Improvements on identification of τ lepton

Romain $MADAR^{\mathfrak{a}}$

^aService de Physique des Particules CEA Saclay, Irfu/SPP - France

 $D \ensuremath{\ensuremath{\mathcal{O}}}$ France – $3^{\rm th}$ of May 2010 –

Overview

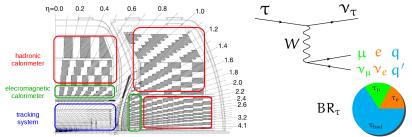
1) τ lepton at DØ

- \bullet The τ lepton and its reconstruction
- Current identification

2 Identification improvements

- New discriminating observables
 - Central Preshower
 - \bullet b-tagging tools
- Multivariate analysis optimization
 - Tuning of NN parameters
 - \bullet Dedicated training at high p_T
 - Dedicated training in the ICD

3 Test in data



τ lepton at DØ

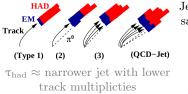
The τ lepton and its reconstruction

The τ lepton and its reconstruction

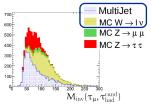
Physical properties : $m_{\tau} = 1.78 \text{ GeV}, c\tau_{\text{life}} = 87 \ \mu\text{m}$

We will focus on hadronic decay of τ : τ_{had}

Reconstruction and τ type definition for <u>hadronic</u> decay :

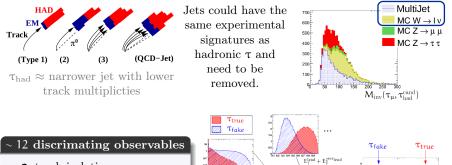

- type 1 \equiv 1 trk, HAD deposit $\sim \tau^{\pm} \rightarrow \pi^{\pm} \nu_{\tau}$
- type 2 \equiv 1 trk, EM and HAD deposit ~ $\tau^{\pm} \rightarrow \rho^{\pm} (\rightarrow \pi^0 \pi^{\pm}) \nu_{\tau}$
- type 3 \equiv at least 2 trks, HAD deposit ~ $\tau^{\pm} \rightarrow a_1^{\pm} (\rightarrow \pi^{\pm} \pi^{\mp} \pi^{\pm}) \nu_{\tau}$

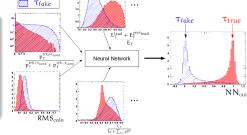
Romain Madar (CEA/Irfu/SPP)


τ lepton at DØ

Current identification

Identification of true τ


Jets could have the same experimental signatures as hadronic τ and need to be removed.


τ lepton at DØ

Current identification

Identification of true τ

- track isolation,
- calo isolation,
- shower shape,
- trk-cal correlations.

Overview

$\mathbf{D} \mathbf{\tau}$ lepton at $\mathbf{D} \mathbf{\emptyset}$

- The τ lepton and its reconstruction
- Current identification

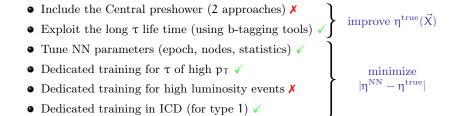
2 Identification improvements

- New discriminating observables
 - Central Preshower
 - \bullet b-tagging tools
- Multivariate analysis optimization
 - \bullet Tuning of NN parameters
 - \bullet Dedicated training at high p_T
 - \bullet Dedicated training in the ICD

3 Test in data

4 Conclusions and outlooks

Improvement strategy


General point of view : Neural Networks output $\eta^{\rm NN}(\vec{X})$ converges to

$$\eta^{\rm true}(\vec{X}) \equiv \frac{\mathcal{S}(\vec{X})}{\mathcal{S}(\vec{X}) + \mathcal{B}(\vec{X})}$$

where $\vec{X} \equiv (x_1, x_2, ..., x_n)$ describes the discriminating variables space.

