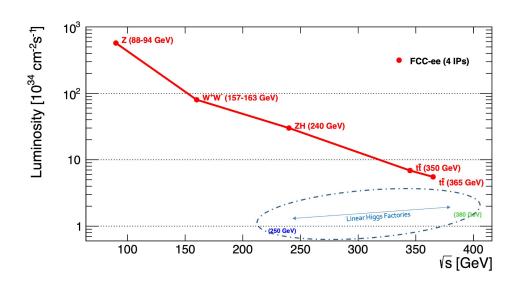


FCC Physics Summary and next steps

Michele Selvaggi (CERN)


FCC/DRD France Workshop – 26 November 2025

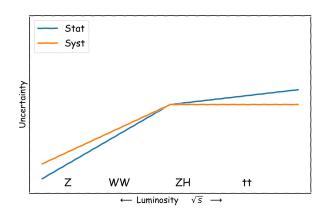
Outline

- The challenges and opportunities
- (Brief) summary of FSR conclusions
- Preparing the pre-TDR phase for the physics group
- Partial and preliminary possible next steps
 - mostly from an experimental perspective

The FCC-ee programme

Exquisite luminosity allows for ultimate precision:

- 10⁵ larger dataset than LEP at the Z-pole, enables:
 - 300x improvement in statistical precision in EWPO
 - 10x larger statistics vs. planned flavor factories
 - ultra-feebly interactive particle searches up to m₇
- ~ millions of extremely clean H and Top, allow:
 - o [0.1-1%] H, top couplings precision
 - mass and width 10x better precision than LHC



Well beyond LEP, opens novel challenges and opportunities:

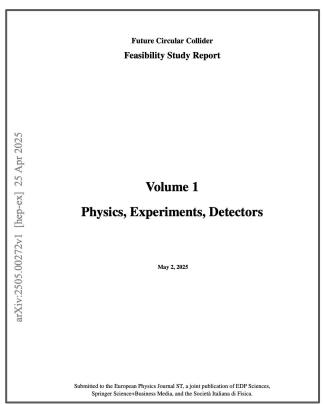
- how do we build optimal detectors?
- what precision do we need from TH?
- how do we define an optimal run sequence?

The name of the game

- make optimal use of all available statistics
 - hermeticity, efficiency
 - particle ID
 - energy/momentum/angular resolution

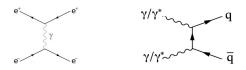
match systematic uncertainties to statistical errors

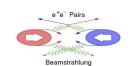
- beam energy and spread calibration (absolute, relative)
- o geometrical acceptance
- absolute luminosity determination
- momentum scale stability
- momentum resolution
- Higher order calculation, and NP modeling

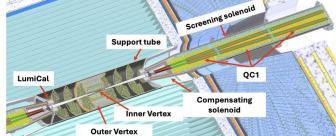

for each observable to measure, need:

- \rightarrow specific ancillary analyses
- \rightarrow beyond state-of-the-art analysis tools to be developed

The FCC Feasibility Study


- Conclusion of a long path started in 2020!
- Physics Programme articulated physics case of the integrated programme
- Physics Performance activities exploited "Case Studies" to extract physics motivated detector requirements
 - developed tools for simulation and reconstruction, MC production in coordination with the Software group
 - developed high level tools for physics analysis


Detector requirements - general considerations


FUTURE CIRCULAR COLLIDER

- Requirements for Higgs and above have been studied to some extent by LC:
 - we want a detector that is able to withstand a large dynamic range:
 - in energy ($\sqrt{s} = 90 365 \text{ GeV}$)
 - in luminosity (L = $10^{34} 10^{36} \text{ cm}^2/\text{s}$)

- most of the machine induced limitations are imposed by the Z pole run:
 - o large collision rates ~ 33 MHz and continuous beams
 - no power pulsing possible
 - large event rates ~ 100 kHz
 - fast detector response / triggerless design challenging (but rewarding)
 - **high occupancy** in the inner layers/forward region (Bhabha scattering/incoherent pair production/ yy hadrons)
 - beamstrahlung
- complex MDI: last focusing quadrupole is ~ 2.2m from the IP
 - magnetic field limited to B = 2T at the Z peak (to avoid disrupting vertical el SR)
 - limits the achievable track momentum resolution
 - anti"-solenoid
 - limits the acceptance to ~ 100 mrad
- \rightarrow mostly affect Z pole, measurements, in principle 3T field is possible at \sqrt{s} = 240 GeV

Physics landscape at the FCC-ee

Higgs factory

 m_H , σ , Γ_H self-coupling $H \rightarrow$ bb, cc, ss, gg $H \rightarrow$ inv $ee \rightarrow H$ $H \rightarrow$ bs, ..

