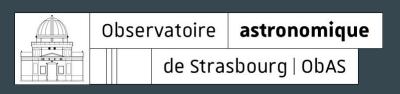
Gravitational waves from Numerical relativity

Santiago Jaraba

Observatoire astronomique de Strasbourg

Atelier API "Ondes gravitationnelles et objets compacts" 12th December 2025



Why Numerical Relativity?

- Gravitational waves (GW) provide direct access to the strong-field regime of General Relativity.
- Compact-object systems are ideal strong-gravity laboratories:
 - \circ Binary black holes (BBH) \rightarrow vacuum strong-field dynamics.
 - \circ Neutron star binaries, or NS-BH \rightarrow matter effects.
 - Other systems, exotic objects...
- However, Einstein's equations (1915) are fully nonlinear, coupled PDEs.
 - Exact solutions are very limited, e.g. Schwarzschild (1915), Kerr (1963).
 - Analytic approaches rely on approximations, e.g. post-Newtonian, perturbation theory, effective one body...
 - These methods do not work well around the merger.
- NR provides the only way to get accurate solutions in the most extreme regimes.

History of Numerical Relativity: mathematical foundations

- Choquet-Bruhat $1952 \rightarrow \text{Einstein's vacuum equations are well-posed:}$
 - Existence and uniqueness of solutions.
 - Stability under small perturbations of initial data.
 - \circ Used harmonic coordinates. $\nabla_{\mu} \nabla^{\mu} x^{\nu} = 0$
 - \rightarrow Mathematical foundation for dynamical simulations.

$$G_{\mu\nu} := R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = 8\pi T_{\mu\nu}$$

- Arnowitt, Deser, Misner 1962 \rightarrow 3+1 decomposition (ADM formalism).
 - Spacetime is divided into spatial slices evolving with time.
 - Converts GR into a system of evolution + constraint equations.
 - \rightarrow Practical formulation for numerical evolution.
- Hahn, Lindquist $1964 \rightarrow \text{First numerical evolution of a BBH system.}$
 - Simulation of head-on collision of two black holes.
 - Coarse resolution, short evolution time.
 - → Proof of principle that BBH spacetimes can be simulated.

History of Numerical Relativity: initial data

- Initial data must satisfy certain constraint equations on a spatial slice.
- <u>Brill, Lindquist 1963</u> → Multiple non-spinning BHs at rest.
 - First dataset with multiple BHs.
- <u>Bowen, York 1980</u> → Arbitrary BH linear momenta and spins.
 - Approach still used to date.
- Brandt, Brügmann 1997 \rightarrow More convenient topology for BHs (puncture).
 - Foundation of modern moving-puncture BBH simulations.

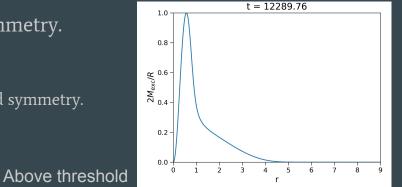
History of Numerical Relativity: towards robust formulations

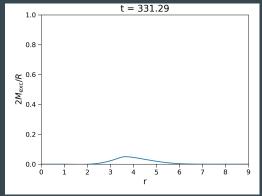
- Choptuik 1993 \rightarrow critical collapse in spherical symmetry.
 - First large success for NR.
 - Discovery of universal scaling laws near BH threshold.
 - → Demonstrated precision NR was possible in reduced symmetry.
- Nakamura, Oohara, Kojima 1987,

Shibata, Nakamura 1995,

Baumgarte, Shapiro 1998

- \rightarrow BSSN (or BSSNOK) formalism.
 - Reformulation of ADM prescription.
 - Greatly improves numerical stability.
 - → Enables long-term 3D evolutions of compact binaries.

