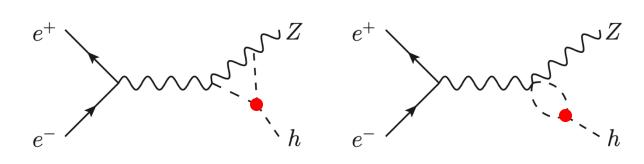
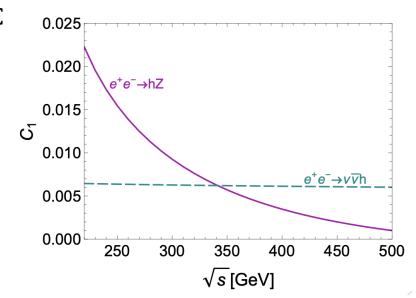
Improvements in ZH cross section measurement

Tom Fournier

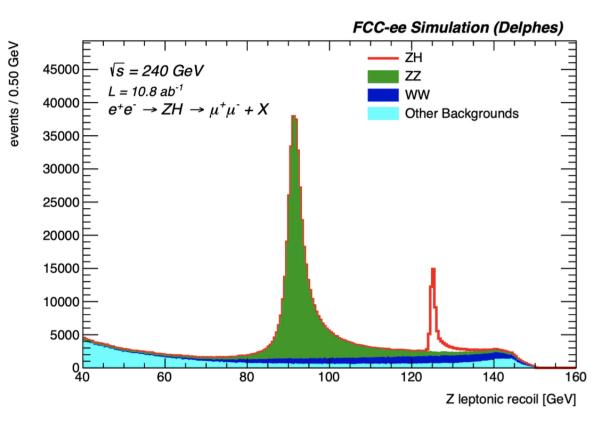
Supervised by Gregorio Bernardi

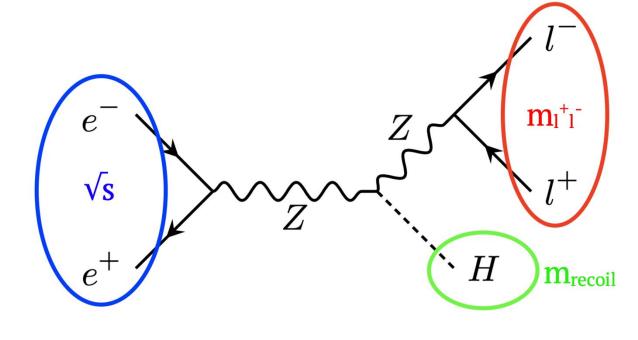
5th FCC/DRD France Workshop, November 2025





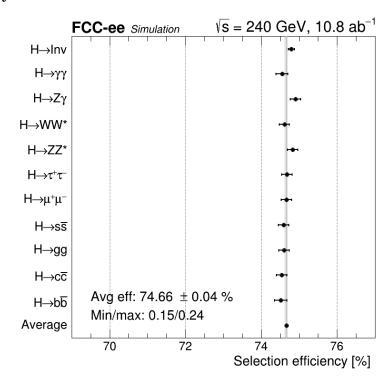
Motivations

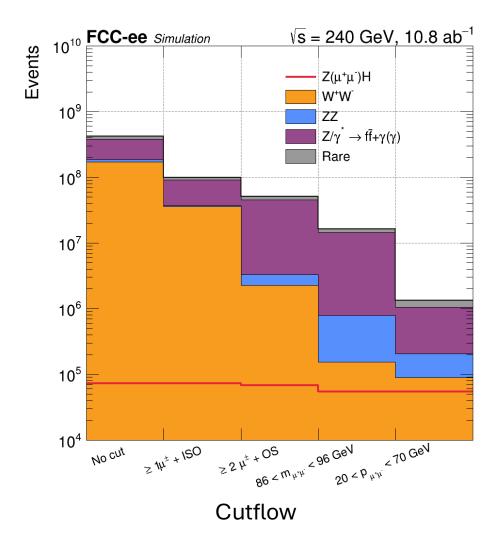

- Measuring σ_{ZH} permit us to access g_{ZZ^*} in a model-independent way through
 - $\sigma_{ZH} \times \mathcal{B}(H \to X\bar{X}) \propto \frac{g_{HZZ}^2 \times g_{HXX}^2}{\Gamma_H} \to \sigma_{ZH} \times \mathcal{B}(H \to ZZ^*) \propto \frac{g_{HZZ}^4}{\Gamma_H}$
- Once known, g_{ZZ^*} used as a standard candle to determines g_{XX} in a model-independent way
- Recoil mass shape distribution analysis to extract the Higgs mass with great precision
- We can also acces the Higgs width Γ_H through
- Allow us to access Higgs self-coupling through NLO correction to ZH cross section
 - $\Sigma_{NLO} = Z_H \Sigma_{LO} (1 + \kappa_{\lambda} C_1)$
 - With C_1 dependent on $\sqrt{s} \to \text{can measure } \sigma_{ZH}$ at $\sqrt{s} = 240 \text{ GeV}$ and $\sqrt{s} = 365 \text{ GeV}$ to access κ_{λ}
 - Complementary measurement to the one made at HL-LHC