Top

mtop, Γtop, ttZ, FCNCs

Flavor

"boosted" B/D/**τ** factory:

CKM matrix
CPV measurements
Charged LFV
Lepton Universality
r properties (lifetime, BRs..)

$$\begin{array}{c} B_c \rightarrow \boldsymbol{\tau} \ v \\ B_s \rightarrow D_s \ K/\pi \\ B_s \rightarrow K^* \boldsymbol{\tau} \ \boldsymbol{\tau} \\ B \rightarrow K^* \ v \ v \\ B_s \rightarrow \phi \ v \ v \ \dots \end{array}$$

QCD - EWK

most precise SM test

$$\rm m_{\rm Z}$$
 , $\rm \Gamma_{\rm Z}$, $\rm \Gamma_{\rm inv}$

 $\sin^2 \theta_{\rm W}$, ${\rm R}_{\rm /}^{\rm Z}$, ${\rm R}_{\rm b}$, ${\rm R}_{\rm c}$

 $A_{FB}^{\quad b,c}$, au pol.

 $\alpha_{\rm S}$,

 m_W, Γ_W

BSM

feebly interacting particles

Heavy Neutral Leptons (HNL)

Dark Photons Z_D

Axion Like Particles (ALPs)

Exotic Higgs decays

Detector requirements at the FCC-ee

Higgs factory

track momentum resolution (low X_0)

IP/vertex resolution for flavor tagging

PID capabilities for flavor tagging

jet energy/angular resolution (stochastic and noise) and PF

Flavor

"boosted" B/D/**τ** factory:

track momentum resolution (low X_0)

IP/vertex resolution

PID capabilities

Photon resolution, pi0 reconstruction

QCD - EWK

most precise SM test

acceptance/alignment knowledge to 10 µm

luminosity

Momentum resolution

BSM

feebly interacting particles

Large decay volume

High radial segmentation

- tracker
- calorimetry
 - muon

impact parameter resolution for large displacement

timing

triggerless

Detector Requirements summary

Aggressive		Conservative	Comments	
Beam-pipe $\frac{X}{X_0} < 0.5\%$		$\frac{X}{X_0} < 1\%$	$B\to K^*\tau\tau$	
Vertex	$\sigma(d_0)=3\oplus 15/(p\sin^{3/2}\theta)$ μm $rac{X}{Y_0}<1\%$	-	$ ext{B} ightarrow ext{K}^* au au \ R_c$	
vertex	$\delta L = 5 \mathrm{ppm}$	_	$\delta au_ au < 10\mathrm{ppm}$	
Tracking	$rac{\sigma_p}{p} < 0.1\%$ for $\mathcal{O}(50)\mathrm{GeV}$ tracks	$rac{\sigma_p}{p} < 0.2\%$ for $\mathcal{O}(50)~\mathrm{GeV}$ tracks	$egin{aligned} \delta M_H = 4 & \mathrm{MeV} \ \delta \Gamma_Z = 15 & \mathrm{keV} \ \mathrm{Z} & ightarrow au \mu \end{aligned}$	
	t.b.d.	$\sigma_{ heta} < 0.1~\mathrm{mrad}$	$\delta\Gamma_{\rm Z}({\rm BES})<10{\rm keV}$	
ECAL	$\frac{\sigma_E}{E} = \frac{3\%}{\sqrt{E}}$	$\frac{\sigma_E}{E} = \frac{10\%}{\sqrt{E}}$	${\rm Z} \rightarrow \nu_e \bar{\nu_e}$ coupling, B physics, ALPs	
	$\Delta x \times \Delta y = 2 \times 2 \text{ mm}^2$	$\Delta x \times \Delta y = 5 \times 5 \text{ mm}^2$	$ au$ polarization boosted π^0 decays bremsstrahlung recovery	
	$δz = 100 μm, δR_{min} = 10 μm (θ = 20^\circ)$	-	alignment tolerance for $\delta \mathcal{L} = 10^{-4}$ with $\gamma \gamma$ events	
HCAL	$\frac{\sigma_E}{E} = \frac{30\%}{\sqrt{E}}$	$\frac{\sigma_E}{E} = \frac{50\%}{\sqrt{E}}$	$H ightarrow s ar{s}, \ c ar{c}, gg, invisible \ HNLs$	
	$\Delta x \times \Delta y = 2 \times 2 \ \mathrm{mm}^2$	$\Delta x \times \Delta y = 20 \times 20 \; \mathrm{mm}^2$	$H \to s\bar{s},\; c\bar{c}, gg$	
Muons	low momentum ($p < 1 \mathrm{GeV}$) ID	-	$B_s \to \nu \bar{\nu}$	
Particle ID	$3\sigma \text{ K/}\pi$ p < 40 GeV	3σ K/ π p < 30 GeV	$egin{aligned} \mathrm{H} ightarrow \mathrm{s}ar{\mathrm{s}} \ b ightarrow s uar{ u}, \ldots \end{aligned}$	
LumiCal	tolerance $\delta z = 100~\mu\mathrm{m}$, $\delta R_{\mathrm{min}} = 1~\mu\mathrm{m}$ acceptance 50-100 mrad	-	$\delta \mathcal{L} = 10^{-4}$ target (Bhabha)	
Acceptance	100 mrad	-	$e^+e^- \to \gamma\gamma$ $e^+e^- \to e^+e^-\tau^+\tau^-(c\bar{c})$	

- Beyond a Higgs factory
 - Good vertex, excellent PID for flavor tagging
 - In particular for strange
 - jet energy resolution
 - calorimetry/Particle-Flow
- Strong non trivial requirements at the Z pole, e.g
 - Z width (mom. resolution)
 - Tau lifetime (abs. Vertex length scale)
 - Tau pol. (calorimeters)
 - Luminosity: acceptance
 - B physics: beampipe, vertex resolution
 - LLPs: continuous tracking and calorimetry, timing

Non-exhaustive list! .. still much to be understood, in particular at the Z pole!