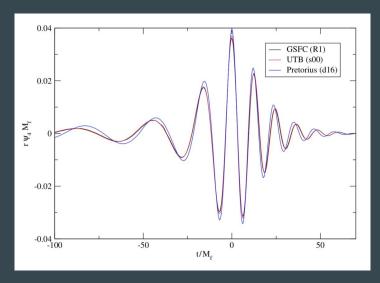




Below threshold

History of Numerical Relativity: accurate BBH simulations

- <u>Pretorius 2005</u>: first stable BBH merger simulation.
 - Fully 3D, inspiral-merger-ringdown phases.
 - \circ Used a generalized harmonic formulation ($abla_{\mu}
 abla^{\mu} x^{\nu} = H^{\nu}$) + excision.
- Independent confirmations:
 - o <u>Campanelli et al. 2006</u> (Brownsville).
 - o Baker et al. 2006 (NASA Goddard).
 - Used BSSN formulation + moving punctures.
- All approaches achieved stable mergers with excellent agreement.
- Major breakthrough:
 - NR techniques are accurate and robust.
 - Marks the start of the era of modern NR simulations.
 - LIGO GW detection in 2015 relies directly on this.

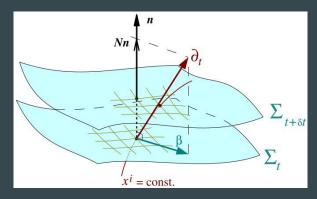


3+1 formalism: definitions

- The 4D spacetime is divided in a time succession of 3D spatial manifolds (slices) Σ_t : foliation.
 - Coordinates separate into time and spatial coordinates.
- The metric takes the form

$$g_{\mu\nu}dx^{\mu}dx^{\nu} = -\alpha^2 dt^2 + \gamma_{ij}(dx^i + \beta^i dt)(dx^j + \beta^j dt)$$

- \circ Lapse α (or N): controls rate of proper time flow between slices.
 - \bullet α ·dt is the proper time between Σ_t and $\Sigma_{t+\delta t}$.
- O Shift $β^i$: measures how x^i change from $Σ_t$ to $Σ_{t+δt}$.
- Spatial metric γ_{ij} : encodes intrinsic geometry of Σ_t .
- \circ α and β^i represent how we divide the spacetime, not how the spacetime changes \rightarrow gauge freedom.



Gourgoulhon 2007

- Another relevant quantity: extrinsic curvature K_{ii}.
 - $\circ \quad$ Measures how $\boldsymbol{\Sigma}_{t}$ is embedded in 4D spacetime.
 - Tracks how the shape of space changes with time.

$$K_{ij} = -\frac{1}{2\alpha}(\partial_t \gamma_{ij} - D_i \beta_j - D_j \beta_i)$$

3+1 formalism: Einstein equations

- Einstein equations are then (shown in vacuum):
 - Two evolution equations:

$$\partial_t \gamma_{ij} = -2\alpha K_{ij} + D_i \beta_j + D_j \beta_i$$

$$\partial_t K_{ij} = \alpha (R_{ij} - 2K_{ik}K^k{}_j + KK_{ij}) - D_i D_j \alpha + \beta^k \partial_k K_{ij} + K_{ik} \partial_j \beta^k + K_{kj} \partial_i \beta^k$$

• Two constraint equations: Hamiltonian and momentum constraints.

$$\gamma^{ij}R_{ij} + K^2 - K_{ij}K^{ij} = 0$$

$$D_j K^j{}_i - D_i K = 0$$

- 3D Cauchy problem: γ_{ij} and K_{ij} are the dynamical fields.
 - The first two EEs give their time evolution.
 - The other two constraints must hold on every slice.
 - Mathematically preserved by the time evolution.

BSSN formalism

- The original ADM formalism is numerically unstable (weakly hyperbolic).
 - Violations of constraint equations grow rapidly.
- BSSN \rightarrow splits variables to improve stability.
 - Separate trace of extrinsic curvature tensor,

$$A_{ij} = K_{ij} - \frac{1}{3}K\gamma_{ij}$$

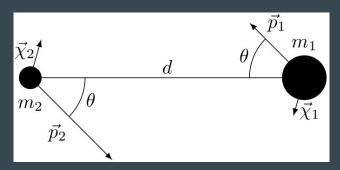
• Separate spatial metric determinant through a conformal transformation,

$$\gamma_{ij} = \Psi^4 \tilde{\gamma}_{ij}$$
 , $A_{ij} = \Psi^4 \tilde{A}_{ij}$, with $\det(\tilde{\gamma}_{ij}) = 1$

- Evolution equations rewritten for $\tilde{\gamma}_{ij}$, \tilde{A}_{ij} , Ψ and K.
 - Constraint equations are also rewritten.
- Improves numerical stability (strongly hyperbolic system).
 - → Finally enabled long-term 3D BBH simulations.

