Summary of the New Muon Over-Smearing

Aurélien Croc DØ France, Lyon

May, 4th, 2010

CEA Saclay centre – DSM/Irfu/SPP

Aurélien Croc - 1 / 17

Outlook

Outlook

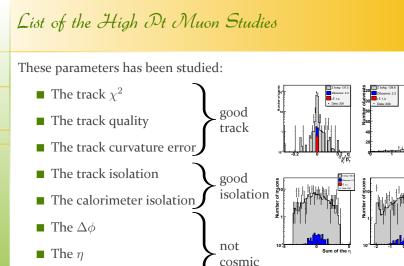
- Why?
- Differences?
- Results

- 1. Why we need a new muon over-smearing method?
 - The high p_T tails not reproduced
- 2. What are the differences with the previous over-smearing method?
 - Double-gaussian
 - Lever arm
 - Momentum scale factor
 - New set of parameters
- 3. Results and conclusion
 - Over-smearing parameters
 - Conclusion and outlook

lrfu CCCI saclay	
Outlook <u>Why?</u> The selection Already studied Conclusion Differences? Results	
	Why we Need a New Muon Over-Smearing Method?

lrfu The Selection Used to Study High Dt Muons and the œ Result saclay Outlook Why? The selection At least $\mathbf{2} \mu$: • $p_T > 15$ GeV (by default p_T means central p_T) • $|\eta| < 2$ Z bckg: 320638.2 opposite charges Number of muon Dibosons: 489.6 Loose quality tī: 149.3 Data: 315801 Loose track quality No isolation cut 10² • At least 1 μ with $p_T > 200$ GeV 10 10⁻¹0 800 p_{_} [GeV] 200 400 600

Outlook


Why?

The selection Already studied

Conclusion

Differences?

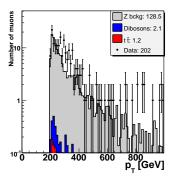
Results

• The local p_T

• The resolution of the local p_T

The invariant mass

10⁻⁰ 20 40 60 80 100 Track isolation


t t 1.3

Outlook

- Why?
- The selection
- Conclusion
- Differences?
- Results

Conclusion of the High Pt Muon Studies

- These high *p*_{*T*} muons are not associated to fake tracks and do not come from cosmics rays
- These high *p*_{*T*} muons seem to come from miss-reconstructed *Z* muon events
- The tails are not well reproduced
- It has been studied that the resolution has changed with time (Z peak width varies with time)

Thus we need to:

- reproduce the old smearing (in particular by using Alpgen Z MC) which means that the oversmearing codes has been updated
- 2. improve it by trying to take into account the tails and some effects of the detector (effects of the lever arm in the CFT)

CEA Saclay centre - DSM/Irfu/SPP

Aurélien Croc - 6 / 17

1	r	f	u
(X	Ð.	С
S	ao	:1;	аy

Outlook

Why?

Differences? Previously New features Add-on To summarize (1 To summarize (2 Systematics

Comparis

Results

What Are the Differences With the Previous Over-Smearing Method?

Outlook

Why?

Differences? Previously New features Add-on To summarize (1) To summarize (2) Systematics Comparison

Results

The Previous Over-Smearing Method

The aim:

smear the MC events in order to reproduce the data (cf. DØ note 5449)

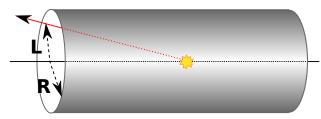
The smearing formula:

 G_1 and G_2 are two independent random numbers distributed according to a *Gaussian function* with a mean value of 0 and a width of 1.

A and B are the smearing parameters to be determined for different μ track types:

- 1. Both μ have at least one SMT hit and $|\eta_{\rm CFT}| < 1.6$;
- 2. Both μ have at least one SMT hit but at least one has $|\eta_{\rm CFT}|>1.6$;
- 3. Only one μ has at least one SMT hit.

