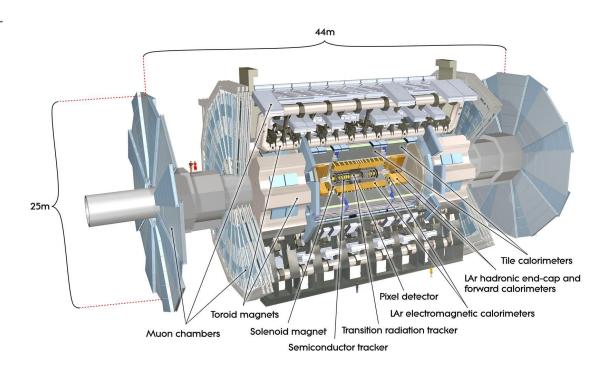
Developments in b-tagging for the ATLAS upgrade and their impact on di-Higgs sensitivity

Leonardo Splendori

Supervisors: Arnaud Duperrin, Thomas Strebler

CPPM 3rd year seminar - 08/12/2025

A Toroidal LHC ApparatuS


One of two **general purpose** experiments at LHC.

Beams cross in the center at **13.6 TeV** for proton-proton collisions

Composed of multiple systems:

- Inner Detector.
- Calorimeters.
- Muon Spectrometer.
- Magnets for magnetic fields.

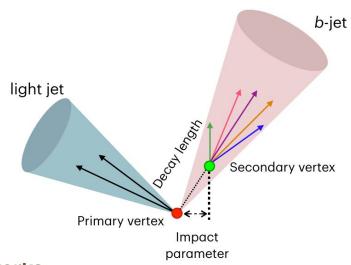
Beams cross in the center \rightarrow Collisions.

Flavour tagging at ATLAS

Collisions produce high energy and heavy hadrons (ex. b-hadrons).

Decays with multiple products, a single hadron can generate a multitude of tracks in the detector.

These tracks will have high impact parameters wrt the primary vertex \rightarrow characteristic topology.


The original parton manifests as a collimated stream of particles.

A **hadronic jet**. Can be categorized by **flavour**:

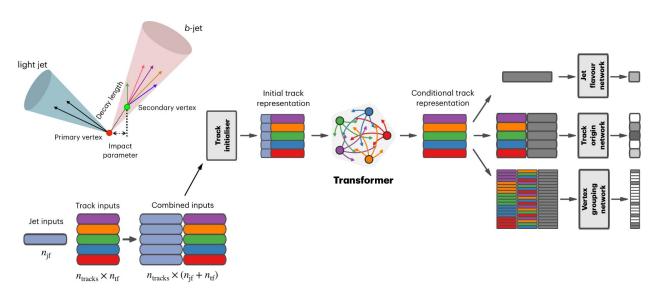
- b-jets.
- c-jets.
- light-jets.
- tau-jets.

Can be identified from their topology and kinematics.

Modern flavour tagging techniques include **complex neural networks**.

[CERN-EP-2025-103]

Inside a neural network based tagger


Currently deployed flavour tagging neural network is GN2.

Transformer based neural network.

Takes combined jet and track variables as inputs.

Embeds their representation in a transformer.

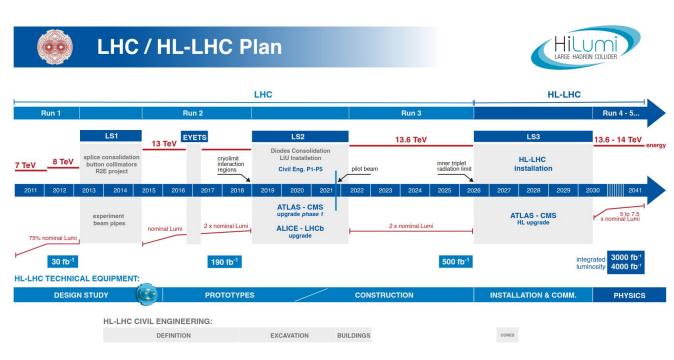
Loss is sum of multiple terms including flavour identification, track-origin association and vertex grouping.

[CERN-EP-2025-103]

Transformer based architectures are powerful but **expensive to train**.

Requires GPUs and large training datasets.

