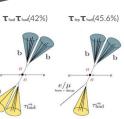
Search of Higgs Boson Pair Production in the bbtt Final State using b-jet triggers with the ATLAS Detector at the LHC

CPPM Seminar 08 December 2025

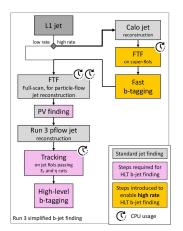
Christian Mavungu Tsava

CPPM, IN2P3, CNRS, Aix-Marseille University

Funded by Commissariat Général à l'Énergie Atomique (CGEA/DRC)

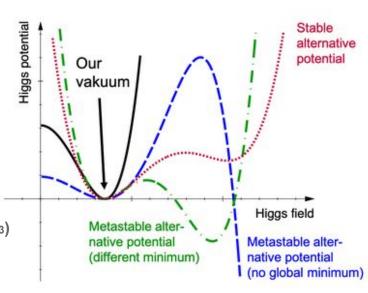


Outline


- Higgs Self-coupling: A Portal to New Physics
- The ATLAS Experiment
- HH Production at the LHC
- HH \rightarrow bb $\tau\tau$ Analysis
 - b-tagging and trigger strategy
 - Reconstruction and event categorisation
- b-jet trigger in bbττ Analysis
 - Trigger calibration and b-tagging Scale Factors
 - Impact of combined SFs
- Conclusions and Outlook

Higgs Self-coupling: A Portal to New Physics

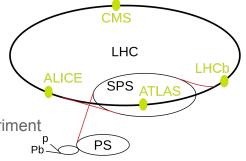
Higgs potential shape

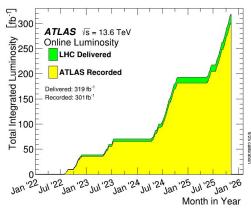

• Higgs Mechanism of the Electroweak Symmetry Breaking

- Explains the origin of vector boson masses
- Provides mass to fermions through Yukawa couplings
- Higgs potential shape free parameter → unknown

Higgs Potential Shape and Universe stability

- Crucial to understanding the nature of the Higgs field
- Accessible with the measurements of the Higgs self-coupling (λ₃)

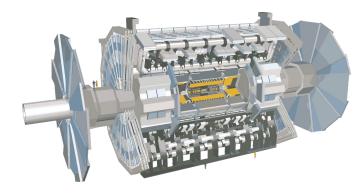

$$V(H) = \frac{1}{2}m_H^2 H^2 + \lambda_3 v H^3 + \frac{1}{4}\lambda_4 v H^4$$



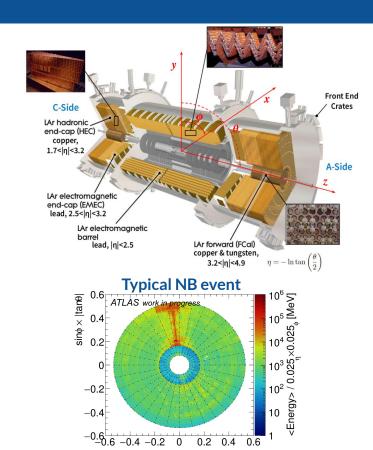
ATLAS Detector: A Necessary Framework for HH Studies

• The Large Hadron collider (LHC):

- O In Run 3 → pp collisions at 13.6 TeV
- **4 interaction points**, each hosting a experiment
 - ATLAS, CMS, LHCb, ALICE



ATLAS Detector

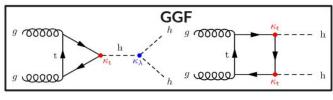

ATLAS: A General-Purpose Experiment

- Optimized for Higgs, top quark, beyond the SM searches
 - Inner Tracker (particles ID, vertex impact parameter)
 - Calorimeter (energy measurement)
 - Muon Spectrometer
 - Two-level trigger system:
 - **L1**: Hardware-based → fast calorimeter and muon information
 - High Level Trigger (HLT): software-based → refined reconstruction

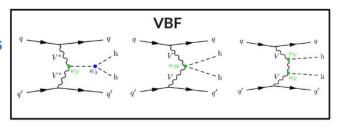
ATLAS Detector: Liquid Argon calorimeter

- Liquid Argon calorimeter (LAr):
 - **Sampling calorimeter** for e/γ , jets energy measurement
 - Key component of the L1 trigger
 - Reduces event rate 40 MHz → 100 kHz
 - Maintains efficiency for key physics signals
- Affected by Coherent Noise since Run 1:
 - Fake physics signals → Increases event rates
 - Noise Bursts (NB): sudden correlated signals in time and space
- First-year work: LAr Noise Burst Mitigation Measures

