Optimisation of embedded neural networks for the energy reconstruction of the Liquid Argon Calorimeter cells of ATLAS

CPPM Seminar 3rd year PhD 27.10.2025

Raphaël Bertrand

Introduction

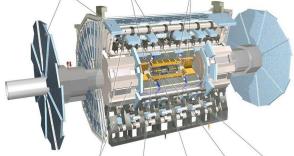
Experimental Context

- Large Hadron Collider (LHC)

- Proton-proton collider at 13.6 TeV
- Protons accelerated via superconducting magnets
- o Collisions at 40 MHz

ATLAS detector

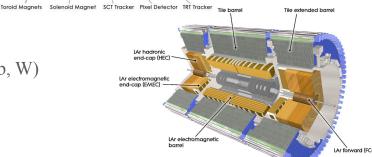
- General-purpose experiment
- Very high data rate
 - On-the-fly event selection required



Tile Calorimeter

- Liquid Argon (LAr) Calorimeter

- ATLAS sub-detector for energy measurement (e^{-/+}, γ)
- Sampling in active LAr alternating with inactive metal (Cu, Pb, W)
 - Accordion shaper absorbers for EMB and EMEC
 - > Ionization signal from particle interactions

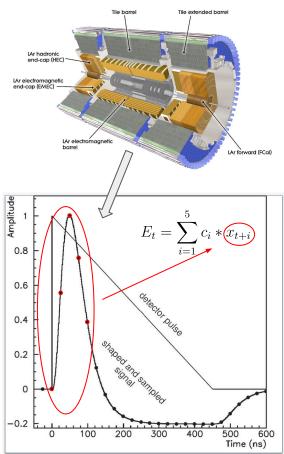


Signal processing and energy reconstruction

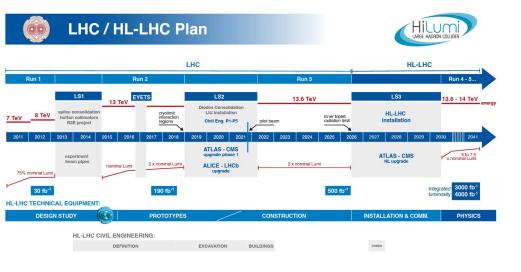
- Electronic signal produced
 - Amplitude \propto true deposited energy (E^{true})
 - Spans ~625 ns (25 proton-proton Bunch Crossings)
 - Shaped, sampled and digitised at 40 MHz

- **Energy reconstruction** with optimal filtering (OF) algorithm
 - Weighted sum of samples around the pulse peak
 - Max finder/Timing cut to select the correct BC

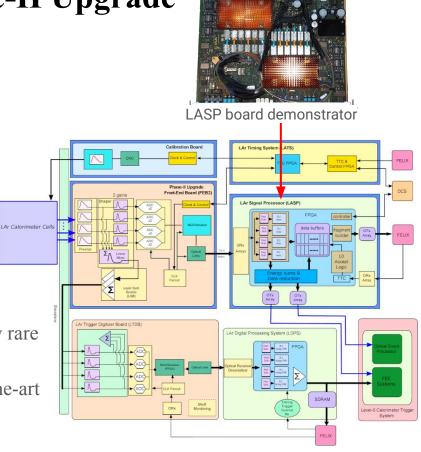
- Reconstruction algorithm requirements:
 - Online computation (per BC)
 - Max latency: ~125 ns (used in trigger system)
 - Fit in FPGAs : O(500) Multiply-Accumulate operations (MAC units)
 - > 5 MAC units required to implement OF
 - 384 channels per FPGA (many algorithm instances needed)



HL-LHC schedule and ATLAS Phase-II Upgrade



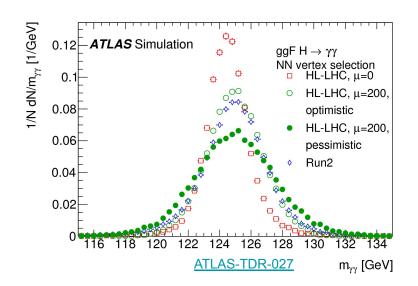
- HL-LHC \Rightarrow Luminosity \nearrow
- HL-LHC is needed to study Higgs properties and detect new rare processes
- Off-detector readout board (LASP) will carry two state-of-the-art **FPGAs for energy computation**
 - Opportunity to embark more complex algorithms