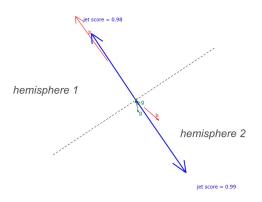
Precision Physics at the Tera Z

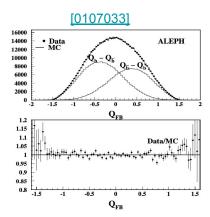
- The whole LEP dataset is produced every ~ 30 seconds!
- 10⁵ x LEP dataset in total
 - □ > 100 x reduction in stat. uncertainty
 - ☐ 10 x increase in physics reach
 - \triangle $\wedge \sim \delta O^{-\frac{1}{2}} \sim \mathcal{L}^{-\frac{1}{4}}$ for dim-6

Precise measurements are discovery tools:

- Loop corrections from heavy particles
- LEP/SLC hinted at the existence of the top and Higgs, and estimated their mass
 - $M_{t} \sim 170 \pm 10 \text{ GeV}, (114 <) M_{H} < 200 \text{ GeV}$

Main Challenge:

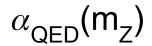

- bring systematics down to stat. level
- designing accelerator with required specifications

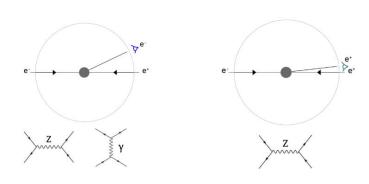


Observable	1	presen	ıt	FCC-ee	FCC-ee	Comment and
100000000000000000000000000000000000000	value	±	uncertainty	Stat.	Syst.	leading uncertainty
$m_{\rm Z}$ (keV)	91 187 600	±	2000	4	100	From Z line shape scan Beam energy calibration
Γ _Z (keV)	2 495 500	±	2300	4	12	From Z line shape scan Beam energy calibration
$\sin^2 \theta_{\mathrm{W}}^{\mathrm{eff}} (\times 10^6)$	231,480	±	160	1.2	1.2	From $A_{\rm FB}^{\mu\mu}$ at Z peak Beam energy calibration
$1/\alpha_{\rm QED}(m_{ m Z}^2) \ (\times 10^3)$	128 952	\pm	14	3.9	small	From $A_{\rm FB}^{\mu\mu}$ off peak
				0.8	tbc	From $A_{\rm FB}^{\mu\mu}$ on peak QED&EW uncert. dominate
$R_{\ell}^{\mathrm{Z}} \; (\times 10^3)$	20767	±	25	0.05	0.05	Ratio of hadrons to leptons Acceptance for leptons
$lpha_{ m S}(m_{ m Z}^2)~(imes 10^4)$	1 196	±	30	0.1	1	Combined $R_{\ell}^{\mathrm{Z}},\Gamma_{\mathrm{tot}}^{\mathrm{Z}},\sigma_{\mathrm{had}}^{0}$ fit
$\sigma_{\rm had}^0 \left(\times 10^3 \right) ({\rm nb})$	41 480.2	±	32.5	0.03	0.8	Peak hadronic cross section Luminosity measurement
$N_{\rm v}(\times 10^3)$	2 996.3	±	7.4	0.09	0.12	Z peak cross sections Luminosity measurement
$R_{\rm b}~(\times 10^6)$	216 290	±	660	0.25	0.3	Ratio of $b\overline{b}$ to hadrons
$A_{\rm FB}^{\rm b,0}~(\times 10^4)$	992	±	16	0.04	0.04	b-quark asymmetry at Z pole From jet charge
$A_{\mathrm{FB}}^{\mathrm{pol}, au}$ (×10 ⁴)	1 498	±	49	0.07	0.2	au polarisation asymmetry $ au$ decay physics
τ lifetime (fs)	290.3	±	0.5	0.001	0.005	ISR, τ mass
τ mass (MeV)	1776.93	±	0.09	0.002	0.02	estimator bias, ISR, FSR
τ leptonic (μν _μ ν _τ) BR (%)	17.38	±	0.04	0.00007	0.003	PID, π^0 efficiency
m _W (MeV)	80 360.2	±	9.9	0.18	0.16	From WW threshold scan Beam energy calibration
$\Gamma_{ m W}$ (MeV)	2 085	±	42	0.27	0.2	From WW threshold scan Beam energy calibration
$lpha_{ m S}(m_{ m W}^2)~(imes 10^4)$	1010	±	270	2	2	Combined $R_\ell^{ m W}$, $\Gamma_{ m tot}^{ m W}$ fit
$N_{\rm v}~(imes 10^3)$	2 920	±	50	0.5	small	Ratio of invis. to leptonic in radiative Z returns
m _{top} (MeV)	172 570	±	290	4.2	4.9	From tt threshold scan QCD uncert. dominate
$\Gamma_{\text{top}} (\text{MeV})$	1 420	±	190	10	6	From tt threshold scan QCD uncert. dominate
$\lambda_{\mathrm{top}}/\lambda_{\mathrm{top}}^{\mathrm{SM}}$	1.2	±	0.3	0.015	0.015	From tt threshold scan QCD uncert. dominate
ttZ couplings		±	30%	0.5–1.5 %	small	From $\sqrt{s}=365\mathrm{GeV}$ run

