

in the

status on LFV H⁰→τμ

Gérald Grenier, D0-France meeting Lyon, May 3rd-4th 2010

> Issuer Neiman in Pusique Nordeni et de l'ensigue des l'autories

IN

p1

Gérald Grenier, meeting D0-France, May 3rd 2010

UNIVERSITE DE LYON

Some motivations

Why looking for a $\mu\tau$ resonnance ?

Such a resonnance would contribute to the muon (g-2) and deviate it from SM expectation.

 $a_{\mu} = \begin{cases} 11659208.0(5.4)(3.3) \times 10^{-10} & expt \\ 11659183.4(0.2)(4.1)(2.6) \times 10^{-10} & EW + hadronic + hadronic \end{cases}$

BSM model with such possible resonnances : •SUSY RPV with sneutrino-μ-τ coupling

NP group looked at sneutrino-e-μ (D0 note 5299)

An eµ resonnance would also impact muon (g-2)
 2HDM

Higgs sector can violate Lepton Flavor

But such a resonnance usualy modifies $\tau \rightarrow \mu \gamma$ decay.

 $BR(\tau \rightarrow \mu \gamma) < 4.5 \times 10^{-8}$

Getting (g-2) discrepency with small enough $\tau \rightarrow \mu \gamma$ decay rate usually requires some tuning.

p2

Gérald Grenier, meeting D0-France, May 3rd 2010

UNIVERSITE DE LYON

WARNING : old p17

Used MUinclusive skim

Used h-> $\tau(\mu) \tau$ analysis trigger and luminosity numbers

from the analysis of January 2007 (1012 pb⁻¹)

Background : uses same MC than JET+MET analysis (squaks/gluinos) P17 portion of Jet+MET MC described in D0 note 5671 Except Z+ jets is normalized to the cross section measured by D0 Published in Phys. Lett. B670, 292 (2009), 0808.1306.

Signal generated with a modified version of PYTHIA 6.409 using the same modification as for K. A. Assamagan *et.al.* Phys. Rev. D67, 035001 (2003), hep-ph/0207302.

Simulated Higgs mass in GeV (90, 110, 130 and 160)

Gérald Grenier, meeting D0-France, May 3rd 2010

еконат Хеллила на Римерия Хленбен 17 г. в. Раменд га пака Рактисла.

Object ID

Gérald Grenier, meeting D0-France, May 3rd 2010

<u>Tau :</u>

- Apply tau ES correction
- •Charge $\neq 0$
- •NN > 0.9/0.9/0.95
- •NNelec > NA/0.9/NA
- •|deteta| < 2.5
- •For type 1, remove if 1.1 <|eta|<1.4
- •Abs (track DCA z PV z) < 1./1./NA cm
- •CHF < 40%
- •Sum track Pt > 15/5/15 GeV
- •Et/Sum track Pt > 0.7/NA/0.4
- •Pt > 15/15/15 GeV

Muon :

- •Medium Nseg 3
- Isolation = NPTight
- Track Quality Medium
- •Abs (track DCA z PV z) < 1 cm
- •Pt > 30 GeV

Smearing muon pt in MC with 'pre' p17 ($Z+J/\Psi$) values Applying muid efficiencies corrections

MET :

UNIVERSITE DE LYON

metb corrcalo mu (same as JET+MET analysis)

In MC correct MET for muon smearing

Instruct Neurophi de Physique Nucléer et de Privero de Parturada

UNIVERSITE DE LYON

QCD background

RLipor

Taken from the SUSY H-> $\tau\tau$ -> $\mu\tau$ _had analysis

Looser muon selection, all tau types, no cut on NN output.

Ізания Ханжала на Риміція Мисьбан вт. на Реманота пра Разглізная

UNIVERSITE DE LYON

Higgs reconstruction

Assume MET is only due to the neutrinos coming from the tau decay.

Combine tau decay products and MET to form a 'full-reco' tau. If the tau match a jet, correct MET using tauES.

Combine 'full-reco' tau with a muon removing candidates where 'full-reco' tau and muon share a track.

$$\vec{P}_{T}^{\tau} = \vec{P}_{T}^{\tau visible} + \vec{P}_{T}^{miss}$$

$$P_{z}^{\tau} = P_{z}^{\tau visible} \left(1 + \frac{P_{T}^{miss}}{P_{T}^{\tau visible}} \right)$$

Remove pairs with same sign tau and muon.

