New infrastructure for the Tokyo ALTAS Tier-2

H. Matsunaga

I. Ueda

(ICEPP, The University of Tokyo)

Introduction

- Tier-2 dedicated to ATLAS
 - the system optimized to the ATLAS computing
- 3-year lease contract for the whole computer system (including system engineers)
 - 2007-2009 for the previous system
 - 2010-2012 for the current system
- Switchover of the whole system every 3 years
 - the electrical and the cooling systems stay the same

Procurements

- Policy is 3-year lease for the whole computer system (including contract work by system engineers)
 - lower price by a big tendering
 - 2007-2009 for the previous system
 - 2010-2012 for the current system
 - Need to replace the whole system at a time
 - The tape library was retained in the last replacement
 - Continue using the UPS and the cooling systems
 - Bidding was conducted last summer

System migration

- During the replacement, reserved resources in another computer room was used temporarily (~1 month)
 - Much less CPU power (with old hardware)
 - Data storage system in the Tier-2 has to migrate twice
 - 200~300 Tbytes of data files
 - Manual alteration of the tables for the DPM database (MySQL)
- All the hardware (inc. racks and cables) was replaced in last November
 - Completed within ~1 week
 - OS installation, configuration, and burn-in tests was partially done in advance outside the University
 - Started production use one month later

The new system

- Same concept as the current system
 - LCG (Tier-2) part and Non-LCG part are logically divided
 - Still good network connection between them
 - Blade server for CPU resource
 - good density and maintainability
 - External RAID Box with Fibre-Channel link for disk storage
 - Good performance (and experience)

Enhancements

- Technology evolution over the last 3 years
 - More powerful CPU and more cores
 - Faster RAID controller and larger hard disk drive
- 10 Gb Ethernet NIC for worker nodes
 - But oversubscribed into the switch. At most 2-3
 Gb per node available when used concurrently.
- Reduce bottlenecks at the interlinks between Ethernet switches
 - More of this later

Component details

- Blade server
 - CPU: WoodCrest (dual core) to Nehalem-EP (quad core)
 - RAM: 8 Gytes to 16 Gbytes
 - HDD: 73 Gbytes (mirrored) to 300 Gbytes (mirrored)
- Disk array
 - 16 slots to 24 slots (faster RAID controller)
 - HDD: 500 Gbytes to 2 Tbytes
 - Fibre Channel: 4 Gbps to 8 Gbps
 - 2 disk arrays/server (5 in the previous system)
- Ethernet switches
 - 3 x RX-16 (16 cards/switch) to 2 x RX-32 (32 cards/switch)
- Tape system
 - LTO3 to LTO4 drives (in part)

Old system

New system

Software for Tier-2

- No major change from the previous system
- DPM as the disk storage system
 - 1 head node (SLC5)
 - 15 file servers (SLC5, XFS)
 - 60 filesystems = 15 x 2 disk arrays x 2 filesystems/array
 - 1.2 Pbytes in one pool
 - 1.0 Pbytes pledge
 - All ATLAS space tokens
 - Can add more disk arrays if needed
 - E.g. From AOD+DESD to ESD model

Software for Tier-2 (cont)

- LCG-CE
 - Torque/Maui
 - 896 cores (112 SLC5 nodes)
 - 12k HS06
- NFS server for ATLAS software area
 - Same fileserver and RAID as DPM ones
- Other services
 - Top BDII, WMS/LB, MyProxy
 - (ActiveMQ based) APEL
 - Squid proxy for ATLAS conditions database cache

Network connectivity

- 10 Gbps WAN (same as before)
- All Tier-2 resources connected to one Ethernet switch
 - No bottleneck due to inter-switch link
 - In the previous system, servers were connected to two switches, and the interlink was 20Gbps.
- Local resources connects to both two switches
 - Local CPUs can read data in Tier-2 disks

Old configuration

8 x 10Gbps is the limit of link aggregation for this switch

New configuration

Local resources

- Blade servers for batch and interactive nodes
 - Same architecture as those in Tier-2
 - 500+ servers with LSF batch system
- NFS (v3) servers
 - − 10+ servers (~PB)
- Tape library
 - CASTOR for HSM
 - LTO-3 or 4 drives
- Oracle RAC
- AFS servers for the software repository

Data access and management

- DPM storage in Tier-2
 - Access from WNs within ATLAS (and WLCG)
 framework
 - (<2Gbps x) 112 WNs vs. (<10Gbps x) 15 fileservers (30 RAIDs)
 - Access also possible from local CPU servers
 - With X.509 credentials
 - Number of jobs should be adjusted if necessary (by user)

Data access and management (cont)

- Local NFS servers
 - Users' data are stored mainly in NFS servers
 - Users like plain filesystem
 - LOCALGROUPDISK is not very popular
 - Official data can also be written with dq2-get etc.
 - Scalability is a biggest issue
 - Each user should throttle jobs if they are I/O intensive
 - Even Tier-2 CPUs can read data
 - But user mapping is different between Tier-2 and local resources

Data access and management (cont)

CASTOR

- Cache disk + Tapes (3PB)
- Still under construction with new hardware
 - New software version: 2.1.9
- Data archive in the future
 - For both user data and official data
 - Easier for importing from NFS servers
 - Need additional staging disks for importing from DPM?
- Can be used for user analysis in the long term

Summary

- The whole computer system has been replaced at the end of last year
 - System design is nearly the same as the previous one
- Most of the components are already working well
 - Operations are stable
- CASTOR deployment is a big challenge.
 - For large data archive