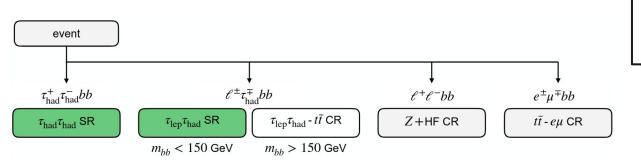
 $\cos\phi \times |\tan\theta|$

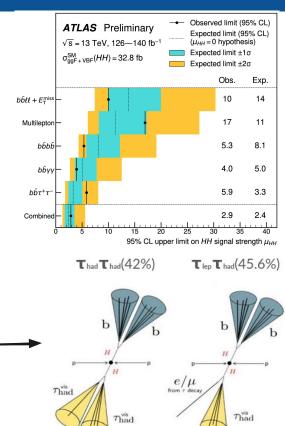

HH Production at the LHC

• At the LHC, HH production mainly occurs through ggf:


- Two main contributions:
 - Triangle diagram: proportional to the trilinear Higgs self-coupling (λhhh)
 - Top box diagram: interferes destructively with the triangle
- Sensitive to κ_{λ} and κ_{t} , defined at LO
 - To parameterise cross sections in terms of coupling modifiers

- Additionally, VBF contributes through three distinct diagrams
 - Involving electroweak boson exchange
 - Sensitive to K2v


σ(13.6 TeV)~34.1 fb



σ(13.6 TeV)~1.87 fb

HH → bbττ Analysis

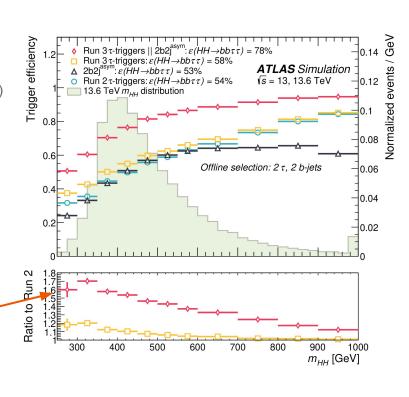
- The second part of my thesis focuses on the HH studies in the $bb\tau\tau$ final state, one of the key channels to measure the λhhh
 - Reasonably large BR (7.3%)
 - Manageable backgrounds
- Signal and Control Regions are defined to maximise sensitivity:
 - SRs based on two final states
 - τ had τ had (HadHad) and τ lep τ had (LepHad)
 - Several CRs to constraint and validate instrumental and physics backgrounds

HH → bbtt Analysis strategy

• Reconstruction of bb and $\tau\tau$ systems:

○ Likelihood mass reconstruction → better accuracy

• Event categorisation


- o Categories built from mнн (low/high) and production mode (ggF / VBF)
- o Transformer outputs used as final SR discriminants

• NEW for Run 3 : b-jet triggers

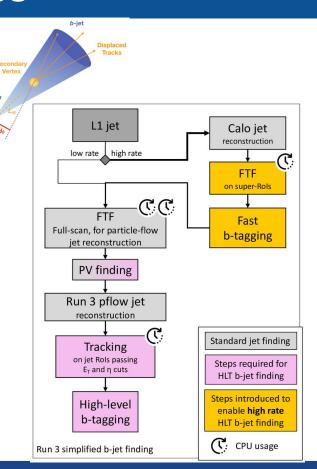
- Hadronic triggers improve $bb\tau\tau$ acceptance by >40%
- Dataset: Run 2 (140 fb⁻¹) + partial Run 3 (56 fb⁻¹)

Run 3 HH b-jet triggers

	<u> </u>				
Туре	L1 threshold	HLT preselection		HLT selection	
	$E_{\rm T}$ [GeV]	$p_{\rm T}$ [GeV]	b-tag	p_{T} [GeV]	b-tag
3b1j ^{asym}	j: 1×45 ,	4 × 20	$2 \times b$, $\varepsilon = 85\%$	1×80	$3 \times b$, $\varepsilon = 82\%$
	$ \eta < 2.1$			1×55	
	2×15 ,			1×28	
	$ \eta < 2.5$			1×20	
2b2j ^{asym} (*)	j: 1 × 45,	4 × 20	$2 \times b$, $\varepsilon = 85\%$	1×80	$2 \times b$, $\varepsilon = 77\%$
	$ \eta < 2.1$			1×55	
	2×15 ,			1×28	
	$ \eta < 2.5$			1×20	
μ+2b2j ^{asym} (*)	j: 1 × 20	4 × 20	$2 \times b$, $\varepsilon = 85\%$	1×80	$2 \times b$, $\varepsilon = 77\%$
	1 × 15			1×55	
	μ : 1 × 8 (p_T)			1×28	
	μ . $1 \wedge \delta(p_1)$			1×20	