Heavy Flavor observables

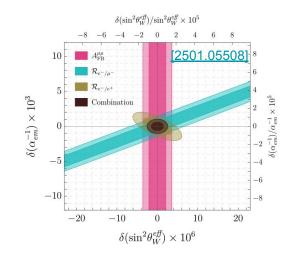
- Defined as $\mathbf{R}_{\mathbf{q}} = \mathbf{\Gamma}_{\mathbf{q}} / \mathbf{\Gamma}_{\mathbf{had}}$ with $\mathbf{q} = \mathbf{b}$, c, s measure individual chiral couplings to the Z \rightarrow $(\sim g_1^2 + g_2^2)$
- A_{FB}^{q} provides most precise $\sin \theta_{W}$ measurement
- Current (relative) uncertainties ~ 10⁻³
- Dramatic improvements compared to LEP are expected, driven by:
 - Reduced beam-spot sizes, light beam-pipe
 - Light and precise vertex detectors (few μ m single point resolution)
 - Particle ID allowing strange tagging (K⁺ identification up to 30-40 GeV)
 - and NEW measurement of R_s, A_{FB}
 - Advanced AI flavor tagging algorithms
 - pure b, c and strange jets → background contamination negligible
- Projections based on fast sim:
 - o 2(b) 10(s) (4-10) x 10⁻⁶ for FCC-ee




Heavy flavor observables at the Z pole

Aim is to confirm that full-simulation analyses can reproduce the projected 10⁻⁵-10⁻⁶ level precision when including detector effects, and beam-backgrounds

- Heavy Flavor precision observables $(R_b, A_{FR}^b, ...)$
- Dominant systematics:
 - Flavour-tagging algorithms and calibration (b, c jets),
 - hemisphere correlations mainly driven by QCD (gluon emissions, g→bb/cc, etc ..)
 - can be positive (negative) for hard (soft) emissions
 - can be reduced with (acoplanarity) cuts
 - measured directly in data
 - 10⁹ (10⁶) gluon splitting samples in FCC-ee (LCF)
 - mistag rate/purity
- Detector requirements:
 - **Vertex detector layout and material budget** (for A_{FR}b,c)
 - RICH vs dN/dx for R, A_{FB}
 ALEPH data re-analysis ?



Riembau

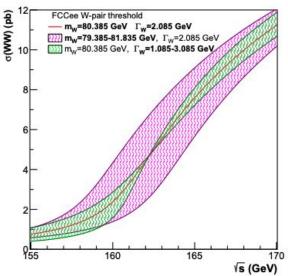
 $\mathcal{R}_{e^{-}/e^{+}}(\theta) = \frac{\sigma(e^{-}e^{+} \to e^{-}(\theta) + X)}{\sigma(e^{-}e^{+} \to e^{+}(\theta) + X)}$

- Dominant parametric uncertainty in EW precision ($\sin \vartheta_W^{eff}$ and m_W^{eff}) fit:
 - Current uncertainty $\delta \alpha / \alpha = 1.4 \text{ x } 10^{-4}$
- FCC-ee can directly measure it (as opposed to LEP3, LCs)
 - o from off-peak FB asymmetry (interference with γ^*) in $\mu\mu$ events ($\delta\alpha/\alpha$ = 3x10⁻⁵)
 - small experimental uncertainty, stat dominated
 - Z-pole energy points chosen to optimize measurement!
 - from $R_{e^{+/e_{-}}}$, $R_{e^{-/\mu_{-}}}$ ($\delta \alpha / \alpha = 0.6 \text{x} 10^{-5}$)
 - e⁺/e⁻ efficiency control (charge mis-id), material budget (impact of bremstrahlung))
 - e^{-1}/μ^{-1} acceptance difference (to be determined from 10¹¹ lepton pairs)
 - Sets constraints on tracker, alignment, ECAL, muon detectors
 - Can then provide comparison with Lattice calculation

WW threshold mass (and width)

Mass (I) Measure WW production as a function of sqrt(s)

$$\varDelta m_{\rm W}({\rm T}) = \left(\frac{d\sigma_{\rm WW}}{dm_{\rm W}}\right)^{-1} \varDelta \sigma_{\rm WW}({\rm T}). \label{eq:deltamw}$$


$$\Delta m_{\mathrm{W}}(\mathrm{E}) = \left(\frac{d\sigma_{\mathrm{WW}}}{dm_{\mathrm{W}}}\right)^{-1} \left(\frac{d\sigma_{\mathrm{WW}}}{dE_{\mathrm{CM}}}\right) \Delta E_{\mathrm{CM}},$$

THEORY CHALLENGES (full NNLO EWK calculation)