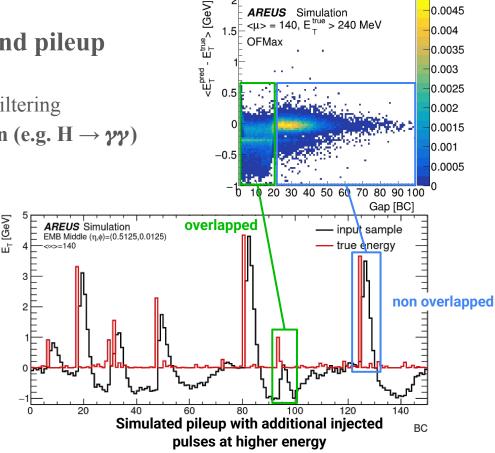


0.0045

Impact of high luminosity

- $HL-LHC \Rightarrow$ Increased luminosity and pileup
 - **Increased rates of overlapping pulses**
 - → **Degraded performance** of Optimal Filtering
 - Significant impact on energy resolution (e.g. $H \rightarrow \gamma\gamma$)



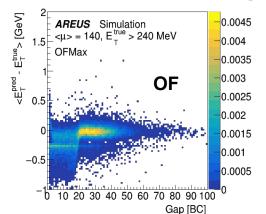


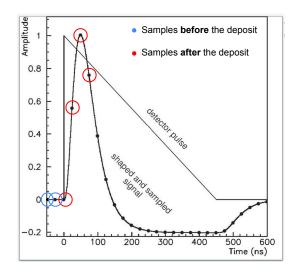
AREUS Simulation

Neural network approaches as energy reconstruction algorithms

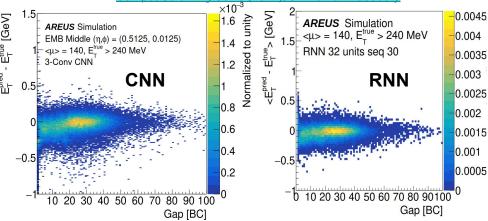
Neural networks

- Exploit samples before the energy deposit to **correct overlapping pulses**
- Several architectures tested: RNN, RNN+Dense, CNN, Dense
- Samples from before and after the energy deposit are used :
 - **After the energy deposit** (similar to OF inputs)
 - ➤ Capture the pulse amplitude
 - **Before the energy deposit** (additional inputs)
 - > Correct for pulse distortions from previous deposits
- Preliminary studies done with high rate of pulse overlap
 - Neural networks can correct for overlapping pulses
 - The correction is **dependent on the size** of network





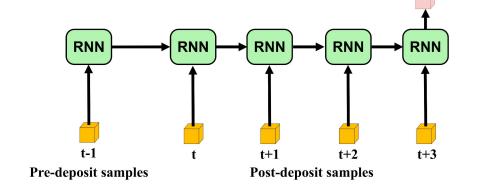
Comput.Softw.Big Sci. 5 (2021), s41781-021-00066-y

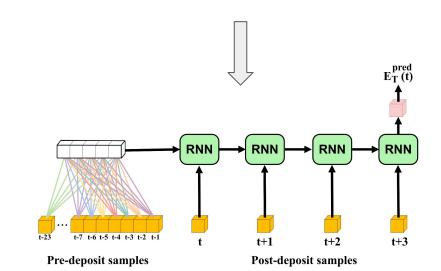


Neural network architecture - RNNs

- Architecture **RNN**
 - Multiple RNN cells sharing the same parameters
 - **➣** One cell per sample
 - One dense layer to concatenate output from last cell
 - > Return predicted energy
- The RNN architecture assigns equal importance to all samples
- Start computations at first sample
 - Good latency
- FPGA implementability:
 - Number of Multiply-Accumulate Operations (MAC units)

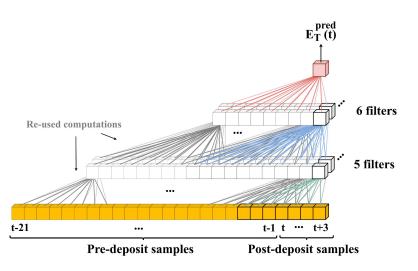
- Architecture **Dense+RNN** → **additional dense layer** before RNN cells
 - Computation for pre-deposit samples
 - Less MAC units for a dense layer
- \Rightarrow MAC units _{RNN laver} \propto units² x nb of samples
- \Rightarrow MAC units _{Dense laver} \propto units x nb of samples

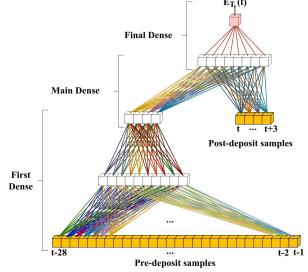




Neural network architecture - CNN and Dense

- Architecture CNN \Rightarrow Three CNN layers
- Uncertain latency compliance
- FPGA implementability:
 - Re-used computations





- Architecture **Dense**

- One block of dense for aggregation of pre-deposit samples
- One dense layer to add a layer of computations before concatenation
- One dense layer to concatenate output from last cell