Recoil mass method

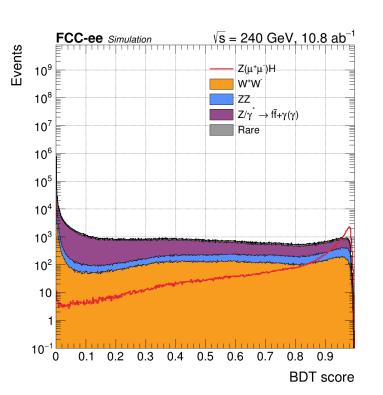
 e^+e^- collisions \rightarrow initial state known \rightarrow can use the recoil mass method to measure σ_{ZH} in a model-independent way

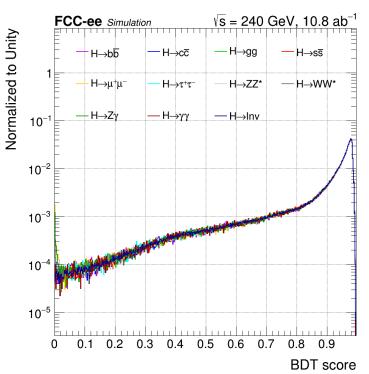

$$m_{recoil}^2 = (E_{\ell^+\ell^-} - \sqrt{s})^2 - p_{\ell^+\ell^-}^2 = s - 2\sqrt{s}E_{\ell^+\ell^-} + m_{\ell^+\ell^-}^2$$


- Focus only on the Z and its daughter particles variable to reconstruct m_{recoil}
- Analysis done in three channels
 - $Z(\rightarrow e^+e^-)H$
 - $Z(\rightarrow \mu^+\mu^-)H$
 - $Z(\rightarrow q\overline{q})H$
- Only presenting the leptonic channel (e^+e^- and $\mu^+\mu^-$)

- Lepton momentum p > 20 GeV
- At least one lepton isolated ($I_{rel} < 0.25$)
- At least two leptons with opposite charge
- If more than 2 leptons, select the pair that minimizes:

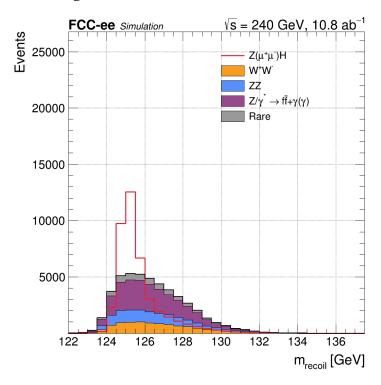
•
$$\chi^2 = 0.6 \times (m_{\ell^+\ell^-} - 91.2 \text{ GeV})^2 + 0.4 \times (m_{recoil} - 125 \text{ GeV})^2$$

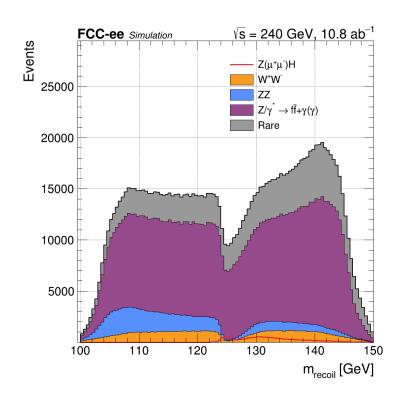

- 86 $GeV < m_{\ell^+\ell^-} < 96 \ GeV$
- $20 \ GeV < p_{\ell^+\ell^-} < 70 \ GeV$



- Cutflow and selection efficiency shown for $\mu^+\mu^-$
- Selection efficiency independent of Higgs decay

MVA Discriminant

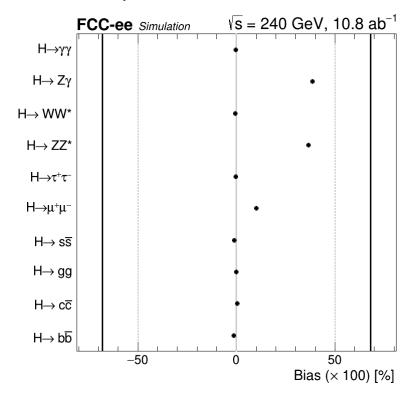




- Train a BDT to further discriminate signal from background
- BDT distribution independent of the Higgs decay