 $\Delta m_W \sim 200 \text{ keV } (x50)$

- Mass (II)
 - Kinematic fit above threshold (using qqlv events)
 - requires also excellent knowledge of sqrt(s) res.depol
 - lepton momentum scale (calibrated also via radiative return Z events)
- Many more opportunities:
 - o V_{cb}, V_{cs}, etc ...
 - Leptonic BRs > 100x better than today

arXiv:2107.04444

Observable	ŗ	reser	ıt	FCC-ee FCC-ee		Comment ar	
	value	\pm	uncertainty	Stat.	syst.	leading uncertainty	
m _W (MeV)	80 360.2	±	9.9	0.18	0.16	WW threshold scan Beam energy calibration	
Γ _W (MeV)	2 085	±	42	0.27	0.2	WW threshold scan Beam energy calibration	
$\mathcal{B}(\mathrm{W} \to \mathrm{ev_e}) \times 10^4$	1071	±	16	0.13	0.10	From WW and ZH threshold luminosity	
$\mathcal{B}(W \to \mu \nu_{\mu}) \times 10^4$	1063	±	15	0.13	0.10	From WW and ZH threshold luminosity	
$\mathcal{B}(W \to \tau v_{\rm t}) \times 10^4$	1138	±	21	0.13	0.15	From WW scan ZH threshold luminosity	
$g_{Z}^{\nu_{e}}$	1.06	±	0.18	0.007	small	From WW threshold	

Precision Frontier at the WW threshold and above

- Validate, with full analyses, the expected precision on W-mass and Width measurement using realistic detector simulation
- Two measurements (and their combination):
 - threshold scan, full study, including backgrounds and systematics
 - (hadronic) background control to be studied
 - explicit determination at 160 and 240 GeV
 - design constrained kinematic fit (for leptonic and hadronic channels)
 - absolute beam-energy calibration (better than 2×10⁻⁷)
 - at 240 measure √s with radiative return Z events at 240 GeV (including Z hadronic decays, plus other processes? rad. WW/ZZ in-situ)
 - Study systematics due to hadronization, NP effects, ISR, at 240 GeV, but at 160 GeV
 - impact of lepton momentum scale calibration?
 - o combination of the two approach, with full treatment of correlations

The Flavored Circular Collider

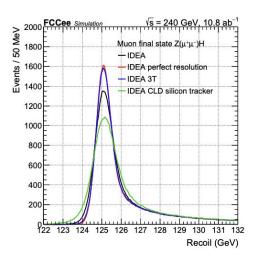
- Solid (detector requirements) studies exist for selected physics benchmarks
 - \circ b \rightarrow s transitions (e.g. B \rightarrow K* $\tau\tau$, K* vv, ...) , CKM (B_s \rightarrow D_s K), τ physics, ...
- 2 -year long workshop has been initiated (<u>1st event</u>, last week in CERN):
 - refine understanding of complementarity between FCC reach vs BELLE2/LHCbII
 - \blacksquare rare decays, final states with π^0 , neutrinos
 - o refine detector requirements on PID, vertexing, and calorimetry (π^0 , taus)
- Future work organised in 5 Working Goups:
 - WG1 Rare decays (i.e. FCNCs)
 - WG2 CPV observables
 - WG3 (mostly) CP conserving observables, e.g. charged current semileptonic b-decays, CKM from WW and ttbar, lattice QCD, V_{ch}
 - WG4 Charm: mixing, CPV and rare decays
 - WG5 Tau and selected EW e.g. tau decays, tau production (including polarisation), and Z→qq with exclusive final states In addition,
 - other topics will be pursued outside WG structure, e.g. spectroscopy, absolute BF measurements, hadronization fractions etc., Kaon physics, and may form new WGs in future if reach critical mass.
- If you are looking for a physics topic to work on, read excellent summaries from <u>Guy Wilkinson</u> (Exp) and <u>Zoltan Ligeti</u> (TH)

