ASTROPHYSICAL COMPACT OBJECTS PART I: INTRODUCTION AND ASTROPHYSICAL BASICS

Micaela Oertel

micaela.oertel@astro.unistra.fr

Observatoire astronomique de Strasbourg CNRS / Université de Strasbourg

Lecture LAPTH, Annecy, November 20-25, 2025

1/41

Micaela Oertel (ObaS) Astrophysics Annecy, November, 20, 2025

OUTLINE

- Introduction
- 2 STELLAR EVOLUTION
- COMPACT OBJECTS
 - White dwarfs
 - Supernovae
 - Neutron stars
 - Binary neutron stars

Many different stars

In our Galaxy (Milky Way), there are ~ 200 billion stars

Stellar masses:

$$0.2M_{\odot} < M < 100M_{\odot}$$

(solar mass : $M_{\odot}=2\times 10^{30}{\rm kg}$)

Stellar (effective temperatures) : $3 \times 10^3 \lesssim T_{eff} \lesssim 4 \times 10^4 \text{K}$

How do the different types of stars counterbalance gravity?

"NORMAL" STARS

Nuclear burning

In 1930's: big progress in understanding nuclear reactions

→ nuclear burning (fusion) as energy source

in stars :

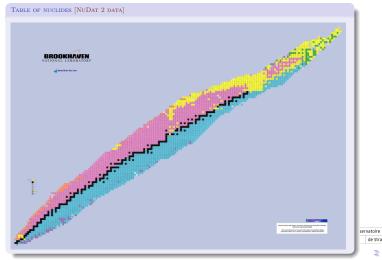
 $\mathsf{H} o \mathsf{He} \ \mathsf{(pp\ chain)}\ {}_{\mathsf{[Bethe\ \&\ Critchfield\ 1938]}}$;

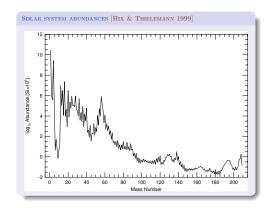
CNO cycle [Bethe 1939, von Weizsäcker 1938]

Nobel prize to Hans Bethe 1967

Sun: hydrogen burning

More massive stars : other burning stages




Where do heavy elements come from?

- ullet Iron has the lowest energy par particle of all nuclei o nuclear fusion no longer energetically favored for producing heavy elements
- But still life on Earth based on many heavy elements!

ELEMENTAL ABUNDANCES

- \bullet H (\approx 75%) and ^4He (\approx 25 %) by far the most abundant baryons known in the Universe
 - Different groups of nuclei
 - Light elements up to B (rare)
 - C,N,O, Ne, Mg, Si, iron peak nuclei (much more abundant)
 - ► Heavy nuclei
 - Different sites for the production of these elements (nucleosynthesis)

PLAN

- Introduction
- 2 STELLAR EVOLUTION
- **3** Compact objects
 - White dwarfs
 - Supernovae
 - Neutron stars
 - Binary neutron stars

PRE MAIN-SEQUENCE PHASE

For an object to become a star, conditions should be met to activate nuclear reactions

- Gravitational collapse of regions in molecular clouds → protostar is heated
- Further contraction and heating as "T Tauri stars"
- If $T\gtrsim 10^7 {\rm K}$, hydrogen fusion ignited and star enters Main sequence
- High temperature needed to penetrate Coulomb barrier
- Mass at this moment is called "zero age main sequence" (ZAMS) mass
- Formation of massive stars not well understood

THE MAIN SEQUENCE

The Main Sequence is defined as the stage during which a star burns hydrogen in its core

- Hydrogen burning through two different mechanisms
 - pp-chain
 - Carbon-Nitrogen-Oxygen (CNO) cycle
- \bullet Both mechanisms burn 4 protons for a $^4{\mbox{He}}$ nucleus, energy gained per reaction is roughly 27 MeV
- pp chain and CNO cycle have very different temperature dependence
 - ▶ at low T : pp chain dominant (Sun)
 - ▶ at high $T: \mathsf{CNO}$ dominant (AGB stars, $T \approx 45 100 \times 10^6 \; \mathsf{K})$

since temperature higher in more massive stars \to CNO dominates in more massive stars ($M\gtrsim 1.4 M_\odot$)

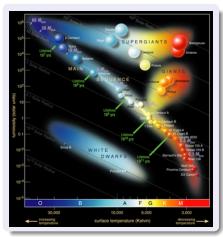
• Stellar structure depends a lot on burning mechanism

What happens if all hydrogen is burned?