Initial data: the problem

- To start the evolution, we need consistent initial conditions defined in our initial slice Σ_t :
 - Hamiltonian constraint (scalar).
 - Momentum constraint (vector, 3 components).
 - Nonlinear elliptic PDEs, not trivial to solve in 3D.
- Goal: generate initial 3D spatial metric γ_{ij} and extrinsic curvature K_{ij} representing a physically realistic system:
 - o BH masses.
 - o Linear momenta.
 - O Spins.



Initial data: historical solutions

- Brill, Lindquist 1963: N static black holes.

 - Static solution: K_{ij} =0. Conformally flat metric: $\gamma_{ij}=\Psi^4\tilde{\gamma}_{ij}$, with $\tilde{\gamma}_{ij}$ flat.
 - Momentum constraint trivially satisfied, Hamiltonian constraint reduces to a Laplace eq. $\Delta\Psi=0$
 - Each BH generates a divergence at their center \mathbf{r}_{\cdot} :

$$\Psi = 1 + \sum_{a=1}^{N} \frac{m_a}{2|\vec{r} - \vec{r_a}|}$$

- Bowen, York 1980: adding momenta and spins.
 - Analytic solutions $K_{ij}\neq 0$ for momentum constraints, corresponding to:
 - A BH with certain momentum Pi.
 - A BH with certain spin Sⁱ.
 - Also in conformal flatness.
 - Hamiltonian constraint \rightarrow Poisson-like equation for Ψ which must be solved numerically.

$$\Delta\Psi + \frac{1}{8}\Psi^{-7}\tilde{A}_{ij}\tilde{A}^{ij} = 0$$

Initial data: historical solutions

- Brandt, Brügmann 1997: "puncture" method to handle singularities
 - Divides conformal factor into singular + smooth parts: $\Psi=b^{-1}+u$, $b^{-1}=\sum_{i=1}^{m_a} \frac{m_a}{2|\vec{r}-\vec{r_a}|}$
 - Poisson-like equation to be solved for u:

$$b^{-1} = \sum_{a=1}^{2} \frac{m_a}{2|\vec{r} - \vec{r_a}|}$$

$$\Delta u + \frac{b^7}{8}\tilde{A}_{ij}\tilde{A}^{ij}(1+bu)^{-7} = 0$$

- Stable numerical grids, with punctures initially fixed in space.
- Initial approaches kept fixed punctures during dynamical evolution:
 - Strong gradients developed as the BHs got closer \rightarrow numerical instabilities.
 - Coordinate system twisted as BH tried to orbit with fixed coordinate singularities.
- Would need further developments for stable dynamical mergers.

Dealing with singularities

• Excision.

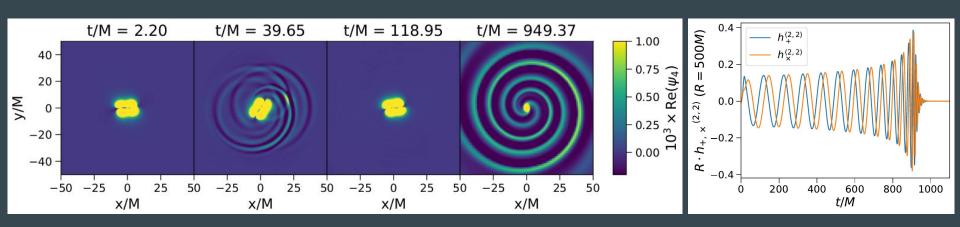
- Main idea: BH singularities are hidden behind their horizons.
- \circ Their influence cannot be felt outside the BH \rightarrow the BH interiors can safely be removed from the grid.
- \circ BH horizons must be known very precisely at each time \rightarrow computationally expensive.
- Used in Pretorius 2005, with a generalized harmonic formulation for the dynamical evolution, $\nabla_{\mu}\nabla^{\mu}x^{\nu}=H^{\nu}$