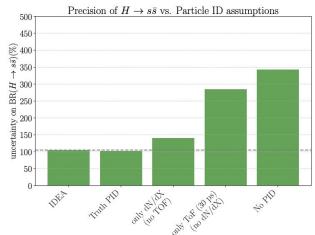
Higgs

 $\delta(\sigma \times BR)$

\sqrt{s}	240 G	eV	365 GeV			
channel	ZH	$\boldsymbol{WW} \to \boldsymbol{H}$	ZH	$\mathbf{WW} \to \mathbf{H}$		
$\begin{array}{l} {\rm ZH} \rightarrow {\rm any} \\ {\rm \gamma H} \rightarrow {\rm any} \end{array}$	$\pm 0.31 \\ \pm 150$		± 0.52			
$\begin{array}{l} \mathbf{H} \rightarrow \mathbf{b} \mathbf{b} \\ \mathbf{H} \rightarrow \mathbf{c} \mathbf{c} \\ \mathbf{H} \rightarrow \mathbf{s} \mathbf{s} \\ \mathbf{H} \rightarrow \mathbf{g} \mathbf{g} \\ \mathbf{H} \rightarrow \tau \tau \\ \mathbf{H} \rightarrow \mu \mu \\ \mathbf{H} \rightarrow \mathbf{W} \mathbf{W}^* \\ \mathbf{H} \rightarrow \mathbf{Z} \mathbf{Z}^* \\ \mathbf{H} \rightarrow \gamma \gamma \\ \mathbf{H} \rightarrow \mathbf{Z} \gamma \end{array}$	$\begin{array}{l} \pm 0.21 \\ \pm 1.6 \\ \pm 120 \\ \pm 0.80 \\ \pm 0.58 \\ \pm 11 \\ \pm 0.80 \\ \pm 2.5 \\ \pm 3.6 \\ \pm 11.8 \end{array}$	± 1.9 ± 19 ± 990 ± 5.5	$\begin{array}{l} \pm 0.38 \\ \pm 2.9 \\ \pm 350 \\ \pm 2.1 \\ \pm 1.2 \\ \pm 25 \\ \pm 1.8 ^{(*)} \\ \pm 8.3 ^{(*)} \\ \pm 13 \\ \pm 22 \end{array}$	± 0.66 ± 3.4 ± 280 ± 2.6 ± 5.6 (*) ± 2.1 (*) ± 4.6 (*) ± 15 ± 23		
$\begin{array}{l} H \rightarrow \nu\nu\nu\nu \\ H \rightarrow \text{inv.} \end{array}$	± 25 < 5.5×10^{-4}		± 77 < 1.6×10^{-3}			
$\begin{array}{l} H \rightarrow \mathrm{dd} \\ H \rightarrow \mathrm{uu} \\ H \rightarrow \mathrm{bs} \\ H \rightarrow \mathrm{bu} \\ H \rightarrow \mathrm{sd} \\ H \rightarrow \mathrm{cu} \end{array}$	$ \begin{array}{c} <1.2\times10^{-3}\\ <1.2\times10^{-3}\\ <3.1\times10^{-4}\\ <2.2\times10^{-4}\\ <2.0\times10^{-4}\\ <6.5\times10^{-4} \end{array}$					

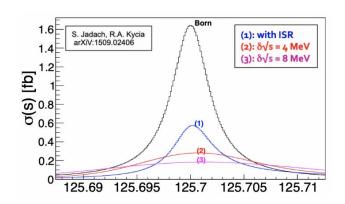
 $\delta \mathsf{g}$

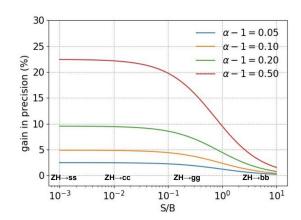

(4			
Coupling	HL-LHC	FCC-ee	FCC-ee + FCC-hh
κ_{Z} (%)	1.3*	0.10	0.10
$\kappa_{ m W}$ (%)	1.5*	0.29	0.25
$\kappa_{ m b}$ (%)	2.5*	0.38 / 0.49	0.33 / 0.45
$\kappa_{ m g}~(\%)$	2*	0.49 / 0.54	0.41 / 0.44
$\kappa_{ au}$ (%)	1.6*	0.46	0.40
$\kappa_{\mathrm{c}}~(\%)$		0.70 / 0.87	0.68 / 0.85
κ_{γ} (%)	1.6*	1.1	0.30
$\kappa_{\mathrm{Z}\gamma}$ (%)	10*	4.3	0.67
κ_{t} (%)	3.2*	3.1	0.75
κ_{μ} (%)	4.4*	3.3	0.42
$ \kappa_{ m s} $ (%)	-	$^{+29}_{-67}$	$^{+29}_{-67}$
Γ _H (%)	-	0.78	0.69
\mathcal{B}_{inv} (<, 95% CL)	1.9×10^{-2} *	5×10^{-4}	2.3×10^{-4}
B _{unt} (<, 95% CL)	4×10^{-2} *	6.8×10^{-3}	6.7×10^{-3}

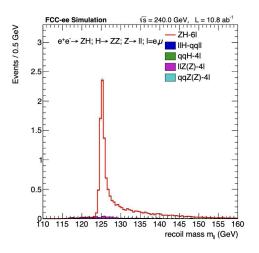

- Permil precision in Higgs gauge couplings (10x vs LHC)
- (sub-)percent precision in fermion couplings (IIIrd gen) (5-50x vs LHC)
 - strange Yukawa in reach (II generation)

Higgs and Top physics

- Most explored area of the FCC physics program, detector requirements are rather clear
 - excellent track momentum resolution for Higgs mass
 - vertex, PID capabilities for flavor tagging, and excellent hadronic resolution $H \rightarrow bb$, cc, ss, gg
- Migrate from fast to full sim (240/365 GeV) and include beam backgrounds
 - systematics less demanding than at Z, WW, but robust systematics & calibrations methods need to be demonstrated
 - \sqrt{s} s calibration (Higgs mass, top mass) with rad. return (Z \rightarrow leptons, hadrons)
 - Only proof of principle, to be assessed with full sim, proper event generators, systematics etc..
 - flavor tagging calibration
 - How does a calibration at the Z pole extrapolate to ZH threshold (and ttbar threshold)?


