Measurement of Higgs Branching Ratios at FCC-ee

HADRONIC FINAL STATES

Alexis Maloizel

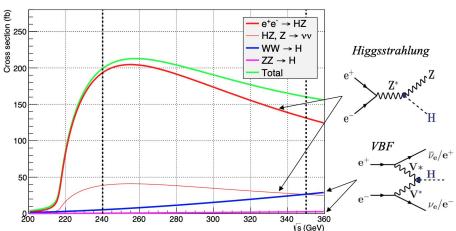
Motivations

Yukawa coupling

$$m_f = v \frac{y_f}{\sqrt{2}}$$

Coupling-mass relation for fermions in the SM

- Precise measurements of Higgs couplings might yield to deviation from SM → Possible BSM physics
- FCC-ee allows precise, model-independent measurement of numerous couplings including some unobservable at the LHC
- → Hadrons = 80% of H decays and LHC only measures bottom Yukawa
- H→gg is very sensitive to BSM


4 interactions points

_	· ····································						
	$\sqrt{s} \; (\mathrm{GeV})$	Luminosity (ab^{-1})	ZH Events	WW Fusion Events			
3 year	s 240	10.8	2.2M	65k			
5 year	365	3.12	0.37M	92k			

Expected uncertainty

Mostly limited by stats. and th. unc.

Analysis Strategy

Z decay channels

$$Z\rightarrow II$$
, $I=e,\mu$

BR(Z→II) ~ 6.7 %

Z→qq

BR(Z→qq) ~ 67% Limited by jet clustering

 $Z \rightarrow \nu \nu$

BR(Z→vv) ~ 20%

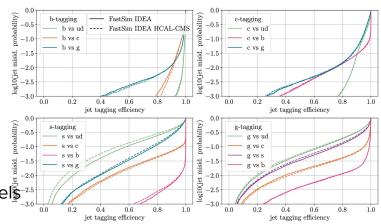
Requires a separation of ZH and Analysis strategy VBF productions processes

 e^+ H

Samples IDEA (Delphes fast sim)

signals

ZH(+VBF)@240&365 - $H\rightarrow bb/cc/gg/ss/WW/ZZ/\tau\tau$


N = 2 exclusive kT clustering for $Z(II/vv)^{**}$, N = 4 for Z(qq)

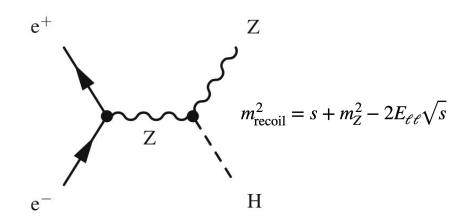
backgrounds WW, ZZ, Z/γ^* , Zqq, ee, $\mu\mu$, tt, $\nu\nu Z$, qqH

- S/B optimization with kinematic selection
- Categorization using ParticleNet tagger output

(7 outputs (b,c,s,g,d,u,tau) for each jets)

- Simultaneous fit on all categories
- Combination of all Z decay channels

Michele Selvaggi & Loukas Gouskos

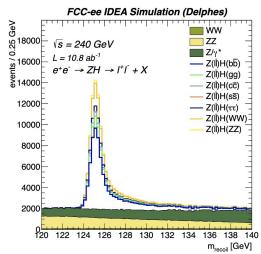

^{**} We also force reconstruction of H(WW/ZZ) to be 2 jets (rather than the expected 4)

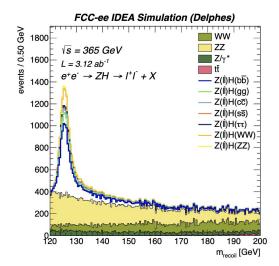
ZH→IIjj

• 1D Study of the mass recoiling from the Z

Selection:

- m_{\parallel} around Z mass (81-101 GeV), m_{recoil} around Higgs mass (120-140 GeV), no additional leptons with p > 25 GeV
- Elimination of non fully hadronic decays using veto on jet components kinematics



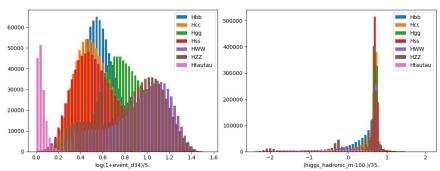

365 GeV:

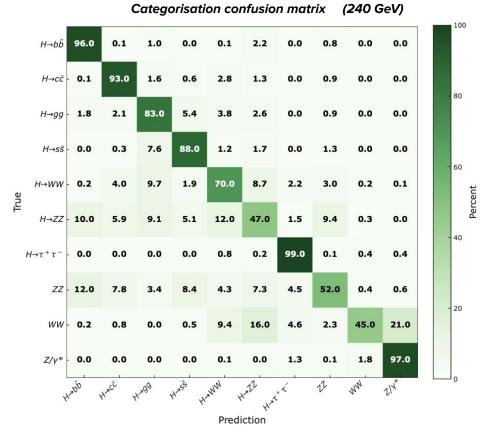
Additional tt bkg component and tuning of the selection

criteria. Same strategy afterwards.