The above formula is true if neutrinos (MET) and tau decay are colinear :

Will add the following cut on

 $\Delta \phi (\tau \text{ decay, MET})$

Gérald Grenier, meeting D0-France, May 3rd 2010

Higgs selection : tracks

Remove candidates where the tau and the muon have the same track.

Gérald Grenier, meeting D0-France, May 3rd 2010

ISSUED NORMAL DE PRESIDE NORMAN DE LE L'EXEMPTE DES PARTERES

Higgs selection : anti W

Remove candidates if mu+MET is compatible with a W.

Higgs selection : |Δφ (τ decay, MET)|

Higgs selection : anti Z

Higgs selection : number of candidates

			Tau Type 1								Signal $\sigma = 1$ pb			
cut level	data	total	Zee	Single Top	$t\bar{t}$	Dibosons	$Wl\nu + HF$	$Z\tau\tau$	$Z\mu\mu$	$Wl\nu$	Higg	gs m	ass in	GeV
		\mathbf{SM}									160	130	110	90
Tracks	220	160.2	0	0.01	0.7	1.5	2.3	35.1	86.8	33.8	7.5	7.7	7.4	6.4
anti W	192	132.1	0	6×10^{-4}	0.2	0.9	1.1	34.0	83.2	12.8	6.3	6.4	6.7	5.6
$\Delta \phi$	48	50.0	0	0	0.05	0.3	0.3	23.1	20.3	5.9	5.7	5.7	5.7	4.4
Anti Z	36	33.6	0	0	0.04	0.3	0.2	20.8	7.4	4.8	4.7	3.7	3.1	3.5

		Tau Type 2										nal σ	r = 1	pb
cut level	data	total	Zee	Single Top	$t\bar{t}$	Dibosons	$Wl\nu + HF$	$Z\tau\tau$	$\mathrm{Z}\mu\mu$	$Wl\nu$	Higg	s ma	ss in	GeV
		\mathbf{SM}									160	130	110	90
Tracks	395	395.1	0.06	0.1	5.2	8.4	7.6	170.2	112.9	90.7	53.7	40.8	33.4	22.6
anti W	328	321.6	0.06	0.03	1.9	3.8	4.2	167.0	109.0	35.7	46.0	35.7	30.5	21.3
Δφ	147	150.7	0.06	0.009	0.5	1.5	1.6	87.6	46.6	12.9	39.2	28.3	23.2	15.3
Anti Z	132	140.0	0.06	0.007	0.4	1.2	1.1	83.3	43.3	10.6	30.8	21.7	18.0	14.0

cut level			Tau Type 3							Signal $\sigma = 1$ pb				
	data	total	Zee	Single Top	$t\bar{t}$	Dibosons	$Wl\nu + HF$	$Z \tau \tau$	$Z\mu\mu$	$Wl\nu$	Higg	s ma	ss in	GeV
		\mathbf{SM}									160	130	110	90
Tracks anti W Δφ Anti Z	576	582.7	0.02	0.3	6.2	9.9	30.5	137.2	118.7	279.8	33.4	30.4	26.6	18.8
	385	375.7	0.0001	0.1	2.2	4.4	13.3	134.0	108.1	113.6	29.9	27.4	23.9	17.5
	137	138.5	0	0.02	0.4	1.2	3.9	56.4	40.4	36.3	22.7	19.6	17.0	11.5
	115	123.4	0	0.02	0.3	1.1	3.1	55.5	31.7	31.6	15.5	12.9	14.0	11.3