High Luminosity LHC


Starting in 2026, LHC and ATLAS to undergo **upgrading**.

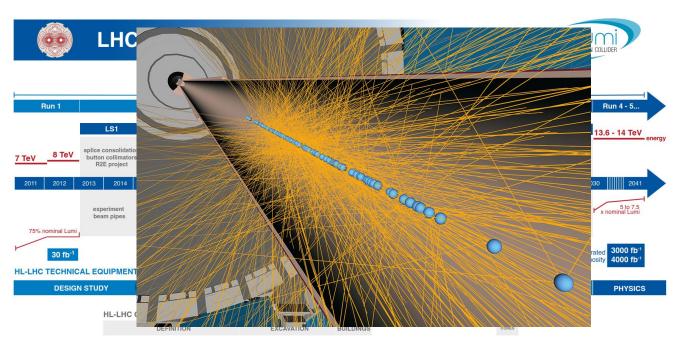
Will push energy and luminosity frontiers.

Energy up to $\sqrt{s} = 14 \text{ TeV}$.

Avg. interactions per crossing up to **200** (from 42 @ Run 3).

New hardware and software required to perform the physics analyses.

High Luminosity LHC


Starting in 2026, LHC and ATLAS to undergo **upgrading**.

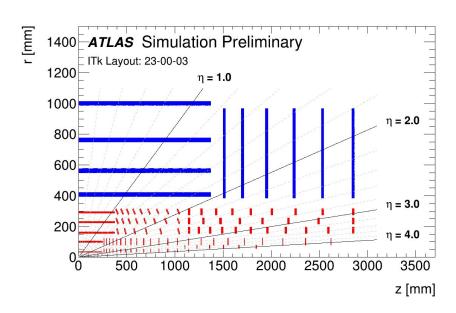
Will push energy and luminosity frontiers.

Energy up to $\sqrt{s} = 14 \text{ TeV}$.

Avg. interactions per crossing up to **200** (from 42 @ Run 3).

New hardware and software required to perform the physics analyses.

Expectations for HL-LHC


Different operating conditions:

- ITk → New detector geometry.
- Wider $|\eta|$ range ($|\eta| < 4$ vs $|\eta| < 2.5$).
- Higher luminosity → Increased pile-up.

With ITk, expected improvements in tracking and vertexing.

Finer detector granularity wrt Run 3.

Improved impact parameter resolution particularly useful in dense environments.

[ATL-PHYS-PUB-2021-024]

We take the current architecture used in Run 3, GN2, and train it on Run 4 simulations.

High statistics training using ~115M jets. Run 3 training statistics ~192M jets.

Multiple steps to get results:

We take the current architecture used in Run 3, GN2, and train it on Run 4 simulations.

High statistics training using ~115M jets. Run 3 training statistics ~192M jets.

Multiple steps to get results:

- Data pre-processing:
 - Prepares training/validation/test samples.
 - Performs resampling to reduce biases.

We take the current architecture used in Run 3, GN2, and train it on Run 4 simulations.

High statistics training using ~115M jets. Run 3 training statistics ~192M jets.

Multiple steps to get results:

- Data pre-processing:
 - Prepares training/validation/test samples.
 - Performs resampling to reduce biases.
- Model training:
 - Actual training of the model using the training/validation samples.
 - Very computationally expensive and time consuming.

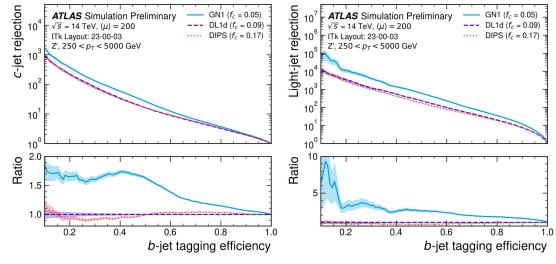
We take the current architecture used in Run 3, GN2, and train it on Run 4 simulations.

High statistics training using ~115M jets. Run 3 training statistics ~192M jets.

Multiple steps to get results:

Data pre-processing:

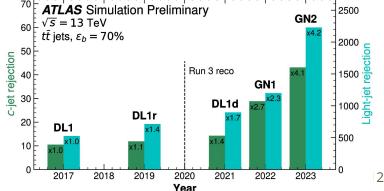
- Prepares training/validation/test samples.
- Performs resampling to reduce biases.