In the τID context :

A lot of ideas were tested to improve the current identification of τ :

τ lepton identification at DØ Identification improvements New discriminating observables

Overview

1) τ lepton at DØ

- The τ lepton and its reconstruction
- Current identification

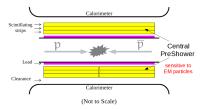
2 Identification improvements

- New discriminating observables
 - \bullet Central Preshower
 - \bullet b-tagging tools

• Multivariate analysis optimization

- Tuning of NN parameters
- \bullet Dedicated training at high p_T
- Dedicated training in the ICD

3 Test in data

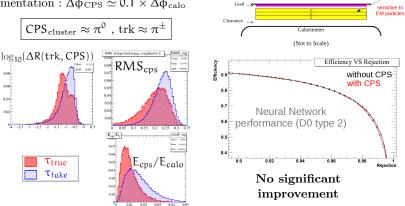

Identification improvements

New discriminating observables

Central PreShower (CPS) for type 2

Physical idea. Exploit specific resonance of τ **type** 2 decay : $\tau^{\pm} \rightarrow \rho^{\pm} \nu \rightarrow \pi^{\pm} \pi^{0} \nu$. Use Central PreShower detector with fine segmentation : $\Delta \phi_{CPS} \simeq 0.1 \times \Delta \phi_{calo}$

 $\text{CPS}_{\rm cluster}\approx\pi^0$, ${\rm trk}\approx\pi^\pm$


 τ lepton identification at $D \varnothing$

Identification improvements

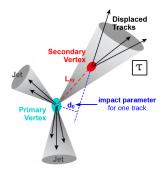
New discriminating observables

Central PreShower (CPS) for type 2

Physical idea. Exploit specific resonance of τ **type** 2 decay : $\tau^{\pm} \rightarrow \rho^{\pm} \nu \rightarrow \pi^{\pm} \pi^{0} \nu$. Use Central PreShower detector with fine segmentation : $\Delta \phi_{\rm CPS} \simeq 0.1 \times \Delta \phi_{\rm calo}$

Scintillating -

strips

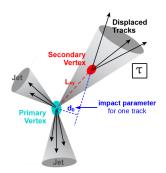

Calorimeter

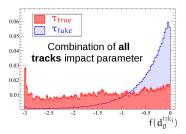
Central PreShower

Identification improvements

New discriminating observables

τ is a long lived particle

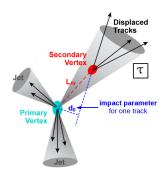



Use impact parameter to remove jets faking τ more efficiently. (large $c\tau_{life} \Rightarrow large d_0$)

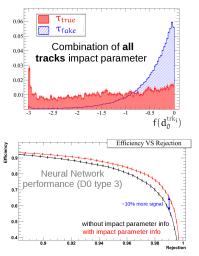
Identification improvements

New discriminating observables

τ is a long lived particle



Use impact parameter to remove jets faking τ more efficiently. (large $c\tau_{life} \Rightarrow large d_0$)


Identification improvements

New discriminating observables

τ is a long lived particle

Use impact parameter to remove jets faking τ more efficiently. (large $c\tau_{life} \Rightarrow large d_0$)

Clear improvement in performance!

 τ lepton identification at DØ Identification improvements

Multivariate analysis optimization

Overview

1) τ lepton at DØ

- The τ lepton and its reconstruction
- Current identification

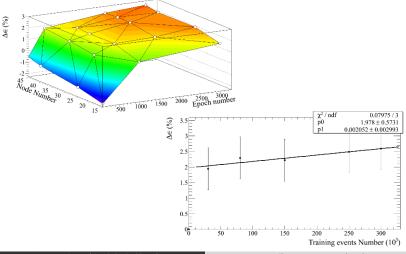
2 Identification improvements

New discriminating observables
Central Preshower
b-tagging tools

• Multivariate analysis optimization

- \bullet Tuning of NN parameters
- \bullet Dedicated training at high p_T
- \bullet Dedicated training in the ICD