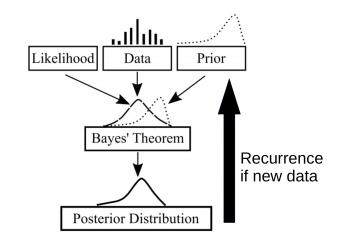
> Return predicted energy

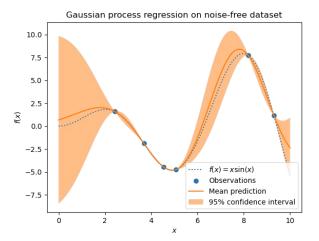
- Good latency
- Smaller number of MAC units with dense layers

Neural networks hyperparameters tuning bayesian optimization

Bayesian optimisation

- Goal: Find the best parameters to maximize/minimize a performance function while evaluating the function as few times as possible
- **Initialization** with several random points
- **Iterations** to find the best parameters space
 - **Interpolation** between points
 - > Based on a gaussian kernel with associated uncertainty
 - Acquisition function to determine where to evaluate next
 - > Balance between **exploration** and **exploitation**
 - Evaluation of the performance function at the chosen point





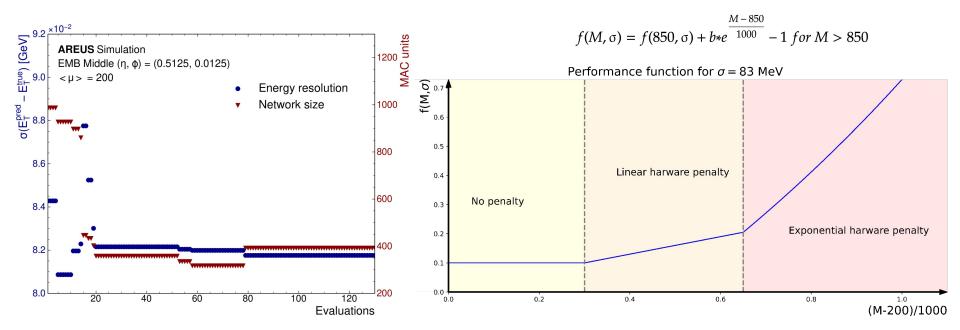
Bayesian optimisation applied on energy reconstruction

Performance function used for the bayesian optimization :

- Optimisation on both performance and hardware to fit in FPGAs
 - **Energy resolution** (σ [MeV])
 - Number of MAC units (M)
- Hyperparameters to be tuned (e.g. for the Dense architecture):
 - Number of samples (before the energy deposit)
 - Number of units for the intermediate layers

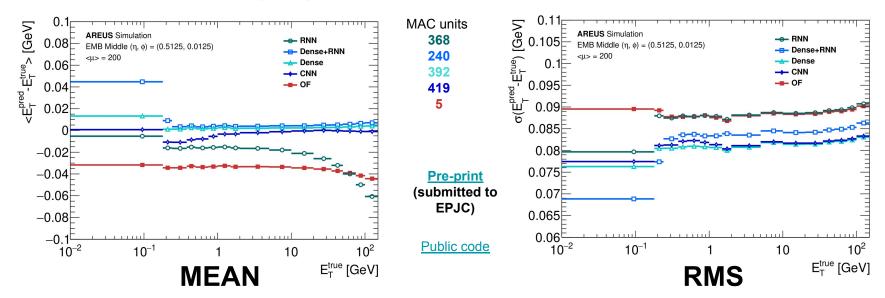
$$f(M,\sigma) = \frac{\sigma - 70}{130} for M \le 500$$

$$f(M, \sigma) = f(500, \sigma) + a*\frac{M - 500}{1000}$$
 for $M \in]500;850]$



Energy scale and resolution as function of true energy

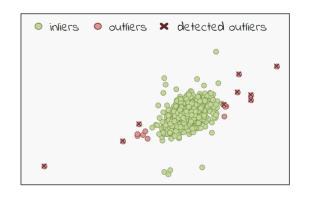
- Better energy scale of E_T pred E_T true for Dense+RNN, Dense and CNN architectures compared to OF
 - \circ RNN energy scale falling with higher E_T^{true}
 - OF energy scale not centered around 0
- Better energy resolution of E_T pred- E_T true for Dense+RNN, Dense and CNN architectures compared to OF
 - Visible for the whole energy range



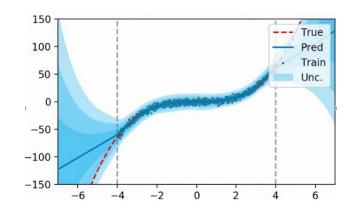
Uncertainty prediction using neural network with deep evidential regression

Deep evidential regression (DER)

- NNs are trained to minimize their prediction errors
 - Unknown accuracy of the model for individual prediction
 - It would be interesting to know when the model is more likely to fail (or the opposite)
- Model the energy prediction as a distribution
 - \circ Mean of the distribution \rightarrow energy prediction
 - \circ Standard deviation of the distribution \rightarrow uncertainty