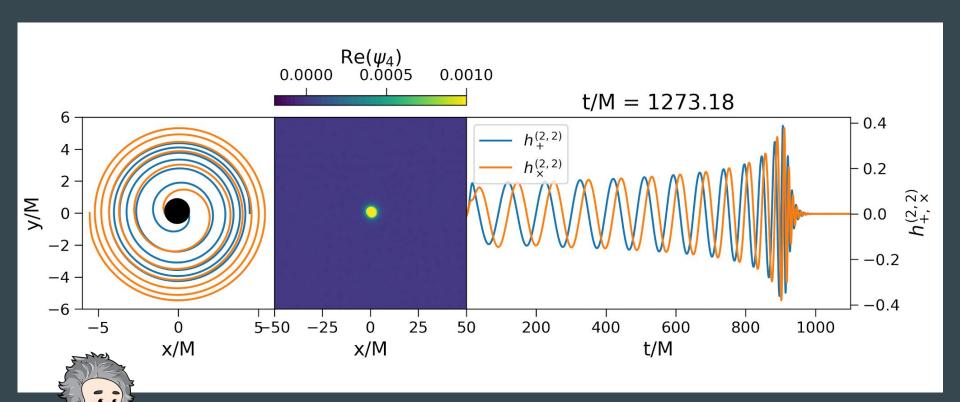
Moving punctures.

- Punctures on initial data move dynamically following the BHs.
- Achieved by using suitable gauge conditions.
 - 1+log slicing: takes $\alpha \to 0$ near punctures (K>>1), freezing time evolution. $\partial_t \alpha = -2\alpha K + \beta^j \partial_j \alpha$
 - Gamma-driver shift: spatial coordinates follow the BHs, prevents grid stretching. $\partial_t \beta^i = \frac{3}{4} \tilde{\Gamma}^i + \beta^j \partial_j \beta^i \eta \beta^i \qquad \tilde{\Gamma}^i = \partial_j \tilde{\gamma}^{ij}$ n damping parameter preventing oscillations.
- Used in <u>Campanelli et al. 2006</u> (Brownsville) and <u>Baker et al. 2006</u> (NASA Goddard), with BSSN.
- Simple, robust, computationally efficient.
- Became the standard for NR BBH simulations.

Initial data: junk radiation

- Initial data solve the constraints but are not exact inspiral solutions.
- Early evolution contains spurious gravitational waves \rightarrow "junk radiation".
- Amplitude decays as the system settles onto a consistent solution of full evolution equations.
- GWs are only reliable after junk radiation has left the considered domain.





GW extraction

Weyl tensor: trace-free part of Riemann tensor:

$$C_{\mu\nu\rho\sigma} = R_{\mu\nu\rho\sigma} - \frac{1}{2} (g_{\mu\rho}R_{\nu\sigma} - g_{\mu\sigma}R_{\nu\rho} - g_{\nu\rho}R_{\mu\sigma} + g_{\nu\sigma}R_{\mu\rho}) + \frac{1}{6} R(g_{\mu\rho}g_{\nu\sigma} - g_{\mu\sigma}g_{\nu\rho})$$

The Newman-Penrose formalism introduces a null tetrad l^{μ} , m^{μ} , \bar{m}^{μ} , n^{μ} , such that

$$-l^{\mu}n_{\mu} = m^{\mu}\bar{m}_{\mu} = 1, \quad l^{\mu}m_{\mu} = l^{\mu}\bar{m}_{\mu} = n^{\mu}m_{\mu} = n^{\mu}\bar{m}_{\mu} = 0$$

and defines the Weyl scalars
$$\Psi_0 = C_{\mu\nu\rho\sigma} l^\mu m^\nu l^\rho m^\sigma, \\ \Psi_1 = C_{\mu\nu\rho\sigma} l^\mu n^\nu l^\rho m^\sigma, \\ \Psi_2 = C_{\mu\nu\rho\sigma} l^\mu m^\nu \bar{m}^\rho n^\sigma \\ \Psi_3 = C_{\mu\nu\rho\sigma} n^\mu l^\nu n^\rho \bar{m}^\sigma, \\ \Psi_4 = C_{\mu\nu\rho\sigma} n^\mu \bar{m}^\nu n^\rho \bar{m}^\sigma$$