The answer depends strongly on the mass of the star

- Hydrogen first exhausted in the core, still a hydrogen burning outer shell
- At the end of hydrogen burning, core contracts due to gravitation and is heated up
 - ► The temperature is not sufficient to ignite He-burning
 → red giant → white dwarf
 - ► The temperature is sufficient to ignite He-burning
- He-burning reaction $3 \times^4 \mathrm{He} \to^{12} \mathrm{C}$ and possibly $^{12}\mathrm{C} +^4 \mathrm{He} \to^{16} \mathrm{O}$
- H-burning outer shell remains
- Same story again, depending on ZAMS Carbon burning might be ignited
 - ► No C-burning → white dwarf
 - ► C-burning → core-collapse supernova
- Later burning stages have shorter duration

Example for a 25 M_{\odot} star		
burning stage	$T_c(10^6 { m K})$	duration
Н	10	7 ⋅10 ⁶ y
He	150	$5 \cdot 10^5$ y
C	500	600y
Ne	800	1y
0	1200	150d
Si	2000	1d


HERTZSPRUNG-RUSSELL DIAGRAM

Many different versions, basic idea : the star's effective surface temperature (spectral type) vs luminosity

Identification of different branches

- Main sequence stars
- (horizontal) Giant branches
- Dwarf stars

Indication for different nuclear burning stages and different evolution (roughly) the more massive the main sequence star

- the higher the temperature and pressure in the core
- the higher the luminosity
- ullet the faster the consumption of nuclear fuel ightarrow shorter lifetime

AND IF NO MORE NUCLEAR FUEL IS AVAILABLE?

- ullet Low and intermediate mass stars : He burning core becomes degenerate, temperature not high enough to ignite Carbon burning \to expulsion of the envelope, core contracts until forming a white dwarf (electron degeneracy pressure stabilises the star)
- Stars with $M\gtrsim 8-10M_\odot$ at ZAMS continue nuclear burning until reaching iron (lowest energy per nucleon)
 - ightarrow core-collapse supernova explosion
 - →formation of a neutron star (stabilised by nuclear forces) or a black hole at the center

4 D > 4 A > 4 B > 4 B >

PLAN

- Introduction
- 2 STELLAR EVOLUTION
- COMPACT OBJECTS
 - White dwarfs
 - Supernovae
 - Neutron stars
 - Binary neutron stars

COMPACT CELESTIAL BODIES

- White dwarfs, neutron stars, and black holes are classified as compact objects because of their small size compared to their mass.
- The gravitational field is extremely intense in their vicinity. In newtonian gravity we can estimate the gravitational energy at the surface as

$$E_{grav} = -G \int_0^R \frac{m(r)}{r} dm = -4\pi \int_0^R m(r) \rho(r) r dr .$$

Assuming a constant density this gives $E_{grav} = -\frac{3}{\kappa} \frac{GM^2}{D}$.

$$E_{grav} = -\frac{3}{5} \frac{GM^2}{R}$$

The ratio of gravitational and mass energy of the star is then

$$\frac{E_{grav}}{Mc^2} = -\frac{3}{5} \frac{GM}{Rc^2} \ ,$$

which allows to define a compactness parameter

$$\Xi = \frac{GM}{Rc^2} \, .$$

	Ξ	
Earth	10^{-10}	
Sun	10^{-6}	
White drwarf	$10^{-4} - 10^{-3}$	
Neutron star	~ 0.2	
Black hole	1	

PLAN

- Introduction
- 2 STELLAR EVOLUTION
- COMPACT OBJECTS
 - White dwarfs
 - Supernovae
 - Neutron stars
 - Binary neutron stars

WHITE DWARFS

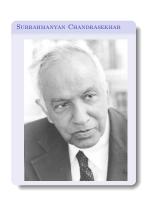
- Historically,
 - Bessel (1844): indirect detection of Sirius B from small irregularities n the mouvement of Sirius A
 - ► Clark (1862) : direct observation of Sirius B
 - Sirius B is a star with

$$M = 0.978 \pm 0.005 M_{\odot}$$

$$R = 0.00864 \pm 0.00012 R_{\odot}$$

ightarrow compact star stabilised by electron degeneracy pressure

- Nowadays \approx 20 000 white dwarf stars observed (SDSS)
 - radii of several thousands of kilometers,
 - lacktriangle most systems have masses $\sim 0.6 M_{\odot}$, some above M_{\odot}
 - observed surface magnetic fields can reach 10⁹G
 - ightharpoonup rotation rates \sim tens of seconds to decades



CHANDRASEKHAR LIMIT

Assumptions:

- Matter pressure given by degenerate electron gas
- Composition enters via charge neutrality
- Gravity described by Newtonian laws
- ightarrow star can be stabilised only for

$$M \lesssim 1.46(2Y_e)^2 M_{\odot}$$

Known corrections to the Chandrasekhar limit :

- ullet Electrostatic corrections o small reduction of maximum mass
- ullet Finite temperature and slow rotation o no significant change
- \bullet General relativity \to reduction of maximum mass by $\sim 5\%$

PLAN

- Introduction
- 2 STELLAR EVOLUTION
- COMPACT OBJECTS
 - White dwarfs
 - Supernovae
 - Neutron stars
 - Binary neutron stars

Supernovae : some historical events

Supernova explosions observed since almost 2000

years

1006, 1054, 1181 : observed by arab/chinese

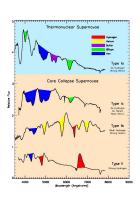
astronomers

1572 : Tycho Brahe 1604 : Johannes Kepler

Observable with the human eye!
Supernova 1054 : « rediscovered »par John Bevis in 1731

Remnant is called "Crabe" nebula following the sketch by Lord Rosse

Distance is \sim 6500 light years


Supernovae

OBSERVATIONAL CLASSIFICATION

Observational classification following spectral features near peak luminosity

Class Spectral feature	
SN Ia	no H, Si
SN Ib	no H, no Si, He
SN Ic	no H, no Si, no He
SN Ic -BL	as Ic, broad lines
SN II	Н
SN IIb	H, Ib at late times
SN IIn	H, narrow lines
SNSN	super-luminous events

- Physical origin
 - SN Ia : thermonuclear explosion of a WD
 - All other types: gravitational collapse and subsequent explosion of a massive star

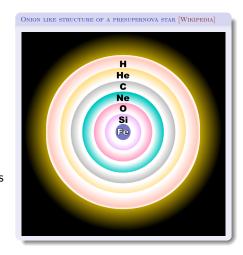
[Credit : D. Kasen, LBL]

Supernovae: Physical mechanisms

I: Thermonuclear explosions

- Type Ia Supernovae: ignition of runaway nuclear fusion in a white dwarf and subsequent explosion
- Majority of observed supernovae
- Different progenitor scenarios possible

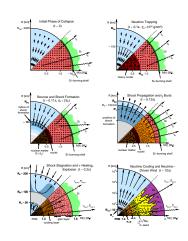
Micaela Oertel (ObaS)


- No remnant left behind
 → nebulae
- Very similar observed lightcurves → standard candles

SUPERNOVAE: PHYSICAL MECHANISMS

II : Core collapse supernovae

- Iron core above Chandrasekhar limit : can not sustain its own mass \rightarrow collapse ($t\sim 100~{\rm ms}$)
- Electron capture reactions during collapse $p+e^- \to n+\nu_e$ lower pressure
- Bounce if matter at the centre has reached approximately the density of nuclei (nuclear repulsion)
 →shock wave propagating outwards
- Detailed explosion mechanism very complicated and not yet fully understood
- Simple estimate of energy released :

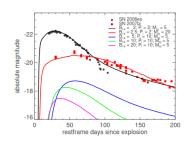

$$\Delta E = E_{\rm grav}({\rm presupernova\ core}) - E_{\rm grav}({\rm neutron\ star}) = \Xi M \frac{c^2}{c^2} \approx 10^{46} \, {\rm J}$$
 Almost the radiation of a whole Galaxy during 30 years!

Micaela Oertel (ObaS) Astrophysics Annecy, November, 20, 2025 22 / 41

Core collapse supernovae

NEUTRINO-DRIVEN EXPLOSIONS

- Initial collapse phase : compression (+deleptonisation) → heavier and more neutron rich nuclei
- Neutrino trapping with homologous collapse
- Shock stalled at ~ 200 km due to interaction with infalling material (photodissociation of nuclei)
- Shock revival via neutrino heating emitted from the central region
- Multi-D hydro instabilities aid the explosion


[Janka+ 2007]

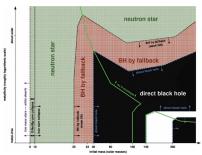
CORE COLLAPSE SUPERNOVAE

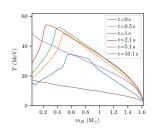
ALTERNATIVES FOR EXPLOSION MECHANISM

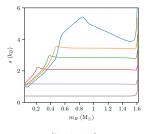
- Magneto-rotational explosions :
 - Very energetic events (total luminosity typically 10-100 × typical supernova)
 - Indication for strong magnetic field and fast rotation
 - Magnetic fields extract energy from rotation → powerful jet-driven explosions
- Explosion aided by first order (hadron-quark) phase transition