- Differentiate uncertainties :
 - Epistemic
 - ➤ Lack of knowledge, model uncertainty
 - > Can be reduced
 - Aleatoric
 - > Inherent to data
 - Cannot be reduced

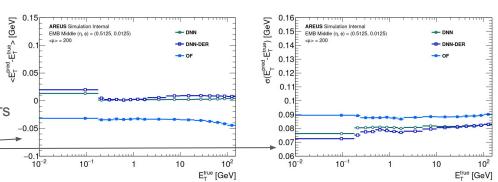


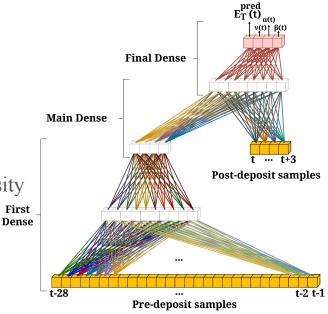
Deep evidential regression (DER)

- Normale-Inverse Gamma distribution to describe mean and uncertainty
 - **4 parameters** $(\gamma, \nu, \alpha, \beta)$ rather than one
 - Uncertainty computation
- DER applied to LAr cells energy reconstruction
 - Would allow to take into account instantaneous luminosity changes or bunch train structure
- Adapted to the Dense architecture
 - Use of bias compared to the other architectures
 - o Still possible to implement in FPGA
 - > 416 MAC units
- Training loss function : MSK
 - Likelihood + Regularisation

fit the distribution increase uncertainty on large errors

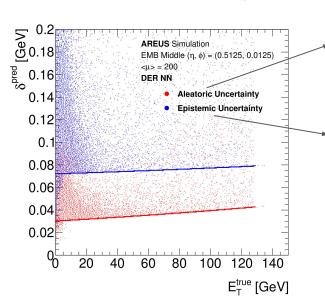
Similar performance





Uncertainty prediction

- Overall **good pull distribution**
 - \circ Estimated uncertainty comparable to E_{T}^{pred} E_{T}^{true}
 - Slightly biased
 - > Right tails
 - Uncertainty overestimated by 25%



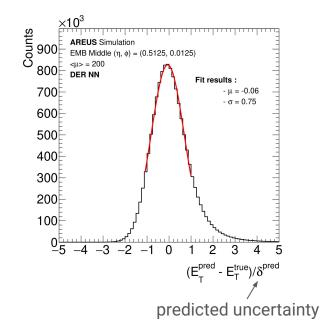
Data uncertainty

$$\mathbb{E}[\sigma^2] = \frac{\beta}{\alpha - 1}$$

Model uncertainty

$$\operatorname{Var}[E_{\mathrm{T}}^{\mathrm{pred}}] = \frac{\beta}{\nu(\alpha - 1)}$$

- Epistemic and aleatoric uncertainties are constant
- Epistemic uncertainty is dominant in the total uncertainty



Conclusion

- Online energy reconstruction for LAr cells performed using neural networks
 - Pre-print on arxiv: Optimised neural networks for online processing of ATLAS calorimeter data on FPGAs
- Four neural network architectures were tested and optimized
 - CNN, RNN, RNN+Dense and Dense
- Hyperparameter tuning performed using bayesian optimization
 - **Balance between performance and size of the network** to fit in FPGAs
 - NNs outperform OF
- Uncertainty on energy prediction using deep evidential regression
 - Accurate uncertainty prediction
 - Possible to implement in FPGAs

BACKUP

Bayesian optimisation code

- Parallel iterations
 - Multiple models (with different parameters) trained simultaneously
 - ➤ Min distance defined to avoid to train models on the same peak/minimum
 - Fixed
 - Decreasing
 - At lowest
 - **Exploration parameter** (to favour high-uncertainty regions)
 - Fixed
 - Fixed
 - Decreasing
- Noise considerations
 - Choice 1 : multiple models trained at the same parameters, only the best one is considered
 - Choice 2 : multiple models trained at the same parameters, all used to train the Gaussian Process Regressor
- Integers considerations :
 - Only integer parameters are proposed
 - Two iterations can't be on the same set of parameters
- Kernel choice : Matern 5/2
 - o Twice differentiable
 - More realistic than usual RBF/Gaussian kernel (infinitely differentiable)

Cells grouping

- Training one network per cell is not feasible
- LAr calorimeter cells grouped
 - One neural network \Leftrightarrow several cells
 - $182,468 \text{ cells} \rightarrow \text{few hundreds groups}$
- Grouping performed using techniques known as t-sne and dbscan
 - Groups are trained layer per layer
 - The grouping recovers the detector symmetry

Single cell training performance fully recovered