Variable	Description
$p_{leading}$	Leading lepton momentum
$ heta_{leading}$	Leading lepton polar angle
$p_{subleading}$	Subleading lepton momentum
$ heta_{subleading}$	Subleading lepton polar angle
$m_{\ell^+\ell^-}$	Lepton pair invariant mass
$p_{\ell^+\ell^-}$	Lepton pair momentum
$ heta_{\ell^+\ell^-}$	Lepton pair polar angle
$\Delta heta_{\ell^+\ell^-}$	Acolinearity
$\pi - \Delta \phi_{\ell^+\ell^-}$	Acoplanarity

Uncertainty Extraction


- Separate events into:
 - High score region: BDT score > 0.86(0.84) for $\mu^+\mu^-(e^+e^-)$
 - Low score region: BDT score < 0.86(0.84) for $\mu^+\mu^-(e^+e^-)$
- ${\color{red} \bullet}$ Concatenate the histograms and fits on the resulting distribution to extract the total σ_{ZH}
- Take into account the contributions from $Z(q\bar{q})H$ and $Z(\nu\bar{\nu})H$ in the fit
- 1% normalization for all background processes (uncorrelated)

Channel	ZH uncertainty
$Z(e^+e^-)H$	0.81%
$Z(\mu^+\mu^-)H$	0.68%
$Z(\ell^+\ell^-)H$	0.52%

Bias Test

We use a bias test to determine the degree of independence of the selection:

- We modify the Br of each Higgs decays individually so that $\frac{\delta \sigma_{ZH}}{\sigma_{ZH}} = X\%$
- We construct pseudo-data from these modified Br's
- Extract the bias by fitting the pseudo-data
 - $b = 100 \times (\mu_{fit} 1 X/100)$ with X in %
- Compare it with the measurement uncertainty

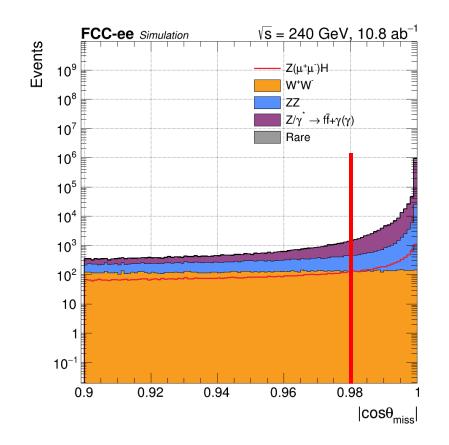
X = 5% prior taken for all the bias test

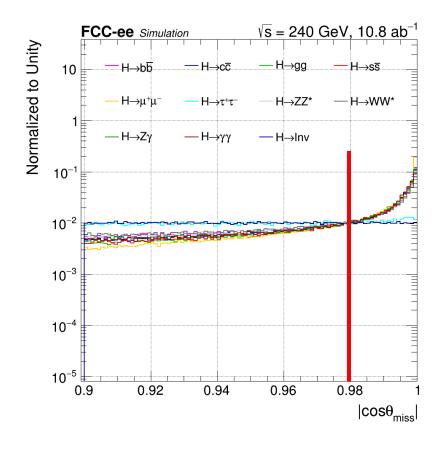
- If the bias is within the quoted uncertainty, the test is successful
- Shown here for $\mu^+\mu^-$, bias for e^+e^- and combined fit are in back-up slides

For the Baseline

- Slighty high bias for $H \to \mu^+ \mu^-$
- High bias observed for $H \to ZZ^*$ and $H \to Z\gamma$
 - Due to ambiguity in the selection at the χ^2 step
- But still under ZH uncertainty → test successful

Channel	Baseline [%]
$H o b ar{b}$	-0.01
$H \to c\bar{c}$	+0.00
$H \rightarrow gg$	-0.00
$H \to s\bar{s}$	-0.01
$H \to \mu^+ \mu^-$	+0.10
$H \to \tau^+ \tau^-$	-0.00
$H \rightarrow ZZ^*$	+0.37
$H \rightarrow WW^*$	-0.01
$H \to Z\gamma$	+0.38
$H \to \gamma \gamma$	-0.00


Comparison with ILC


(+/-) indicates the beam polarization: $(Pe^-, Pe^+) = (-80\%, +30\%)/(+80\%, -30\%)$