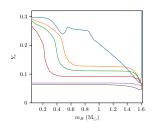
[Kasen&Bildsten 2010]

CORE COLLAPSE SUPERNOVAE


OUTCOME


[credit :HST]

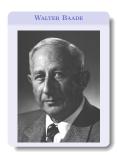

- Supernova remnant : material ejected by explosion
- At the centre : neutron star or stellar black hole

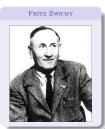

- No simple argument to predict fate :
 - Main factors metallicity and initial mass (ZAMS)
 - Other factors binarity, rotation, magentic field etc

A PROTO-NEUTRON STAR

[Pascal+ 2022]

- Almost 99% of the energy of a CCSN taken away by neutrinos
- At bounce, matter at the very center hot and very dense, β -equilibrium reached : $p+e^-\leftrightarrow n+\nu_e$ with trapped neutrinos
- Neutronised matter $Y_p = n_p/n_B \approx 0.3$
- Convective effects lead to flat entropy and composition profiles
- PNS cools down ($t\sim$ minutes) essentially by neutrino emission to form a neutron star or a black hole


PLAN


- Introduction
- 2 STELLAR EVOLUTION
- COMPACT OBJECTS
 - White dwarfs
 - Supernovae
 - Neutron stars
 - Binary neutron stars

A NEUTRON STAR: A STAR MADE OF NEUTRONS....

- 1932, Landau (Phys. Z. Sowjetunion, 1, 285)
 Possibility of stars with a central density comparable to that of nuclei
- 1934, Baade and Zwicky (Phys. Rev. 45, 138)
 Prediction of the existence of neutron stars: With all reserve we advance the view that supernovae represent the transition from ordinary stars into neutron stars, which in their final stages consist of extremely closed packed neutrons.
- 1939, Tolman, Oppenheimer, and Volkov General relativistic neutron star models : $M\approx 1.5 M_{\odot}$ and $r\sim 10~{\rm km} \to {\rm density} \sim 0.1~{\rm fm}^{-3}$

28 / 41

No observable signal \rightarrow almost forgotten for about thirty years ...

des

1967, DISCOVERY OF PULSARS

Anthony Hewish and his PhD student Jocelyn Bell study the sky scintillation with radio waves. J. Bell finds a source oscillating with $T=1.34\ s$.

Shortly after different similar sources are detected including millisecond pulsars $P\ll 1$ s.

The pulse frequency remains almost constant. For example, change of 40 ns per year for the pulsar first discovered by J. Bell.

Pulsar = pulsating source of radio

Pulsars have been identified as rotating neutron stars Pacini& Gold, 1968

Jocelyn Bell did not receive the Nobel prize, only A. Hewish received it in 1974.

1967, DISCOVERY OF PULSARS

Anthony Hewish and his PhD student Jocelyn Bell study the sky scintillation with radio waves. J. Bell finds a source oscillating with $P=1.34\ s$.

Shortly after different similar sources are detected including pulsars with periods $P\ll 1$ s.

The pulse frequency remains almost constant. For example, change of 40 ns per year for the pulsar first discovered by J. Bell.

Pulsar = pulsating source of radio

Pulsars have been identified as rotating neutron stars Pacini& Gold, 1968

NEUTRON STAR OR WHITE DWARF?

Maximal rotating frequency : Kepler frequency (centrifugal force = gravitational force at the equator)

$$R\Omega_K^2 = \frac{GM}{R^2}$$

Mean density :

$$M = \frac{4}{3}\pi R^3 \bar{\rho}$$

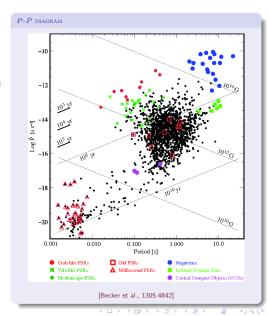
Minimal period

$$P_{min} = \frac{2\pi}{\Omega_K} = \sqrt{\frac{3\pi}{G\bar{\rho}}}$$

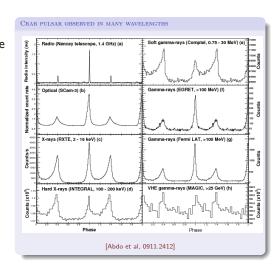
 $P_{min} \sim 1s$ for white dwarfs with $ar{
ho} \sim 10^{11} rac{\mathrm{kg}}{\mathrm{m}^3}$