- Far away from the source, for a certain tetrad choice, $\Psi_4 pprox \ddot{h}_+ i \ddot{h}_{ imes}$
- GW can thus be recovered by integrating twice,

$$h_{+}(t, \vec{r}) - ih_{\times}(t, \vec{r}) = \int_{-\infty}^{t} dt' \int_{-\infty}^{t'} dt'' \Psi_{4}(t'', \vec{r})$$

GW extraction

$$h_{+}(t, \vec{r}) - ih_{\times}(t, \vec{r}) = \int_{-\infty}^{t} dt' \int_{-\infty}^{t'} dt'' \Psi_{4}(t'', \vec{r})$$

- In a simulation, t is finite. Also, early times are affected by junk radiation.
 - More extended approach: fixed-frequency integration, in Fourier space.
 - Involves setting a minimum frequency, getting rid of unphysical frequencies.
 - Usually done at post-processing: the simulation only outputs Ψ_4 .
- We are usually not interested in the full 3D strain, only multipolar information.
 - Usual practice: extract multipoles of GW strain up to a certain max. l, at a certain (large-radius) sphere.

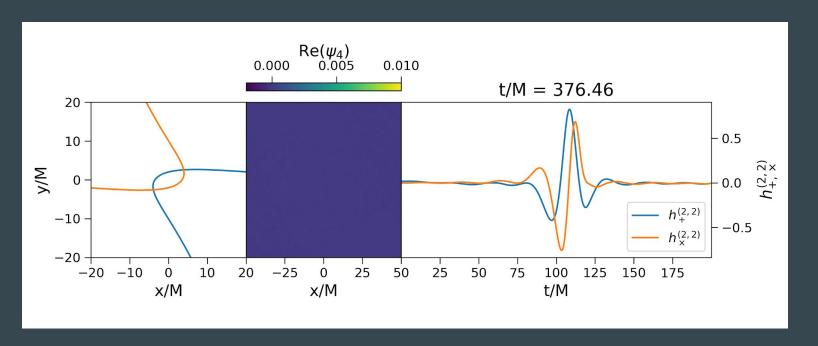
$$\Psi_4(t, \vec{r}) = \sum_{l=2}^{\infty} \sum_{m=-l}^{l} \Psi_4^{(l,m)}(t, r) {}_{-2}Y_{lm}(\theta, \phi)$$

- Once obtained, strain scales as 1/r.
 - → with multipolar information, we can recover strain at a simulated detector at any distance, angle and orientation.
- \circ The simulation just needs to output several 1D Ψ_4 time series, reducing output size.

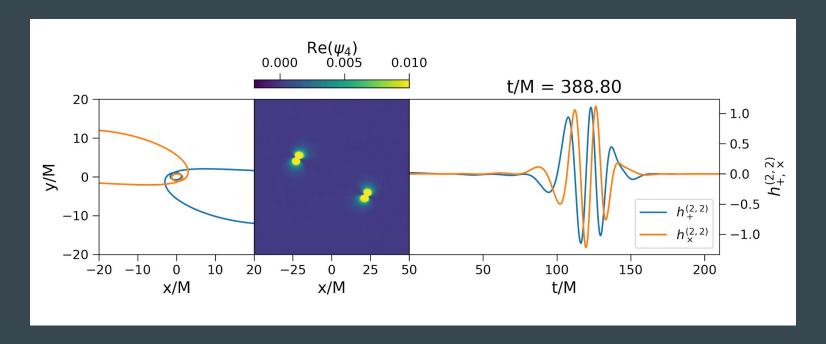
From NR to GW observations

- Since 2005, thousands of BBH simulations have been performed.
 - Creation of large public catalogs: SXS, RIT, BAM.
 - Cover wide ranges of mass ratios, momenta, spins and eccentricity.
- However, direct use of NR in GW data analysis is computationally impossible.
- Waveform models:
 - Surrogate models interpolate between NR waveforms.
 - Most reliable within their parameter space, but limited applicability.
 - Effective one body (EOB): combine PN and PM inspirals, motivated shapes for the merger, ringdown models from BH perturbation theory.
 - Need to be calibrated with NR.
 - Phenomenological inspiral-merger-ringdown: fit EOB, PN and NR to get a fast waveform generation.
- Fast waveform generation is essential for parameter estimation of observed GWs.
- All this enabled LIGO's first BBH detection in 2015, and subsequent LVK events.