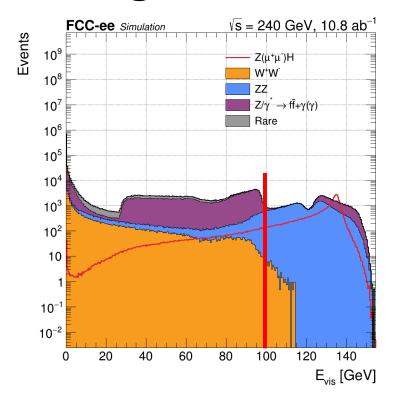
Selection	$Z(e^+e^-)H$	$Z(\mu^+\mu^-)H$	$Z(\ell^+\ell^-)H$
ILC (+/-)	4.0%/4.7%	3.2%/3.6%	2.5% / 2.9%
FCC (Baseline)	0.81%	0.68%	0.52%
ILC scaled to FCC luminosity (+/-)	0.61% / 0.71%	0.48% / 0.54%	0.38% / 0.44%
FCC (Baseline) scaled to ILC cross section (+/-)	0.63% / 0.75%	0.54% / 0.63%	0.41% / 0.48%

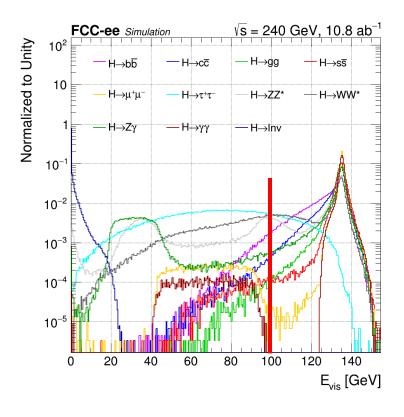
- With the same cross sections and the same luminosity, ILC is better than FCC
- Particulary on the $Z(\mu^+\mu^-)H$ channel
 - Due to the different \sqrt{s} and the polarization of the beam that leads to better signal to background ratio
 - Still better performance if taken into account
 - Because of the separation of the events in two samples
 - The use of $cos\theta_{miss}$ cut in their selection

Adding a cut on $\cos \theta_{miss}$

- $cos\theta_{miss}$ is a good variable to remove ZZ and Z/γ background but break invariance in selection efficiency
- Already used in Higgs mass measurement
 - Don't require model-independence
 - Try to implement it in cross-section analysis
 - $cos\theta_{miss} < 0.98$

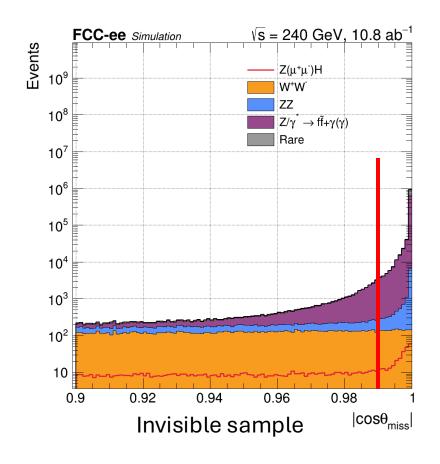
Comparing with Baseline Selection

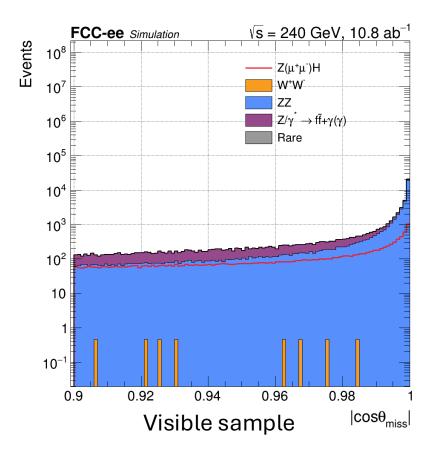

Selection	$Z(e^+e^-)H$	$Z(\mu^+\mu^-)H$	$Z(\ell^+\ell^-)H$
Baseline	0.81%	0.68%	0.52%
Baseline + $cos\theta_{miss}$ cut	0.67%	0.60%	0.45%


- lacktriangledown $cos heta_{miss}$ cut selection improves the precision on σ_{ZH}
- But gives a too high bias for $H \to \mu^+ \mu^-$
 - Bias test is not successful
- Can't use this cut to measure σ_{ZH}

The goal is to try to include $cos\theta_{miss}$ cut to improve the precision on σ_{ZH} while keeping the bias low

Channel	Baseline [%]	Baseline + $cos heta_{miss}$ cut [%]
$H o b ar{b}$	-0.01	-0.02
$H \to c \bar{c}$	+0.00	-0.09
$H \rightarrow gg$	-0.00	-0.21
$H \to s\bar{s}$	-0.01	-0.17
$H \to \mu^+ \mu^-$	+0.10	-0.69
$H \to \tau^+ \tau^-$	-0.00	+0.21
$H \rightarrow ZZ^*$	+0.37	+0.29
$H \to WW^*$	-0.01	+0.03
$H o Z\gamma$	+0.38	+0.20
$H o \gamma \gamma$	-0.00	+0.03