	√s	E _γ (GeV)	N _{μμ} (×10 ⁶)	N _{qq} (×10 ⁶)	σ _{√s} (μμ)	σ _{√s} (qq)	$\sigma_{\sqrt{s}}$ (comb.)	σ _{√s} (EPOL)
6 ab-1	m _H	29	107	173	66o keV	280 keV	225 keV	200 keV ?
12 ab ⁻¹	2m _W	54	47	667	900 keV	340 keV	285 keV	300 keV
5 ab-1	240 GeV	102	5.6	53	4.2 MeV	2.4 MeV	1.7 MeV	_
0.2 ab ⁻¹	2m _{top}	163	0.1	0.3	51 MeV	60 MeV	26 MeV	-





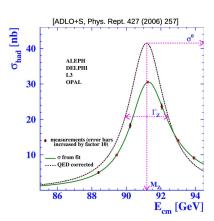
Higgs and Top physics

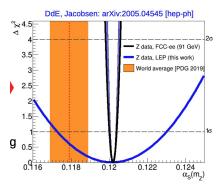
- Participate in Global Event Reconstruction (PFlow, jet/т/tagging) to assess potential of various detector concepts to achieve asymptotic performance target
 - Classical PF approach (Pandora) tuning
 - ML-PF approach
- Cover missing channels (HZZ*/HWW* @ 240)
- Electron Yukawa (√s=125 GeV), requires mono-chromatisation implication
 - gluon tagging with NNLL showers
 - missing channels (WW*, ZZ*, ..)
 - study Yukawa precision as a function of the higgs mass (precision)

QCD

Z-pole run: Perfect lab to **study QCD** (fragmentation, jet substructure)

• α_s standard model prediction:

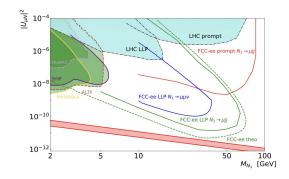

$$\mathrm{R_{W,Z}}(Q) = \frac{\Gamma_{\mathrm{W,Z}}^{\mathrm{had}}(Q)}{\Gamma_{\mathrm{W,Z}}^{\mathrm{lep}}(Q)} = \mathrm{R_{\mathrm{W,Z}}^{\mathrm{EW}}} \left(1 + \sum_{i=1}^{4} a_i(Q) \left(\frac{\alpha_S(Q)}{\pi}\right)^i + \mathcal{O}(\alpha_S^5) + \delta_{\mathrm{mix}} + \delta_{\mathrm{np}}\right)$$

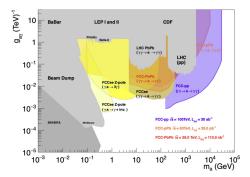

- Known at N3LO QCD, 2-loop EW corrections
- Experimentally, expected precision on α_s at permil level

$$\alpha_{s}(m_{z}) = 0.12030 \pm 0.00028 \ (\pm 0.2\%)$$

10x improvement

- Non-perturbative modeling: fragmentation/hadronization (in particular strange)
- PID-driven measurements for fragmentation (p/K/ π , strange/baryons) \rightarrow quantify detector PID
- γγ physics and forward e± taggers; (g−2), via γγ→ττ feasibility
- $\alpha_{\rm S}$ from event shapes/energy correlators/Lund plane;
- re-evaluation from Z/W/T widths with latest projections
- PanScales/NNLL shower studies; generator tunes strategy

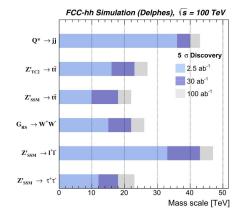


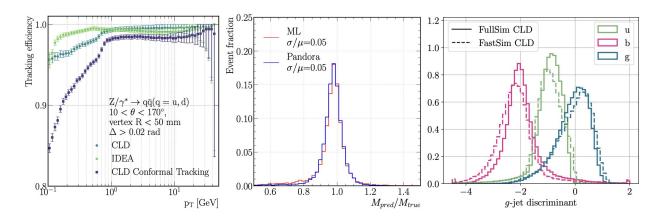


BSM and FCC-hh

Current benchmarks FCC-ee

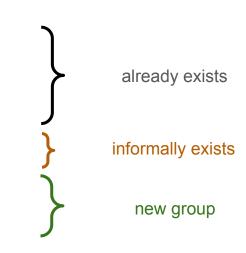
- HNLs,
- ALPs,
- dark-sector/shower scenarios




- A lot of the potential has be explored in fast simulation
 - Clear that continuous tracking and high segmentation, timing, helps, but to be quantified systematically for every benchmark
- Backgrounds and detector impact (nuclear interactions, kinks, etcv ..) to be assessed

On the FCC-hh (see also my next talk)

- FCC-ee/hh complementarity in the SMEFT2026 to be fully explored, high-Q² EFT
- Finalise key analyses missing in FSR:
 - HH self-coupling, only bbγγ, bbττ studied so far
 - HHH, only bbbbττ studied so far
 - singlet extensions, more complex models for EWPT
- Pile-up propagation into reconstruction; ultra-boosted tagging performance + calibration


High Level Reconstruction and Montecarlo

- Goal: Deliver analysis-ready chain in full sim: tracking, PFlow, e/μ/γ, jets, flavour/τ for several detector concepts
 - o for assessing detector performance (ML-PF/tracking goes in this direction),
 - CLD, IDEA tracking availble
 - CLD ML-PF, Allegro in the working
- Many aspects to be studied:
 - Electron GSF tracking (gas vs silicon) and brem recovery (Crystals vs Imaging)
 - Impact of timing, RICH detector on PFlow performance
 - o Detector concept assessment (IDEA, ILD, Grainita?)...