- Wider BES and high lepton momenta:
- Wider signal distribution and longer tail

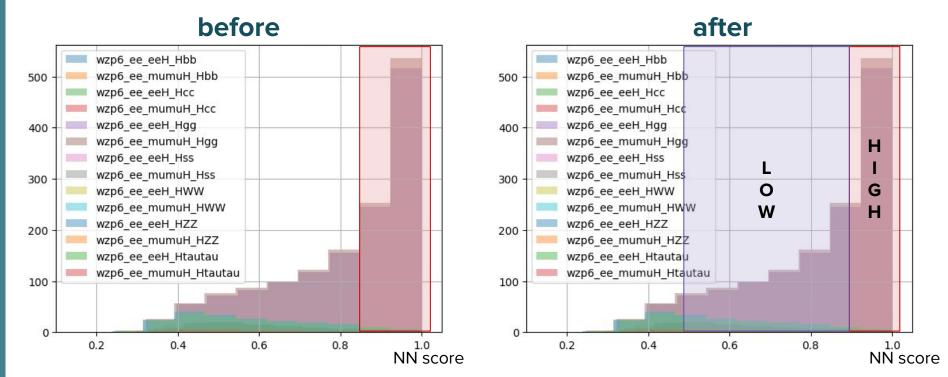
ZH→IIjj categorization


We train a Neural Network to categorize the events in one of the 7 signal channels (7 Higgs


decays) or one of the 3 background channels

Training variables

```
"jet1_isB",
"jet2_isB",
"jet1 isC",
              angular distance between the
"iet2 isC".
              2nd and 3rd jet components
"jet1 isG",
"jet2_isG",
"jet1_isU",
                      'log d23',
"jet2 isU",
                      'log d34',
"jet1_isD",
                      'm visible',
"jet2_isD",
etc...
```


Training variables: ParticleNet jet tagger score, kinematic variables, Angular variables (from Z decay)

Purity categorization

Goal: increase analysis sensitivity by including purity categories in the samples (ie. include more events in the fit)

We considered a maximum of 3 purity categories (high, mid, low)

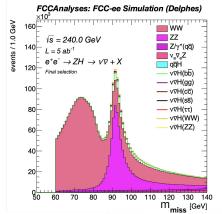
 2D Study of the mass recoiling from the H + visible mass from H decay

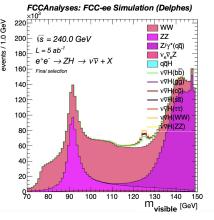
$$m_{miss}(=m_{vv}) = m_{recoil}$$
 $m_{visible} = m_{jj}$

Selection:

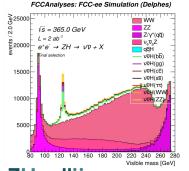
Cuts on kinematics

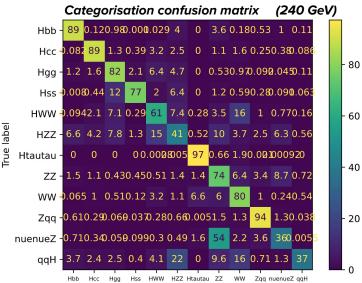
ZH/VBF Separation:


• Separate templates and signal strengths for ZH and VBF


∘ ZH :
$$e^+e^- \rightarrow \nu_{\mu} \nu_{\mu}^* 3$$

∘ VBF : $e^+e^- \rightarrow \nu_e \nu_e - e^+e^- \rightarrow \nu_{\mu} \nu_{\mu}^{\text{(contains interference)}}$


Categorisation:


We perform the same categorization than for ZH→IIii

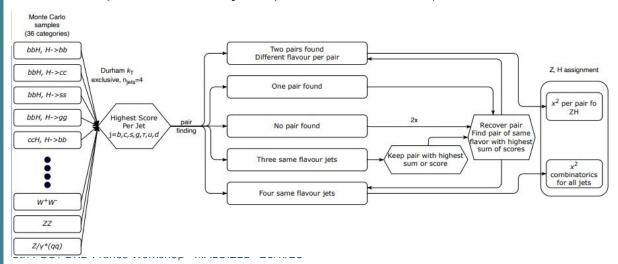
Same analysis for **365GeV** with some tuning

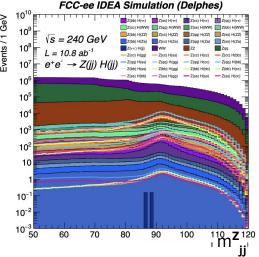
Predicted label

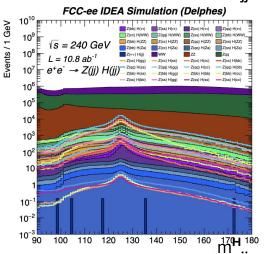
80

ZH→qqjj

Performed by George lakovidis


Signals: Z(qq)H(bb/cc/gg/ss/WW/ZZ/ττ)