Separating Events



- ullet Visible energy E_{vis} is a good variable to discriminate signal from background but is a very model-dependent variable
- Could use it on the Higgs mass measurement
- Can't use it to select events but can use it to separate events
 - Visible sample $(E_{vis} > 100 \ GeV)$
 - Invisible sample ($E_{vis} < 100 \ GeV$)
- Inspired from ILC selection, they also separate the analysis into visible and invisible sample

Adding the $cos\theta_{miss}$ cut in the « Invisible » Sample

- Z/γ events are in the invisible sample
 - Applying $cos\theta_{miss} < 0.99$ cut on the invisible sample
 - No cut on the visible sample to avoid bias
- No other cut applied
 - Other cuts were tested but do not affect the precision or increase the bias

Comparing to other Selection

Selection	$Z(e^+e^-)H$	$Z(\mu^+\mu^-)H$	$Z(\ell^+\ell^-)H$
Baseline	0.81%	0.68%	0.52%
Baseline + $cos heta_{miss}$ cut	0.67%	0.60%	0.45%
Baseline + E_{vis} splitting	0.67%	0.59%	0.45%

- E_{vis} sep and $cos\theta_{miss}$ cut selections give same precision on σ_{ZH}
- E_{vis} sep has better bias than $cos\theta_{miss}$ cut selection and reduce bias on $H \to \mu^+\mu^-$ channel
- Slighty better bias on $H \to ZZ^*$ and $H \to Z\gamma$ but still a bit high

 \rightarrow Bias test successful for E_{vis} sep

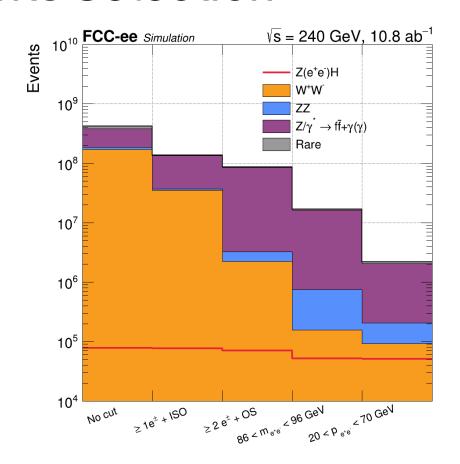
Channel	Baseline [%]	Baseline + cosθ _{miss} cut [%]	Baseline + E_{vis} splitting [%]
$H o b \overline{b}$	-0.01	-0.02	-0.01
$H \to c \bar{c}$	+0.00	-0.09	+0.00
$H \rightarrow gg$	-0.00	-0.21	+0.01
$H \to s\bar{s}$	-0.01	-0.17	-0.01
$H \rightarrow \mu^+ \mu^-$	+0.10	-0.69	+0.01
$H \to \tau^+ \tau^-$	-0.00	+0.21	-0.02
$H \rightarrow ZZ^*$	+0.37	+0.29	+0.33
$H \to WW^*$	-0.01	+0.03	-0.00
$H o Z\gamma$	+0.38	+0.20	+0.30
$H \to \gamma \gamma$	-0.00	+0.03	-0.03

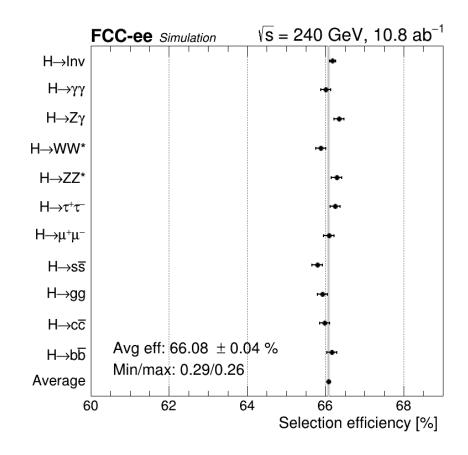
Comparison with ILC

Selection	$Z(e^+e^-)H$	$Z(\mu^+\mu^-)H$	$Z(\ell^+\ell^-)H$
ILC (+/-)	4.0%/4.7%	3.2%/3.6%	2.5% / 2.9%
FCC (Baseline)	0.81%	0.68%	0.52%
FCC (Baseline + E_{vis} splitting)	0.67%	0.59%	0.45%
ILC scaled to FCC luminosity (+/-)	0.61% / 0.71%	0.48% / 0.54%	0.38% / 0.44%
FCC (Baseline + E_{vis} splitting) scaled to ILC cross section (+/-)	0.54% / 0.62%	0.48% / 0.54%	0.36% / 0.41%

- Now assuming the same cross sections and luminosity
 - $Z(\mu^+\mu^-)H$ has the same precision for FCC and ILC
 - $Z(e^+e^-)H$ is now better for FCC than ILC
- Which gives a better global precision
- Due to the successful addition of the $cos\theta_{miss}$ cut to the selection

