for the smooth behaviour of the light curve at all wavelengths + the overall source luminosity

Merci!