Backgrounds: WW, ZZ, Z/γ*, Zqq, ννZ


2D Study of the both hadronic masses from the **H** and **Z**

$$m_{H} = m^{H}_{jj}$$
 $m_{z} = m^{z}_{jj}$

Events selection orthogonal to Z(II)/Z(vv) analysis **Jet Pairing** based on tagger scores & combinatorics (see next) **Categorization** of jets using the same ParticleNet jet tagger scores as previous analysis (different method)

Final results

- Simultaneous fit on all categories templates to extract σ.BR
- All signal and background parameters are let free. Monte Carlo stats uncertainties included
- Full combination of all channels, with ZH/VBF separation

Expected sensitivity (%) of $\sigma.BR(H \rightarrow jj)$ at 68% CL

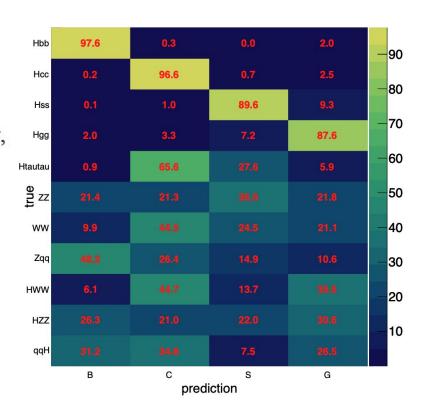
Byproducts of the analysis

240 GeV L = 10.8ab ⁻¹		H→bb	Н→сс	H→gg	H→ss	H→ZZ	H→WW	Η→ττ
Combined	ZH	0.21	1.75	0.85	110	6.9	1.08	2.53
	VBF	1.89	19.4	5.50	990	130	16	∞
365 GeV L = 3.12ab ⁻¹		H→bb	Н→сс	H→gg	H→ss	H→ZZ	H→WW	Η→ττ
Combined	ZH	0.39	3.01	2.13	340	25	3.05	11.0
Combined	4 11	0.59	3.01	2.10	J-10	20	0.00	11.0

9

Conclusion

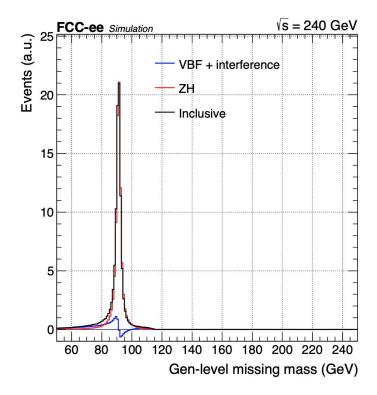
- %-level and better precision achieved for several couplings
- Very promising in comparison to other proposed future experiments
- Summary presentation of other Higgs decay study available: [FCC-Week25] / [EPS-HEP]

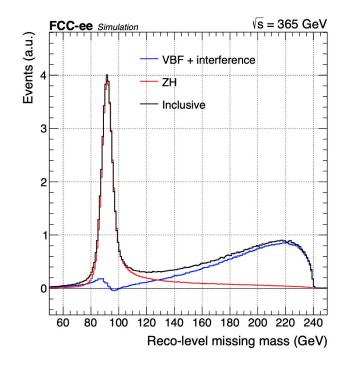

Thanks for your attention

Backup

ZH→qqjj Categorization

	В	C	\mathbf{S}	\mathbf{G}
L	< 1.1	< 1.0	< 1.1	< 1.2
\mathbf{M}	$\in [1.1, 1.9]$	$\in [1.0, 1.8]$	$\in [1.1, 1.7]$	$\in [1.2, 1.5]$
H	> 1.9	> 1.8	> 1.7	> 1.5


$$J_{12}^{score}=J_{1}^{score}+J_{2}^{score}, J=b,c,s,g,u,d,\tau,$$



12

ZH & VBF separation

∘ ZH : $e^+e^- \rightarrow \nu_\mu \nu_\mu^* 3$ ∘ VBF : $e^+e^- \rightarrow \nu_e \nu_e^- - e^+e^- \rightarrow \nu_\mu \nu_\mu^-$ (w/ interference)

Comparison with ILC

- Results rescaled to reach similar luminosity
- Additional scalings to remove impact of beam polarization
- Results for ILC would correspond to a ~4x longer data taking period compared to FCC

Collider	FCC CDR	FCC ESPPU	LCF ESPPU	LCF	$LCF \times \sqrt{1.2}$
Integrated luminosity	10.8 ab^{-1}	10.8 ab^{-1}	2.7 ab^{-1}	10.8 ab^{-1}	10.8 ab^{-1}
$H \to any$	± 0.36	± 0.31	± 0.62	± 0.31	± 0.34
$\mathrm{H} o \mathrm{bb}$	± 0.20	± 0.21	± 0.41	± 0.21	± 0.22
$\mathrm{H} ightarrow \mathrm{cc}$	± 1.5	± 1.6	± 2.5	± 1.25	± 1.37
$\mathrm{H} o \mathrm{gg}$	±1.3	± 0.8	± 2.1	± 1.05	± 1.15