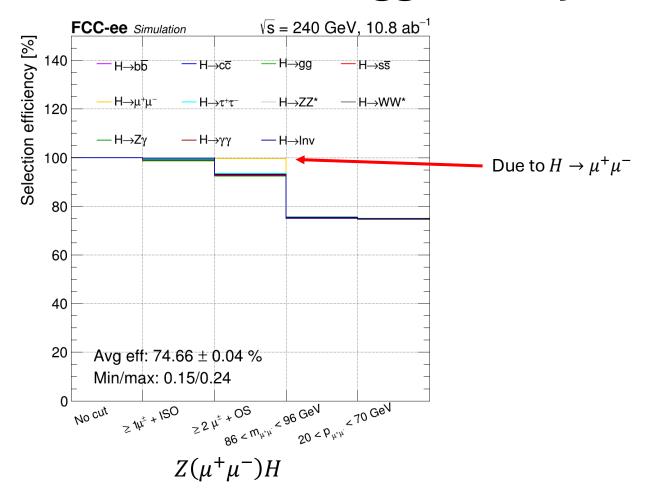
Conclusion and Outlook

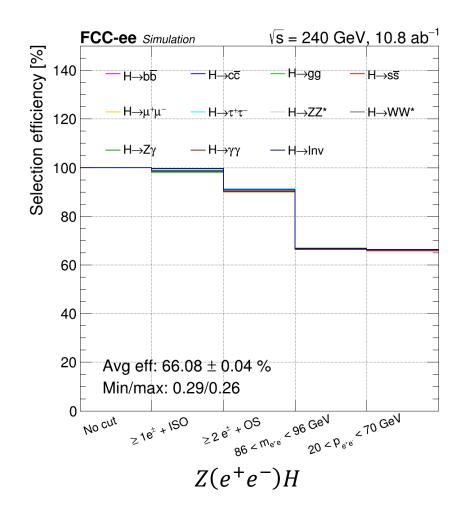

- Succeded in improving the precision on σ_{ZH} by adding a cut on $cos\theta_{miss}$ in the sub-sample
 - $Z(e^+e^-)H: 0.81\% \to 0.67\%$, 17% improvement
 - $Z(\mu^+\mu^-)H: 0.68\% \to 0.59\%$, 13% improvement
 - $Z(\ell^+\ell^-)H: 0.52\% \to 0.45\%$, 16% improvement
- Kept model-independence while adding $cos\theta_{miss}$ cut
 - Bias test successful for all channels
- Preliminary results
 - Analysis still in progress to confirm the results
 - Have to include $H \to Inv$ to bias test to check the model-independence of the selection
 - Couldn't include it due to code problems


Outlook:

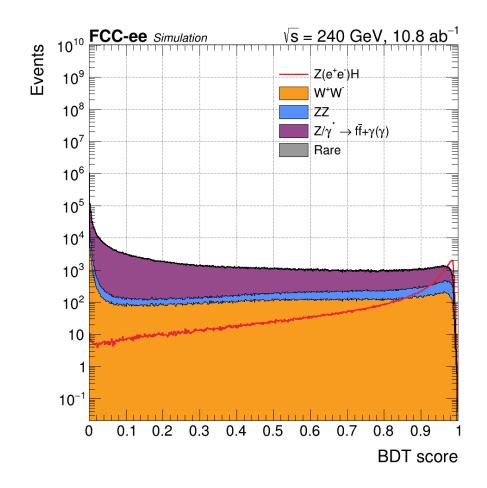
- Redo the analysis for $\sqrt{s} = 365 \, GeV$
 - Will improve precision on κ_{λ} measurement
- Work on the hadronic channel of σ_{ZH} analysis