3 Test in data

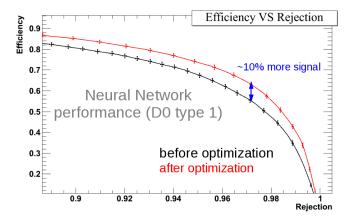


Identification improvements

Multivariate analysis optimization

Fine tuning of NN parameters

 $\Delta\varepsilon\equiv\varepsilon_{\rm new}-\varepsilon_{\rm off}$ at 97.0% rejection



Romain Madar (CEA/Irfu/SPP)

Identification improvements

Multivariate analysis optimization

Fine tuning of NN parameters

 τ lepton identification at DØ Identification improvements

Multivariate analysis optimization

Overview

1) τ lepton at DØ

- The τ lepton and its reconstruction
- Current identification

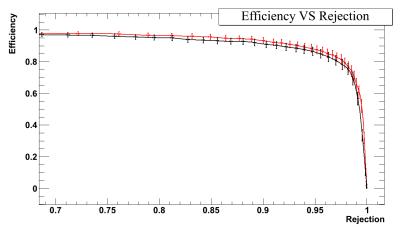
2 Identification improvements

New discriminating observables
Central Preshower
b-tagging tools

• Multivariate analysis optimization

- Tuning of NN parameters
- \bullet Dedicated training at high p_T
- \bullet Dedicated training in the ICD

3 Test in data



Identification improvements

Multivariate analysis optimization

Tested on $45 < p_T < 150$ sample, type 2

training on $10 < p_T < 150$ sample, training on $45 < p_T < 150$ sample

 τ lepton identification at DØ Identification improvements

Multivariate analysis optimization

Overview

1) τ lepton at DØ

- The τ lepton and its reconstruction
- Current identification

2 Identification improvements

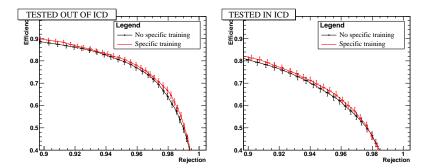
New discriminating observables
Central Preshower
b-tagging tools

• Multivariate analysis optimization

- \bullet Tuning of NN parameters
- \bullet Dedicated training at high p_T
- \bullet Dedicated training in the ICD

3 Test in data

 τ lepton identification at $D \varnothing$


Identification improvements

Multivariate analysis optimization

Effect of dedicted training in ICD (type 1)

In ICD :

no EM cluster \Rightarrow physical type 2 are reconstructed as type 1

Test in data

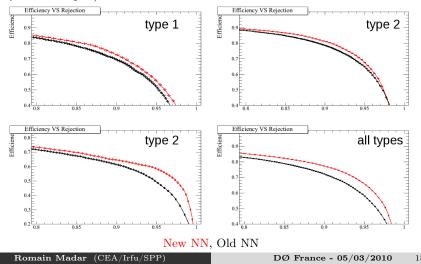
Overview

1) τ lepton at DØ

- The τ lepton and its reconstruction
- Current identification

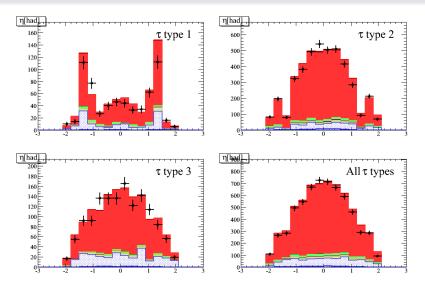
2 Identification improvements

- New discriminating observables
 - Central Preshower
 - b-tagging tools
- Multivariate analysis optimization
 - Tuning of NN parameters
 - \bullet Dedicated training at high p_T
 - Dedicated training in the ICD

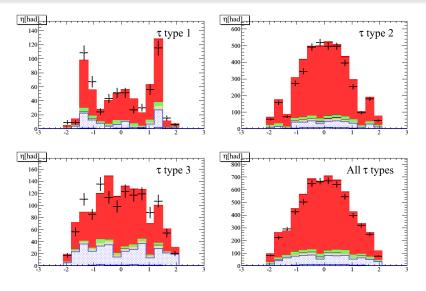

3 Test in data

Test in data

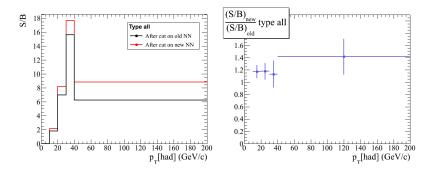
Test in data


Background estimation : from an isolated muon (OS/SS method used in $\varphi \to \tau\tau$ analysis)