p11

3

TN

INSTRUCT NATIONAL DE PRESIQUE NUMBER

Gérald Grenier, meeting D0-France, May 3rd 2010

Higgs candidate mass

Higgs candidate MET

INSTRUCT NOTIONAL DE PRESIQUE NUMÉRIE DU LE PRESERVE DE DES PARTICUESES

Higgs candidate muon Pt

Université Claude Bernard (Lyon 1

Gérald Grenier, meeting D0-France, May 3rd 2010

Issunt National in Physique Northeir BU TA PERSISTA DES PARTICULAS

Higgs candidate tau Pt

INSTRUCT NOTIONAL DE PRESIQUE NUMÉRIE DU LE PRESERVE DE DES PARTICUESES

	From H->ττ analysi Luminosity Trigger Muon track match Muon Id Tau track match	s: 6.1% 3% 2.1% 0.5% 4%		
	Other systematics a muon Pt semearing PDF tau Id tau ES SM MC tau ES signal MC	 9 0.35% (SM) and 1.4%(signal) 12.8 % (SM) and 34.5% (signal) 2.7% (type 1), 1.0% (type 2) and 2.9% (type 3) (D0 note 54 7.3% (type 1), 2.1% (type 2) and 3.2% (type 3) (D0 note 54 2.8% (type 1), 0.9% (type 2) and 3.4% (type 3) 	08) 68)	
UNIVER		Gérald Grenier, meeting D0-France, May 3 rd 2010	TIN 2 Design of Neuropean Pre-	р16 Р 3

Gérald Grenier, meeting D0-France, May 3rd 2010

ISSURE NORMALIA DE PRESSUE NORMALE BULLE PRESSUE DE DES PARTICIES

Limits

Université Claude Bernard Guyon 1

Reasonnable data-SM prediction agreement. Limits derived using COLLIE version 3.6.

Taking into account more recent constraints.

The (g-2) business is rather old. The Pierre-Antoine thesis is rather old.

Updates were needed. Got help from Sacha Davidson \rightarrow arXiv:1001.0434v2 [hep-ph]

More stringent results come from $\tau \to \mu \gamma$ BR measured by B-factories. The $\tau \to \mu \gamma$ BR mostly excludes the 2HDM model from explaining the (g-2) discrepency

Taking into account more recent constraints.

Université Claude Bernard 🚱 Lyon 1

The $\tau \to \mu \gamma$ BR puts also strong constraints on the h⁰ $\to \tau \mu$ production at hadron colliders.

UNIVERSITE DE LYON

The current p17 1/fb analysis is rather old stuff. The analysis programs might not run anymore (SL upgrades).

Final states for $\mu \tau$ had are already looked for.

Wish : setting up a collaboration :

- others provides analysis tools with more recent data set

- Lyon (me and P.L) provides MC signals and interpretation of results.

Goal : publish.

p21

Gérald Grenier, meeting D0-France, May 3rd 2010

аянын Ханжалан Римерия Химбан ну ул Римерия биз Рактияла

QCD background

Report

Taken from H->WW-> $\mu\tau$ +jets analysis (D0 note 5332)

Looser muon selection, similar tau selection but only type 1 and 2

Issente National de Physique Nucléair de la Private de Branducaire

H⁰

 H^{-}

UNIVERSITE DE LYON

 H^{-}

2HDM-III and muon g-2

(based on original work from P.A. Delsart, A. Deandrea and K. Assamagan, Phys Rev D67, 035001 (2003))

Higgses contribution to the muon anomalous magnetic moment $a_{\mu}=(g_{\mu}-2)/2$

$$\Delta a^N_\mu = \frac{h^2_{\mu f} m^2_\mu}{8\pi^2} \int_0^1 \frac{x^2(1-x) \pm x^2(m_f/m_\mu)}{m^2_\mu x^2 + x(m^2_f - m^2_\mu) + (1-x)m^2_H} dx$$

+ (-) for the neutral scalar (pseudo-scalar) higgs

$$\Delta a^{C}_{\mu} = \frac{h^{2}_{\mu\nu}m^{2}_{\mu}}{8\pi^{2}} \int_{0}^{1} \frac{2x^{2}(x-1)}{m^{2}_{\mu}x^{2} + x(m^{2}_{H} - m^{2}_{\mu})} dx$$

 h_{ij} are Yukawa couplings : due to mass hierarchies, the main contribution comes from the H- τ - μ coupling.

Gérald Grenier, meeting D0-France, May 3rd 2010

аянын Ханжлала Римена Мизики нг на Римандта биа Рактияла

g-2 results

Exemple : if we assume that only one higgs contributes (one is light and the other are very heavy), then :

p25

Gérald Grenier, meeting D0-France, May 3rd 2010

Issuer Newsler is Present Nichard By its Privaters ors Pairticals

2HDM-III and muon g-2

D 3

Université Claude Bernard (Lyon 1

Higgs candidate Higgs Pt

Université Claude Bernard (Lyon 1

INSTRUCT NOTIONAL DE PRESIQUE NUMÉRIE DU LE PRESERVE DE DES PARTICUESES