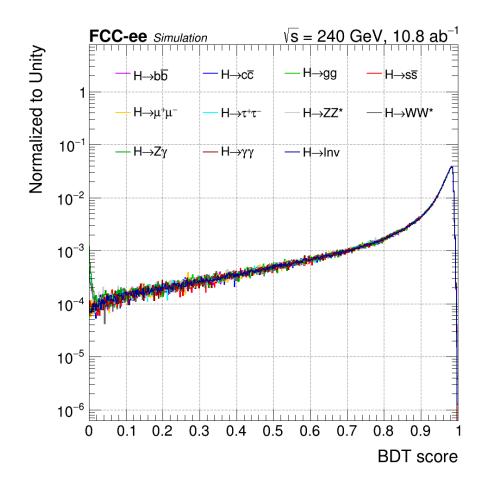
Thanks for listening


BACK UP

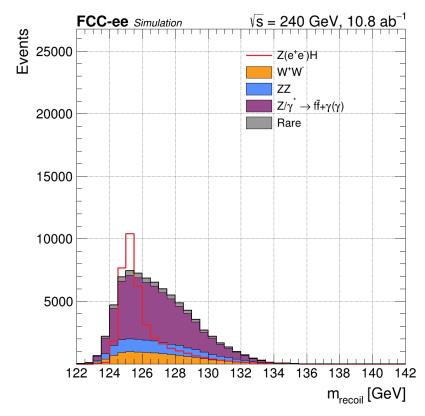


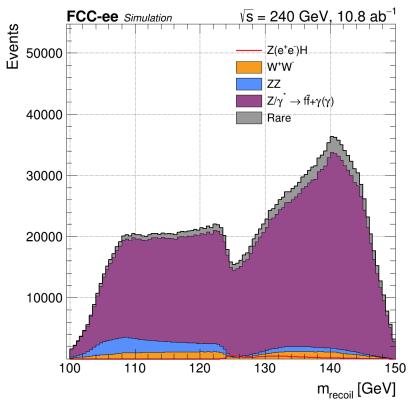
Cutflow and events selection for e^+e^- (Baseline)