Run 3 b-jet Tagging at Trigger Level

Primary

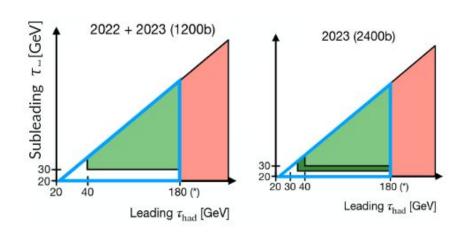

B-hadron identification:

Long lifetime: ~2 mm decay length in the inner tracker for pt > 20 GeV

- Large impact parameter of displaced tracks
 - Transverse (d0): ~7–10 µm for tracks (pt > 20 GeV)
- Displaced secondary vertex reconstructed from multiple tracks

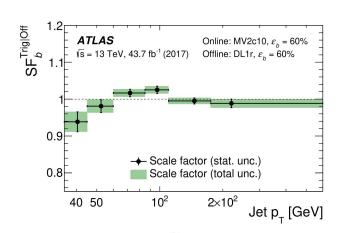
b-tagging at ATLAS is performed in two steps

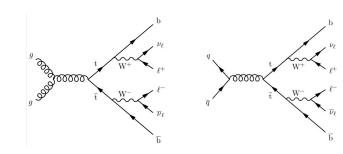
- Fast b-tagging pre-selection
 - Fast Track Finder (FTF) → No further reconstruction
 - Loose b-tagging used for rate reduction
- Precision b-tagging
 - FTF Full scan for high tracking efficiency
 - Particle flow for better resolution at low pt
 - High level b-tagging based on neural networks
 - DL1d (2022) and GN1 (2023)



$HH \rightarrow bb\tau\tau$: Trigger aware SR definition

- LepHad → Based on single-lepton triggers (SLT):
 - Single-e and single-μ triggers
- HadHad → Orthogonal trigger buckets: set of same type triggers
 - single-τ triggers (STT)
 - di-τ triggers main and delayed streams (DTT)
 - o di-b triggers delayed stream (DBT) → NEW in Run 3




au_{had} selection within Buckets

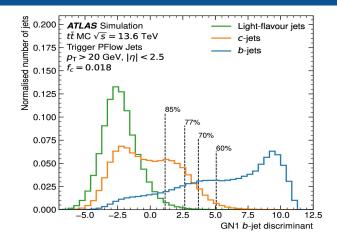
b-jet Triggers: Calibration

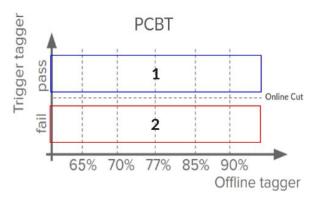
- b-tagging Scale Factor (SF) corrects the MC jet tagging efficiency to reproduce that of the data
 - Calculated as: $ext{SF}^{ ext{jet}} = rac{p_{ ext{data}}^{ ext{jet}}}{p_{ ext{MC}}^{ ext{tet}}}$
 - Depends on jet flavor, pT, η and b-tag score
 - Stored in Calibration Data Interface (CDI)
- Calibration are derived in ttbar events
 - Pure b-jets samples (BR(t \rightarrow Wb) \approx 100%)
 - Offline selection: e or μ with opposite-sign charge
 - Suppress W/Z background
 - Taggers categorized by working points (65%, 70%, 77%, 85%, 90%, 100%)
 - Maximum-likelihood fit extracts online b-tagging efficiency vs jet pT

b-jet Triggers + Offline b-tagging Scale Factor

• b-jet triggers are always used in association with offline b-tagging:

- Online tagging fixed working point → cut on b-tag weight
- Offline tagging uses Pseudo-Continuous B-Tagging (PCBT)
 - lacktriangle Whole b-tagging spectrum is used \rightarrow no cut.
- Adds complexity to the calibration strategy
 - Combined SF estimation in efficiency bins

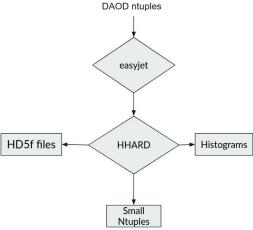

Efficiency and inefficiency SFs according to region:

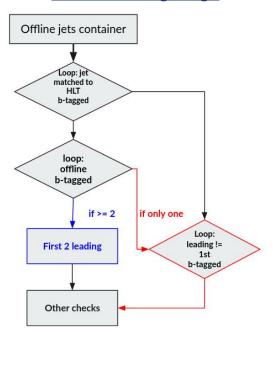

○ Region 1 → Trig Eff:

Region 2 → Trig InEff:

$$SF = \frac{\mathcal{P}(\text{off}|\text{trig})_{\text{data}} \mathcal{P}(\text{trig})_{\text{dat}}}{\mathcal{P}(\text{off}|\text{trig})_{\text{MC}} \mathcal{P}(\text{trig})_{\text{MC}}}$$

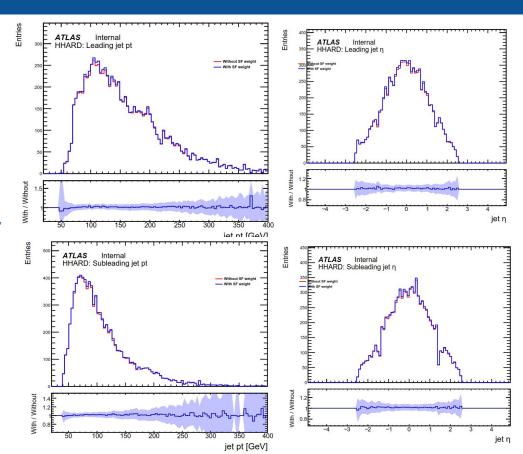
$$SF = \frac{\mathcal{P}(\text{off})_{\text{data}} - \mathcal{P}(\text{off}|\text{trig})_{\text{data}} \mathcal{P}(\text{trig})_{\text{data}}}{\mathcal{P}(\text{off})_{\text{MC}} - \mathcal{P}(\text{off}|\text{trig})_{\text{MC}} \mathcal{P}(\text{trig})_{\text{MC}}}$$




FTag Tool: A Calibration Interface

- The Flavour Tagging tool (FTag) performs the matching and computes the combined SFs within the Athena software
 - Selects offline jet matched to the HLT b-tagged and estimate the SF
 - Used by analysis software (Easyjet + HHARD) for DBT analysis bucket

Analysis workflow

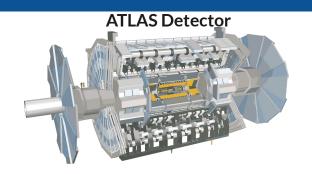


DBT matching stage

Impact of b-jet Trigger SFs

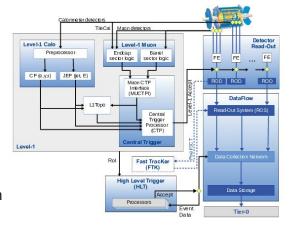
- The final event selection is performed in HHARD, applies all MC corrections
 - o Calibration of b-jet, taus, pile-up,...
- Comparison with and without b-jet triggerSFs shows:
 - $\begin{tabular}{l} \hline \end{tabular} \begin{tabular}{l} \end{tabular} No significant distortion in the \\ \hline \end{tabular} leading/subleading jet pt and η distributions \\ \hline \end{tabular}$
 - compatible with precision of the SF measurement

Conclusion


- HH \rightarrow bb $\tau\tau$ as a key channel for measurement of the Higgs self coupling
 - o Provides an optimal balance between branching ratio and background control
 - Thanks to the outstanding performance ATLAS could set UL at 95% CL of 2.9 SM
- Current work focus on the Run 3 b-jet triggers in the HH ightarrow bbau au analysis
 - Integration of HLT b-tagging in hadhad categories leads to an acceptance gain of over 40%
 - Full calibration chain implemented, including combined Scale Factors via the FTag framework
- Current status & outlook
 - Validation of b-jet trigger SFs and final estimation of impact on sensitivity in data is ongoing
 - \circ Updated HH bb $\tau\tau$ publication will include for thee first time b-jet triggers categories

Backup

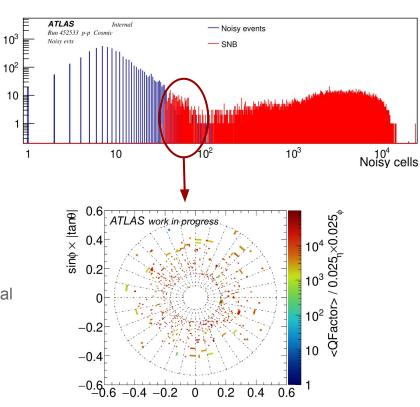
ATLAS Detector: A Necessary Framework for HH Studies


The Large Hadron collider (LHC):

- o pp collisions at 13.6 TeV (Run 3)
- 4 interaction points, each hosting a experiment
 - ATLAS, CMS, LHCb, ALICE