Nowadays

 Almost 3000 neutron stars have been observed as pulsars, among others Crab, Vela, Geminga, Hulse-Taylor double pulsar,



- Some ("the magnificant seven") have been observed only by their thermal emission
- "Magnetars" have extremely high magnetic fields ($\sim 10^{15}~{\rm G}$ at the surface)


Nowadays

- Almost 3000 neutron stars have been observed as pulsars, among others Crab, Vela, Geminga, Hulse-Taylor double pulsar, . . .
- Pulsars in many different systems
- "Magnetars" have extremely high magnetic fields ($\sim 10^{15}~{\rm G}$ at the surface)

NOWADAYS

- Almost 3000 neutron stars have been observed as pulsars, among others Crab, Vela, Geminga, Hulse-Taylor double pulsar, . . .
- Pulsars in different wavelengths: information on magnetosphere from pulse profile
- "Magnetars" have extremely high magnetic fields ($\sim 10^{15}~{\rm G}$ at the surface)

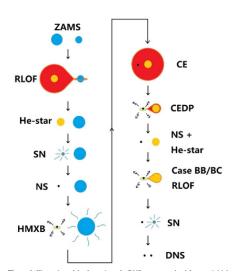
WHY A "NEUTRON" STAR?

Theoretical argument : high density electrically neutral matter in β -equilibrium \rightarrow high neutron fraction

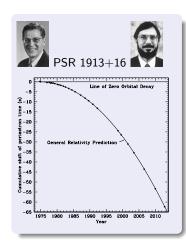
Observational argument: Neutron stars are formed in supernova events. For SN1987A 24 antineutrinos have been observed,

- 11 Kamiokande-II
- 8 IMB
- 5 Baksan

This is generally interpreted as a proof for the classical scenario with two main sources of (anti-)neutrino production, the neutronization reaction $p+e^-\to n+\nu_e$ and the inverse process $n+e^+\to p+\bar{\nu}_e$


PLAN

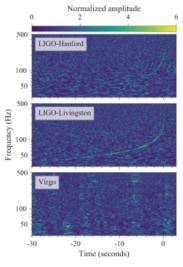
- Introduction
- 2 STELLAR EVOLUTION
- COMPACT OBJECTS
 - White dwarfs
 - Supernovae
 - Neutron stars
 - Binary neutron stars


BINARY NEUTRON STARS

STELLAR EVOLUTION

- Majority of stars do not evolve isolated
- Standard formation scenario for a BNS via stellar evolution
- Other possibilities are dynamical captures in dense environments

BINARY NEUTRON STARS

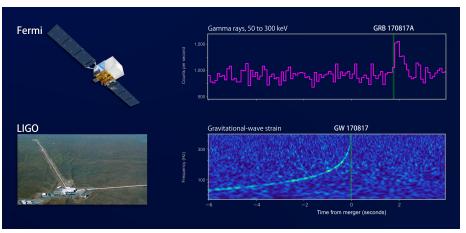

First system observed in 1974 by Hulse and Taylor, nowadays \sim 20 known systems in the Galaxy

Extremely relativistic → precise observations allow for testing general relativity and determining neutron star masses

Good source of gravitational waves → change in orbital motion via gravitational wave emission : first (indirect) evidence for gravitational waves (Nobel prize for Hulse and Taylor 1993)

BINARY NEUTRON STARS

GW DETECTIONS



August 17, 2017 : first detection of the coalescence of binary neutron star in gravitational waves

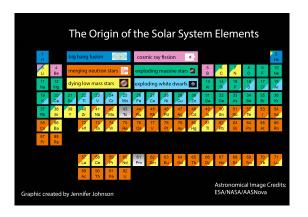
- $\bullet \ \ {\rm total \ mass} \ \ 2.74^{+0.04}_{-0.01} M_{\odot}$
- distance $\sim 40~{\rm Mpc}$
- localisation in the galaxy NGC4993
- GW200105 and GW200115 : first detection of tw BH-NS merger events

THE EVENT GRB170817A

A short γ -ray burst

Coalescence of two neutron stars \to formation of a black hole and an accretion disk \to relativistic jet \to particle acceleration and γ -ray emission

The follow-up of GW170817


A TRANSIENT SOURCE IN NGC4993

Observation (electromagnetic) of this source by several telescopes in different wave lengths (γ , X-rays, UV, visible, infrared and radio)

The radiation has becomes less intense and less energetic with time

Where do heavy elements come from?

This radiation, called \ll kilonova \gg , has its origin in the radioactive decay of heavy nuclei produced in the ejecta of the binary neutron star coalescence :