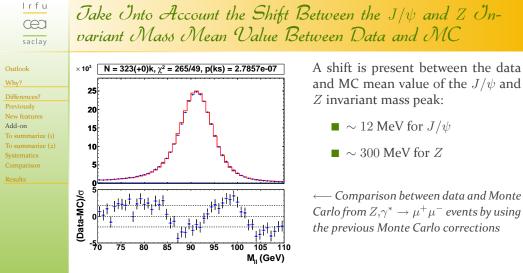
lrfu œ saclav


The New Parameters and Jerms Added to the Over-Smearing Formula

The second gaussian:

In order to fit the tails a second gaussian has been added. Two new over-smearing parameters have then be added: C and D.

Take into account the lever arm:


For tracks with $|\eta_{CFT}| > 1.6$ the CFT lever arm is lower than its radius. This leads to a track curvature less precise:

Thus the factor $\frac{R^2}{L^2}$ is multiplied to each over-smearing terms to take this effect into account by increasing the smearing of these tracks.

New features

Outlook

This shift is corrected by multiplying the curvature of the track by a *momentum scale factor*.

This scale is computed for each type of tracks.

Irfu CCCC

saclay

Outlook

Why?

Previously New features

Add-on

To summarize (1)

Systematics

Results

Summary of the New Over-Smearing Method (1/2)

The new over-smearing formula:

if rnd > C:

else:

$$\frac{q}{p_T} \to (1+S) \times \left\{ \frac{q}{p_T} + \underbrace{AG_1 \times \frac{R_{\rm CFT}^2}{L^2}}_{\text{Resolution effect}} + \underbrace{\frac{B\sqrt{\cosh\eta}}{p_T}G_2}_{\text{Multiple scattering effects}} \times \frac{R_{\rm CFT}^2}{L^2} \right\}$$

$$\frac{q}{p_T} \to (1+S) \times \left\{ \frac{q}{p_T} + DG_3 \times \frac{R_{\rm CFT}^2}{L^2} + \frac{B\sqrt{\cosh\eta}}{p_T} G_2 \times \frac{R_{\rm CFT}^2}{L^2} \right\}$$

- *L* is the radius of the outer layer of the CFT which got the last hit ;
- G_1 , G_2 and G_3 are three independent random numbers distributed according to a *Gaussian function* with a mean value of 0 and a width of 1;

■ *rnd* is a uniform random number in the range [0; 1];

• *A*, *B*, *C* and *D* are the over-smearing parameters to be determined for different μ track types ($n_{\text{SMT}} \neq 0$; $n_{\text{SMT}} = 0$).

CEA Saclay centre - DSM/Irfu/SPP

Aurélien Croc - 11 / 17

Outlook

Why?

Differences? Previously New features Add-on To summarize (1) To summarize (2) Systematics Comparison Summary of the New Over-Smearing Method (2/2)

Different set of over-smearing parameters are available for:

- Run IIb1 only events (updated with the full Run IIb1 statistics) ;
- Run IIb2 only events (new);
- Mixed Run IIb1 Run IIb2 only events (new) ;
- Single gaussian only (for new physics searches).
- and will be available for:
 - Run IIa ;
 - Latest Monte Carlo version (p20.15).

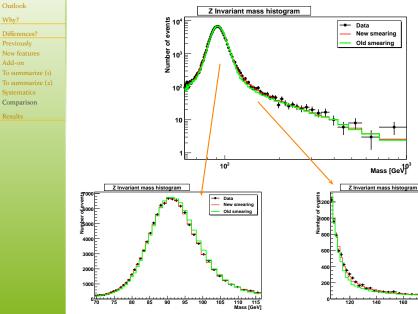
This study has been done by using Z ALPGEN¹ p20.08.02 Monte Carlo events with higher data and Monte Carlo² statistics.