Model training:

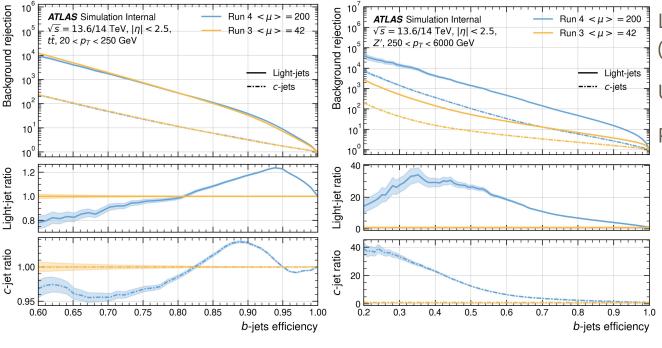
- Actual training of the model using the training/validation samples.
- Very computationally expensive and time consuming.

Model evaluation:

- Model inference is computed on the test sample.
- Production of performance plots and analyses.


Previous Run 4 results

[ATL-PHYS-PUB-2022-047]

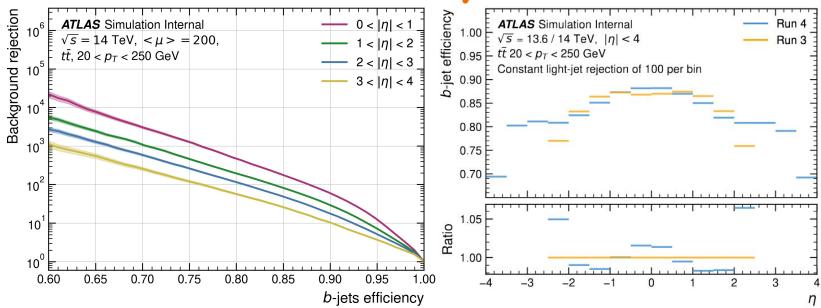

Left: Plots showing background rejections as functions of signal efficiency (ROC curves) for previous taggers.

GN2 overall outperforms all previous taggers.

FTAG-2023-01

Performance: Run 3 vs Run 4

Large improvement at high p_T (right plot).

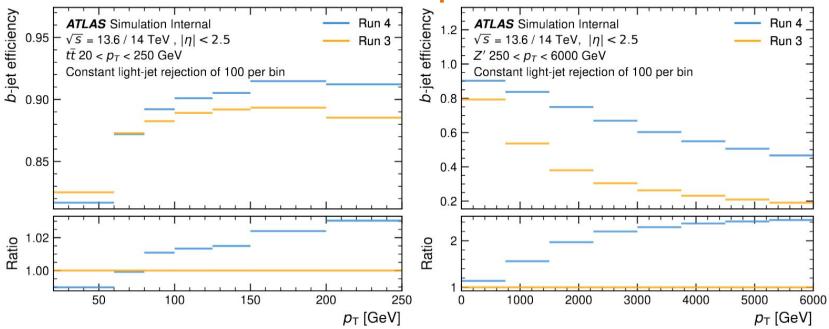

Up to ~40x in rejection.

Possible thanks to ITk:

- Improved impact parameter resolution
 - Improved tracking efficiency at high p_{τ} .

Promising results for analyses targeting boosted topologies!

Performance vs kinematics: η

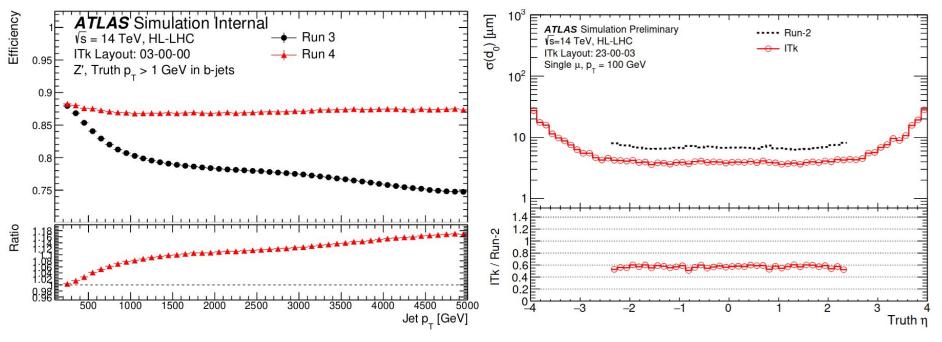


Left: ROC curves for Run 4 tagger in multiple $|\eta|$ slices. Right: b-efficiency for Run 4 and Run 3 taggers as functions of η .