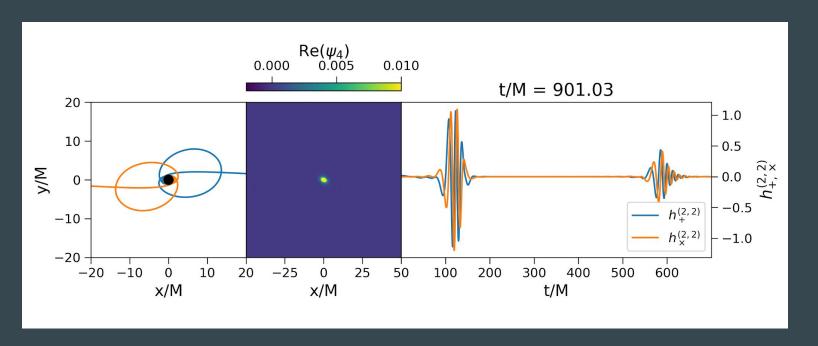
- A pair of BHs can also get closer and leave after the interaction
 - → hyperbolic encounters / scattering events.



Orbits can bend more than in Keplerian dynamics
 → sometimes called "close hyperbolic encounters".

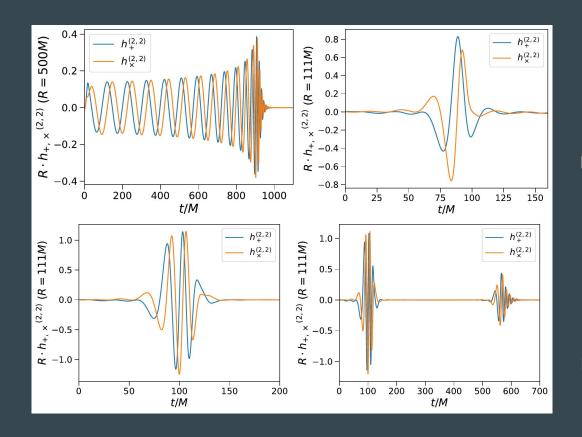


- Energy loss in a first interaction can bind both BHs
 - → dynamical capture (see <u>Rodríguez-Monteverde</u>, SJ, García-Bellido 2025),



BBH merger (GW150914)

2nd hyperbolic encounter (d/M=100, q=1, p/M=0.49, θ=3.12°)

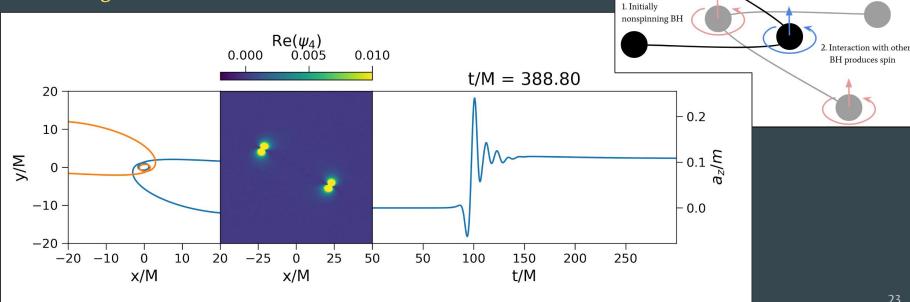


1st hyperbolic encounter (d/M=100, q=1, p/M=0.49, θ=4.01°)

Dynamical capture (d/M=100, q=1, p/M=0.49, θ=3.11°)

Spin induction by hyperbolic interaction

Strong-field interaction leads to other interesting phenomena → Spin induction. See SJ, García-Bellido 2021, Rodríguez-Monteverde, SJ, García-Bellido 2024.



3. BH returns to infinity

with non-zero spin

Beyond standard BBH systems

- The history to simulate BBHs is a success, but many challenges remain:
 - Extreme mass-ratio binaries.
 - Precessing and nearly extremal spins.
 - Highly eccentric inspirals.
- Some efforts to model these hyperbolic/capture events:
 - Fontbuté et al. 2024: surrogate model for hyperbolic events.
 - Chiaramello et al. 2024: PN study using hyperbolic trajectories from EOB models.
 - Trenado et al. 2025: NR catalog of eccentric binaries and dynamical captures.
 - Far less developed field than standard BBH mergers.
- Including matter adds further complexity → neutron stars.