 $^{^1\}mathrm{Previously},$ Pythia was used $^2\mathrm{In}$ particular for the J/ψ Monte Carlo events

Outlook

Why?

Differences? Previously New features Add-on To summarize (To summarize (Systematics Comparison


Results

Overview of the Systematics Errors

Systematics errors taken into account are:

- Switching from medium muon selection to *loose* muons ;
- Switching from medium track selection to *new medium* track selection ;
- Switching from medium track selection to *loose* track selection ;
- Using a tight p_T cut on the Z muon events (from 20 GeV to 25 GeV);
- Using a tight p_T cut on the J/ψ muon events (from 3 GeV to 3.5 GeV);
- Using the J/ψ invariant mass peak to compute the momentum scale factor rather than using the *Z* invariant mass peak;
- Using a larger invariant mass range around the Z peak on which the χ² used to determine the best over-smearing parameters is computed.

lrfu Comparison Between the Previous Over-Smearing Method œ and the New One saclay

160

- Data

New smearing

Old smearing

220 Mass [GeV]

CEA Saclay centre - DSM/Irfu/SPP

Irfu CCC saclay		
Outlook Why? Differences? Results Conclusion	Result	

Results and Conclusion of the New Muon Smearing

Final Results of the Over-Smearing Parameters

		Туре	A (×10 ⁻³)	B (×10 ⁻²)	C (×10 ⁻²)	D (×10 ⁻³)	Scale ($\times 10^{-2}$)
Double gauss.	Mixed runs	1 & 2	1.68 ± 0.11	1.2 ± 0.3	4.7 ± 2.6	6.1 ± 1.8	0.32 ± 0.16
		3	2.6 ± 0.5	1.2 ± 1.2	4.7 ± 4.7	6 ± 6	0.1 ± 0.1
	Run IIb 1	1 & 2	1.61 ± 0.13	1.2 ± 0.5	4.3 ± 3.5	6.1 ± 2.1	0.23 ± 0.24
		3	2.1 ± 0.4	1.2 ± 1.2	4.3 ± 4.3	6 ± 6	0.0 ± 1.0
	Run IIb 2	1 & 2	1.72 ± 0.12	1.3 ± 0.4	4.7 ± 4.0	5.9 ± 1.5	0.35 ± 0.12
		3	2.6 ± 0.7	1.3 ± 1.3	4.7 ± 4.5	6 ± 6	0.1 ± 1.1
Single gauss.	Mixed runs	1 & 2	1.82 ± 0.13	1.3 ± 0.5	0	0	0.35 ± 0.14
		3	2.7 ± 0.5	1.3 ± 1.3	0	0	0.0 ± 1.2
	Run IIb 1	1 & 2	1.72 ± 0.11	1.4 ± 0.6	0	0	0.28 ± 0.22
		3	2.0 ± 1.0	1.4 ± 1.4	0	0	0.1 ± 0.7
	Run IIb 2	1 & 2	1.86 ± 0.13	1.4 ± 0.6	0	0	0.39 ± 0.12
		3	3.2 ± 1.0	1.4 ± 1.4	0	0	0.1 ± 0.9

Type 1 & 2: Both μ have at least SMT hits

Type 3: Only one μ has at least SMT hits

Outlook

- Why?
- Differences?
- Results Results
- Conclusion

The new over-smearing method has been integrated into Café (by Frédéric);

■ It will be released with the next V-Jets version ;

Conclusion and Outlook

- This new over-smearing procedure is highly tunable depending on your analysis through the VJets configurations (Run period, MC version, New Physics searches ...);
- The tails and the momentum scale factor are now taking into account ;
- Generation of the control plots are in progress (by Slava);
- Over-smearing parameters for the latest Monte Carlo versions (p20.15) and for P17 are ongoing (by Angelo);
- The summary of the momentum task force work will be available in the DØ note 6031 released in a near future.
- ⇒ Don't hesitate to test it and make comments ;-)