Left plot shows performance degradation in forward regions \rightarrow expected from higher material budget.

Right plot illustrates a modest 2% improvement in the central region, up to 6% for 2 < $|\eta|$ < 2.5

Performance vs kinematics: p_T

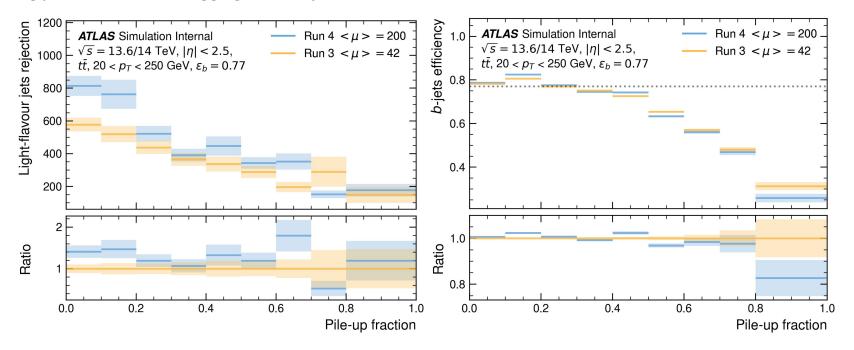


Plots of the b-efficiency as functions of p_T .

Efficiency vs p_{τ} plots highlight the performance improvements compared to Run 3.

At fixed rejection, Run 4 training shown to outperform Run 3 one for $p_T > 80$ GeV.

Improvement at high pT



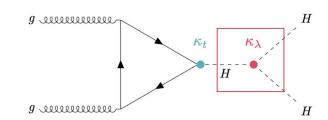
Large improvement on the Z' samples at high $p_{\scriptscriptstyle T}$ not surprising.

ITk offers a significant **improvement** in **tracking efficiency** and **impact parameter resolution** compared to Run 3. Finer granularity improving tracking for dense jets. Naturally translates to a higher flavour tagging efficiency.

Pile-up robustness

b-tagging efficiency and *light-jet* rejection as functions of ratio between number pile-up tracks and total tracks in jet. Working point set at 77% b-tagging efficiency.

Both Run 3 and HL-LHC b-jet efficiency strongly impacted by PU fraction. Overall **similar response to PU** between the two taggers.


DiHiggs analyses: motivation

Higgs self-coupling constrains the shape of Higgs potential.

Currently very unconstrained.

Studying processes involving $H \rightarrow HH$ will improve these constraints.

Interesting for innumerable physics topics.

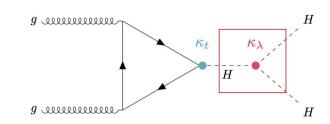
Di-Higgs search channels include (but are not limited to):

- HH → bbττ
- $HH \rightarrow bb\gamma\gamma$
- $HH \rightarrow 4b$

- ...

Di-Higgs analyses involving b-jets have the highest statistics.

	bb	ww	ττ	ZZ	YY
bb	34%				
ww	25%	4.6%			
ττ	7.3%	2.7%	0.39%		
ZZ	3.1%	1.1%	0.33%	0.069%	
YY	0.26%	0.10%	0.028%	0.012%	0.0005%


DiHiggs analyses: motivation

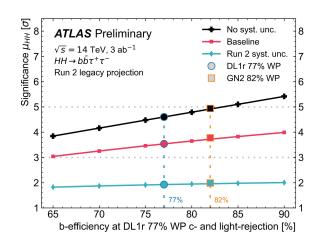
Higgs self-coupling constrains the shape of Higgs potential.

Currently very unconstrained.

Studying processes involving $H \rightarrow HH$ will improve these constraints.

Interesting for innumerable physics topics.