Cutflow for each Higgs decay



Cutflow independent of the Higgs decay


MVA Discriminant



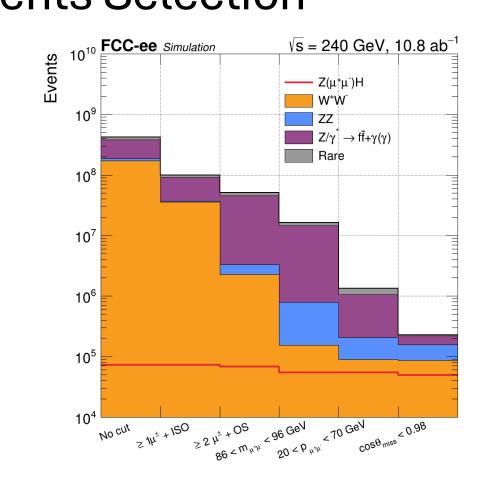
BDT score distribution for e^+e^-

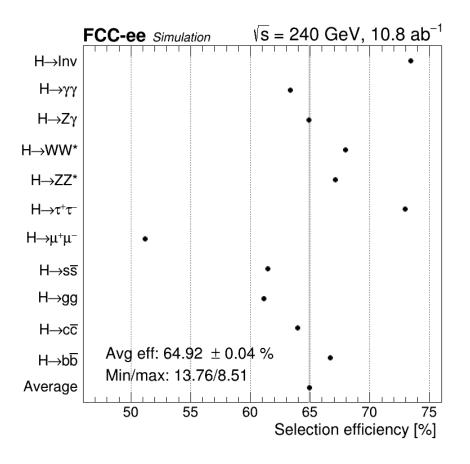
Uncertainty Extraction

High score region

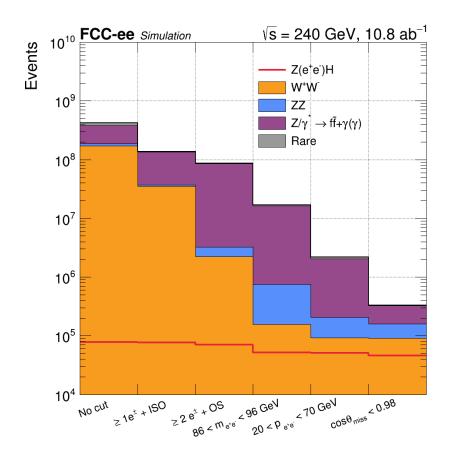
Low score region

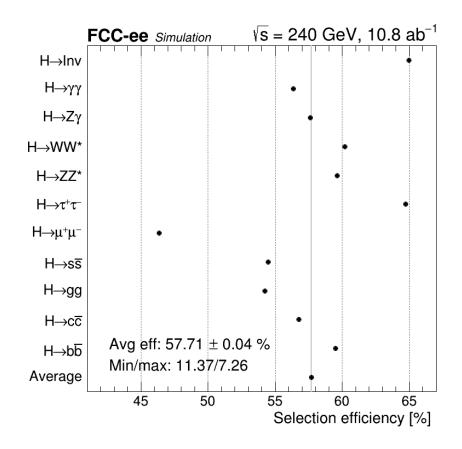
Bias Test

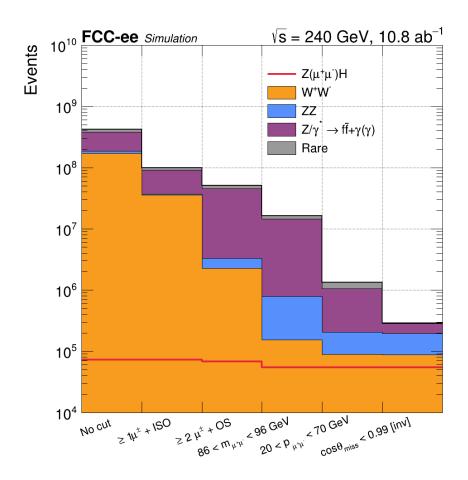

Bias test for e^+e^-

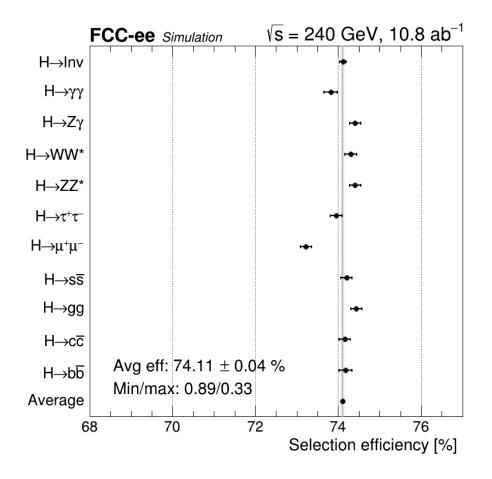

Channel	Baseline [%]	Baseline + cosθ _{miss} cut [%]	Baseline + E_{vis} splitting [%]
$H o b \overline{b}$	+0.00	+0.00	+0.00
$H \to c\bar{c}$	-0.03	-0.11	-0.03
$H \rightarrow gg$	-0.03	-0.23	-0.02
$H \to s\bar{s}$	-0.03	-0.19	-0.03
$H \rightarrow \mu^{+}\mu^{-}$	-0.02	-0.70	-0.09
$H \to \tau^+ \tau^-$	-0.02	+0.20	-0.03
$H \rightarrow ZZ^*$	+0.38	+0.31	+0.35
$H \to WW^*$	-0.04	-0.00	-0.04
$H \to Z\gamma$	+0.36	+0.18	+0.28
$H \to \gamma \gamma$	-0.02	+0.01	-0.04

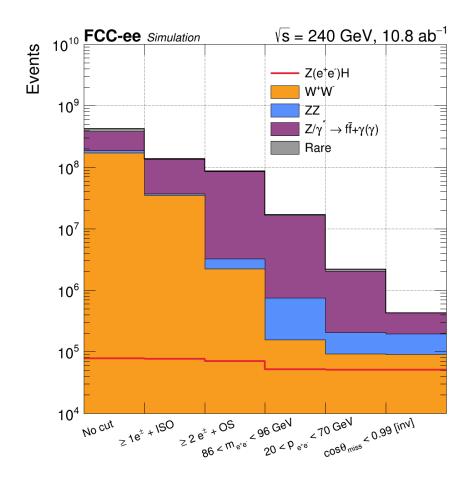
Bias Test

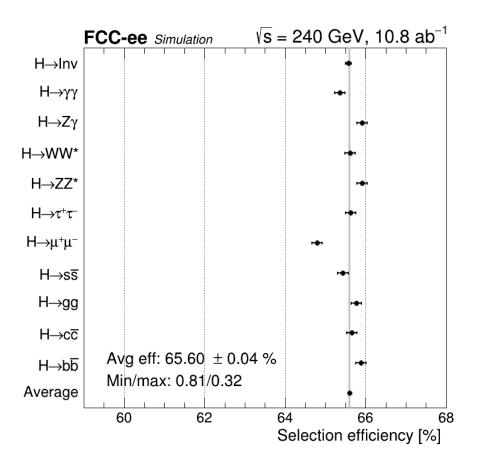

Bias test for $\ell^+\ell^-$


Channel	Baseline [%]	Baseline + $cos heta_{miss}$ cut [%]	Baseline + E_{vis} splitting [%]
$H o b ar{b}$	+0.00	+0.00	+0.00
$H \to c\bar{c}$	-0.03	-0.11	-0.03
$H \rightarrow gg$	-0.03	-0.23	-0.02
$H \to s\bar{s}$	-0.03	-0.19	-0.03
$H \to \mu^+ \mu^-$	-0.02	-0.70	-0.09
$H \to \tau^+ \tau^-$	-0.02	+0.20	-0.03
$H \rightarrow ZZ^*$	+0.38	+0.31	+0.35
$H \to WW^*$	-0.04	-0.00	-0.04
$H \to Z\gamma$	+0.36	+0.18	+0.28
$H o \gamma \gamma$	-0.02	+0.01	-0.04




Cutflow and events selection for $\mu^+\mu^-$ (Baseline + $cos\theta_{miss}$ cut)




Cutflow and events selection for e^+e^- (Baseline + $cos\theta_{miss}$ cut)

Cutflow and events selection for $\mu^+\mu^-$ (Baseline + E_{vis} splitting)

Cutflow and events selection for e^+e^- (Baseline + E_{vis} splitting)