18 / 30


Test in data

$\eta_d(\tau)$ distribution after cut on New NN


Test in data

$\eta_d(\tau)$ distribution after cut on Old NN

Test in data

$S/B VS p_T$ for all type

Comments :

Important improvement at high p_T , but really good improvement also at low p_T !

Overview

1 τ lepton at DØ

- The τ lepton and its reconstruction
- Current identification

2 Identification improvements

- New discriminating observables
 - \bullet Central Preshower
 - b-tagging tools
- Multivariate analysis optimization
 - Tuning of NN parameters
 - \bullet Dedicated training at high p_T
 - Dedicated training in the ICD

3) Test in data

Conclusions & outlooks

Results for the τ identifications : $\sim 10\%$ of improvements

- \bullet Include the Central preshower (2 approaches) \bigstar
- Exploit the long τ life time (using b-tagging tools) \checkmark
- $\bullet\,$ Tune NN parameters (epoch, nodes, statistics) $\checkmark\,$
- \bullet Dedicated training for τ of high p_T \checkmark
- $\bullet\,$ Dedicated training for high luminosity events \bigstar
- $\bullet\,$ Dedicated training in ICD (for type 1) $\checkmark\,$

Pratical comments :

- Available at cafe level : some changes in the τ processor/config file described in calgo and conveners meetings)
- DØ note already started

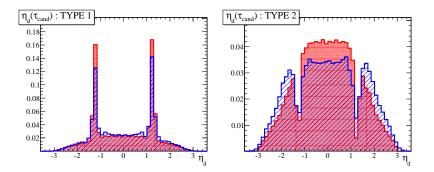
Conclusions and outlooks

BACKUP SLIDES

E_{τ} calibration : "E/p correction"

Known effect

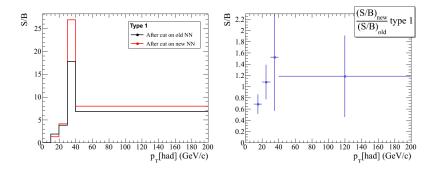
w


The calorimeter response is slightly different in the simulation and in data. $\tau_{\text{measured}} \equiv \{\gamma, \pi^{\pm}\}$ energy needs a relative correction.

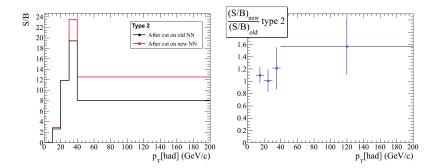
Correction method

Use the track energy as reference to correct simulation event by event :

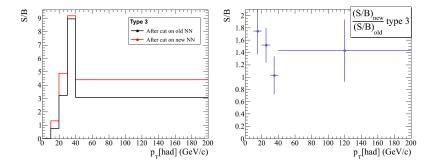
Conclusions and outlooks


Why a dedicated training for type 1?

 τ lepton identification at $D \varnothing$


Conclusions and outlooks

$S/B VS p_T type 1$


Conclusions and outlooks

$S/B VS p_T type 2$

Conclusions and outlooks

$S/B VS p_T type 3$

MSSM charged Higgs

Charged higgs bosons via $t\bar{t}$ events

M_{...}=80 GeV ⁴00tr S DØ, L=1.0 fb1 a t $B(H^+ \rightarrow \tau \nu)=1$ Data 00000 tt Br(t \rightarrow H⁺b)=0.0 10³ ā tt Br(t \rightarrow H⁺b)=0.3 w tt $Br(t \rightarrow H^+b)=0.6$ background 10² t 000000 w 10 I+jets 1 tag I+jets 2 tag dilepton τ+lepton