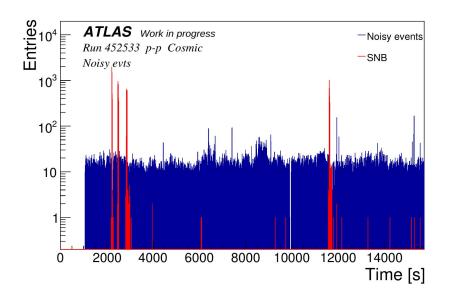
ATLAS: A General-Purpose Experiment

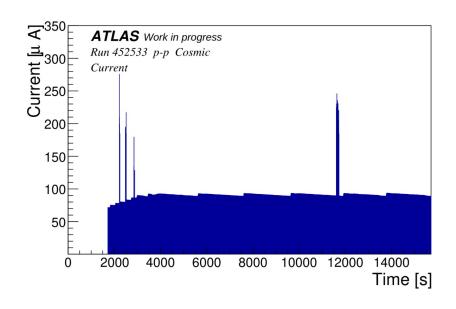
- Wide range of physics process → Including HH production
- Consists of:
 - Trackers (particles ID, vertex impact parameter)
 - Calorimeters (energy measurement)
- Efficient event selection relies on the two-level trigger system:
 - **L1** Trigger: Hardware-based → fast calorimeter and muon information
 - High Level Trigger (HLT): software-based → refined reconstruction


Liquid Argon Calorimeter: Noise Burst Identification

• NB usual identification and characterization:

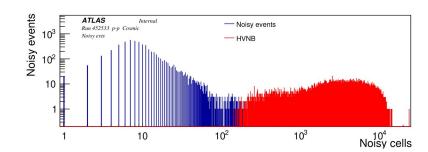
- Noisy event: ≥1 cell with E > 3σ above the electronic noise so
- o Identified by event-by-event criteria, using:
 - Noisy cells Q thresholds, Energy and affected FEBs
- Flags for Noise Bursts:
 - Standard Flag (SNB): ≥5 FEBs with >30 channels having Q > 4000
 - Saturated Flag: ≥20 channels with |E| > 1 GeV and Q saturated (65535)


Inconsistencies in the SNB Flag:


- Events with few noisy cells can still trigger SNB (lack of spatial coherence)
- Two multiplicity regimes
 - Electronic noise vs true Noise Bursts
 - Overlap between the two → ambiguity in NB classification

 $\cos\phi \times |\tan\theta|$

Liquid Argon Calorimeter: Noise Burst vs HV Current Spike

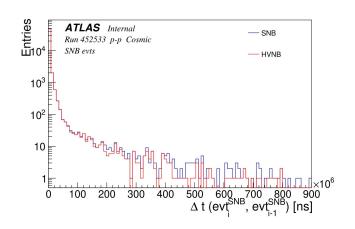


Correlation observed between Noise Bursts (NB) and HV current spikes

Liquid Argon Calorimeter: HV Noise Burst

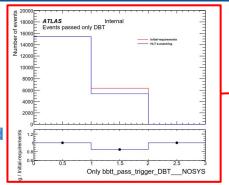
HV-based flag (HVNB):

- Groups HV lines (>10 cells)
- Fraction of noisy cells (Mr) with Q > 4000 within group
- Event flagged as HVNB if:
 - ≥3 HV groups with Mr>24% in one partition

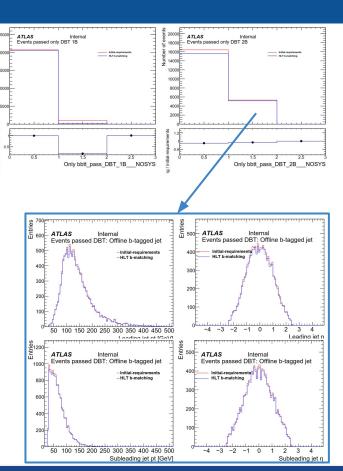


NB candidate and Window Veto:

- ≥2 events flagged SNB or HVNB with separation Δt < δt(c)/2 are clustered into one NB event
- Candidate extended by δt veto = $\delta tc/2$ to catch nearby bursts
- Events inside veto windows are rejected


HV-based method:

- Higher veto efficiency
- Fewer false positives → removes events far from true NB peaks



easyjet: DBT Bucket Selection

 With the updated requirements, a reduction of ~5% of events is observed compared to the initial selection:

- Events with 1 offline b-tagging pass_DBT_1B ~4.1 %
- Events with 2 offline b-tagging pass_DBT_2B ~0.9 %
- Trigger matching has no impact on events with two offline b-tags
 that satisfy the 2bjj trigger