Physics group effort in the pre-TDR phase

- Unify "Physics Programme" + "Physics Performance" → single "Physics Studies" group
- Mandate:
 - articulate physics case,
 - o define requirements,
 - o match theory/exp. systematics to statistics
- Physics Physics Update Report (to be produced by summer 2027)
- Physics groups:
 - Electroweak physics
 - Higgs physics
 - Top-quark physics
 - Flavour physics
 - QCD and photon-photon physics
 - BSM physics
 - FCC-hh physics
 - High-level reconstruction (in close collaboration with the Software group)
 - Monte Carlo tools (in close collaboration with the Software group/Precision)
 - Analysis Tools (in close collaboration with the Software group)
 - Precision calculations
 - Global fits and EFT

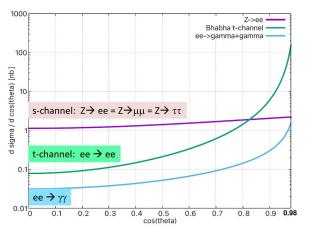
There will be open calls for the coordination of such groups very soon

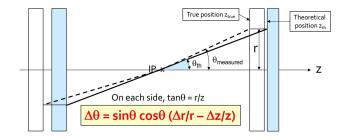
Conclusion

- Feasibility Study successfully completed
- Physics projections translated into physics requirements
- Physics groups submitted 5 documents to the ESPPU
 - Higgs, EW, Top/ QCD/ BSM/ Flavor / FCC-hh
- No major show-stopper found

However much work ahead of us, in terms of detector design (R&D) and requirements, both from theory and exp.

In the pre-TDR phase, physics study groups should focus

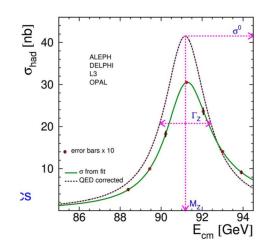

- in consolidating existing studies with more realistic conditions (BIB, full sim)
 - o in particular at the Z pole, (EWK precision, FIPs, ...)
- explore and refine physics case
 - flavor (including interplay with EWK)
 - o BSM
 - synergy/complementarity with ee/hh

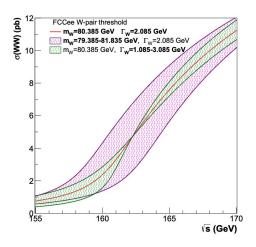

Backup

Luminosity/acceptance

FUTURE COLLIDER

- All absolute cross-section measurements rely on precise determination of the **luminosity** uncertainty
 - the ultimate statistical precision
 - 10^{-6} (Z pole) -- 10^{-3} (ZH, top threshold)
- Contrary to pp, can measured in situ via well (very) known processes
 - di-photon : $e^+e^- \rightarrow \gamma\gamma \quad (\delta\sigma_{stat}/\sigma \backsimeq 10^{-5})$ di-photon: pure QED corrections up to 3-loops
- Theory Challenges:
 - bhabha : $e^+e^- \rightarrow e^+ e^- (\delta\sigma_{TL}/\sigma \hookrightarrow 10^{-4})$
 - large systematics from higher order corrections: low energy vacuum polarisation, EW, QED
- **Experimental Challenges:**
 - require exquisite control of acceptance:
 - detector components positioning to 1-10 µm
 - alignment and monitoring to ensure stability
 - physics μμ, e+e-, γγ events using kinematic from well known initial state and beam constraints (crossing angle) will be extremely valuable
 - full potential to be established!




Beam energy related challenges for precision

- The statistical precision for precise mass and width determination of Z, W and top is 20-50x better than LHC (and LEP)
 - e.g $\delta m_w \sim 200 \text{ keV}$ (reminder: latest CMS $\delta m_w \sim 9.9 \text{ MeV}$)
- Matching such precision requires extraordinary knowledge of beam related parameters
- Mass precision determination (m₇, m_W, m_H, m_t)
 - o dominant uncertainty is absolute knowledge of \sqrt{s}
 - $\sqrt{s} \le 2m_w \rightarrow \text{resonant depolarisation (unique to e+e- colliders)}$
 - $\sqrt{s} > 2m_w \rightarrow$ monitor using in situ physics events
 - from physics Z(μμ)γ events, WW?
 dominant systematics for m_μ,m,

See Guy Wilkinson

- Width precision determination (Γ_Z), dominant systematics can be constrained in situ with $\mu\mu$ pairs
 - beam energy spread/ relative "point-to-point" √s uncertainty
 - Impose tight requirements on
 - Tracking momentum resolution (single point, B field, material budget)
 - Momentum scale stability (to monitor with B probes or low mass resonances)
 - Optimal analysis techniques still to be developed