Di-Higgs search channels include (but are not limited to):


- $HH \rightarrow bb\tau\tau$ - $HH \rightarrow bb\gamma\gamma$ - $HH \rightarrow 4b$ - ...

That is a lot of b-jets.

Di-Higgs analyses involving b-jets have the highest statistics.

	bb	ww	ττ	ZZ	YY
bb	34%				
ww	25%	4.6%			
ττ	7.3%	2.7%	0.39%		
ZZ	3.1%	1.1%	0.33%	0.069%	
YY	0.26%	0.10%	0.028%	0.012%	0.0005%

DiHiggs analyses: impact

Algorithmic	Uncertainty	Significance	68% CI	
improvement	scenario	$[\sigma]$	μ_{HH} [%]	κ_{λ}
<i>b</i> -tagging improved by 5%	Run 2 syst. unc.	2.85	+40/-34	[0.46, 1.66]
	Theory unc. halved	3.47	+31/-29	[0.55, 1.55]
	Baseline	4.44	+26/-24	[0.60, 1.45]
	No syst. unc.	6.33	+17/-17	[0.73, 1.31]
	Run 2 syst. unc.	2.73	+47/-36	[0.39, 1.71]
Nominal	Theory unc. halved	3.32	+33/-31	[0.52, 1.59]
	Baseline	4.26	+28/-25	[0.58, 1.48]
	No syst. unc.	5.98	+18/-18	[0.71, 1.33]

[ATL-PHYS-PUB-2025-006]

Combined HH expected significance as function of b-tagging efficiency.

Projections for HL-LHC. Higher luminosity vital to diHiggs program.

Baseline: theoretical uncertainties halved, statistical ones scaled down with expected luminosity. Experimental ones scaled down according to expected improvements from larger datasets.

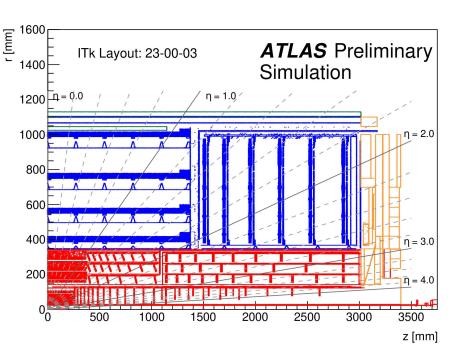
Improvements in b-tagging impact the projections.

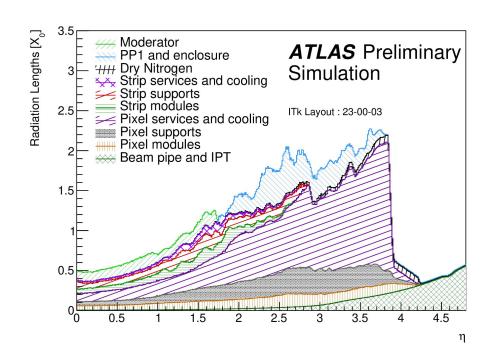
Nominal baseline scenario and 5% improved b-tagging well within reach.

Summary & Conclusions

- Flavour tagging algorithms need to be re-optimized for HL-LHC.
- Flavour tagging extended up to $|\eta| < 4$.
- Large improvement in background rejection at high p_T .
- Pile-up robustness consistent with Run 3.
- Improvements in b-tagging of high interest to future analyses.

Thank you for following


Backup


Backup: Track selections

Different cuts on the tracks between Run 3 and Run 4 samples.

Requirements	Run 3	Run 4		
	$ \eta < 2.5$	$ \eta < 2.0$	$2.0 < \eta < 2.6$	$2.6 < \eta < 4.0$
silicon hits	≥ 8	≥ 9	≥ 8	≥ 7
pixel hits	≥ 1	≥ 1	≥ 1	≥ 1
holes	≤ 2	≤ 2	≤ 2	≤ 2
p_T [MeV]	> 500	> 900	> 500	> 500
$ d_0 $ [mm]	< 3.5	< 2.0	< 2.0	< 3.5
$ z_0 \sin \theta $ [mm]	< 5.0	< 5.0	< 5.0	< 5.0

Backup: ITk Material Budget

[ATL-PHYS-PUB-2021-024]