Neutron stars

- BNS mergers probe matter effects absent in vacuum BBHs:
 - Tidal deformability.
 - Dense matter equation of state (EoS) signatures.
 - Post-merger oscillations.
- Fully relativistic hydrodynamic simulations exist.
 - High computational cost limits available simulations and waveforms.
- Post-merger phase:
 - Depending on progenitor masses, hypermassive NS remnant.
 - Short-lived (~10 s), would oscillate radiating GWs.
 - Rich mode spectrum sensitive to EoS.
 - Can be studied with NR by simulating perturbed, rotating NSs.

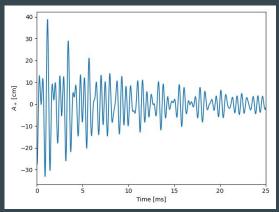
ROXAS (Relativistic Oscillations of non-aXisymmetric neutron stArS)

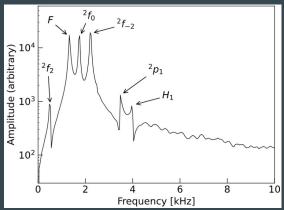
- Lightweight code to study isolated perturbed rotating NS. Presented in <u>Servignat</u>, <u>Novak 2025</u>.
- Based on LORENE (Langage Objet pour la RElativité NumériquE).
- Conformal flatness \rightarrow no radiative degrees of freedom:
 - \circ GW extracted from mass quadrupole changes \rightarrow Einstein's quadrupole formula.

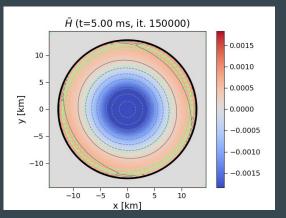
$$h_{+}(t, \vec{x}) = \frac{G}{c^{4}r} (\ddot{I}_{11} - \ddot{I}_{22})(t_{r}),$$

$$h_{\times}(t, \vec{x}) = \frac{2G}{c^{4}r} \ddot{I}_{12}(t_{r}).$$

Allows mode studies across rotation rates, differential rotation profiles and EoS.







Summary and outlook

- Strong, collective efforts were needed to get the first stable BBH simulation.
- This made the first GW detections possible and the current era of GW observations.
- NR was essential in the process, and continues to be for waveform model calibration.
- Analytic waveform models are getting more sophisticated and complete.
 - Certain parameter space regions still not mature.
- The field has diversified since then: other interactions, neutron stars, exotic objects.
- Next-gen. detectors (Einstein Telescope, CE, LISA) \rightarrow era of precision GW astronomy.
 - Higher sensitivity.
 - Access to new frequency bands.
 - o Increased detection rates.
 - → High-precision modeling and matter effects.
- Numerical Relativity will continue to play a key role.

Some references

- R. E. Eisenstein, *Numerical Relativity and the Discovery of Gravitational Waves* (2018).
- C. Palenzuela, *Introduction to Numerical Relativity* (2020).
- L. Lehner, F. Pretorius, *Numerical Relativity and Astrophysics* (2014).
- <u>F. Löffler et al., The Einstein Toolkit: A Community Computational Infrastructure for Relativistic Astrophysics (2011)</u>.
- É. Gourgoulhon, *3+1 Formalism in General Relativity* (2012).
- T. W. Baumgarte and S. L. Shapiro, *Numerical Relativity: Solving Einstein's Equations on the Computer* (2010).
- (Initial data review) Slides by P. Grandclément at last year workshop.
- The Einstein Toolkit, https://einsteintoolkit.org/
- ROXAS, https://zenodo.org/records/14849547

Backup: Adaptive mesh refinement

- Wide spatial domain needed for simulations + GW propagation.
- High resolution required near BHs.
- Uniform grid would be too expensive.
- AMR: several nested grids, smaller and with higher resolution around the BHs.
- Grids can move with the BHs.
- Ensures accuracy and efficiency.

