

Astrophysical Searches for Quantum Gravity: what multi-messenger observations can (and cannot) tell us

Rafael Alves Batista

Sorbonne Université

Institut d'Astrophysique de Paris (IAP)
Laboratoire de Physique Nucléaire et des Hautes Énergies (LPNHE)

✉ rafael.alves_batista@iap.fr
🏡 www.8rafael.com

BridgeQG Workshop
Annecy, February 4-6 2026

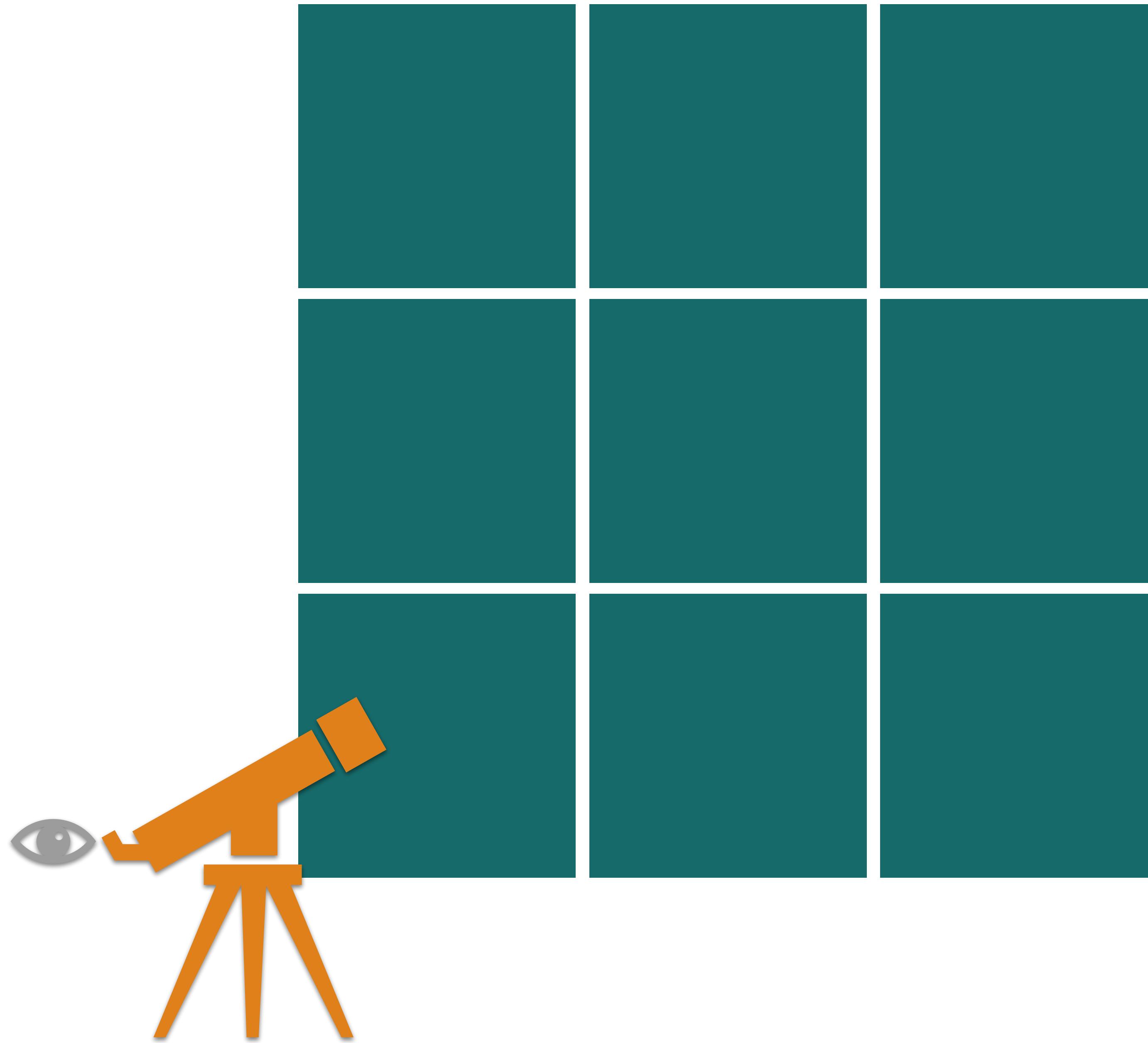
what if there are already QG signatures in the data?

what if there are already QG signatures in the data?

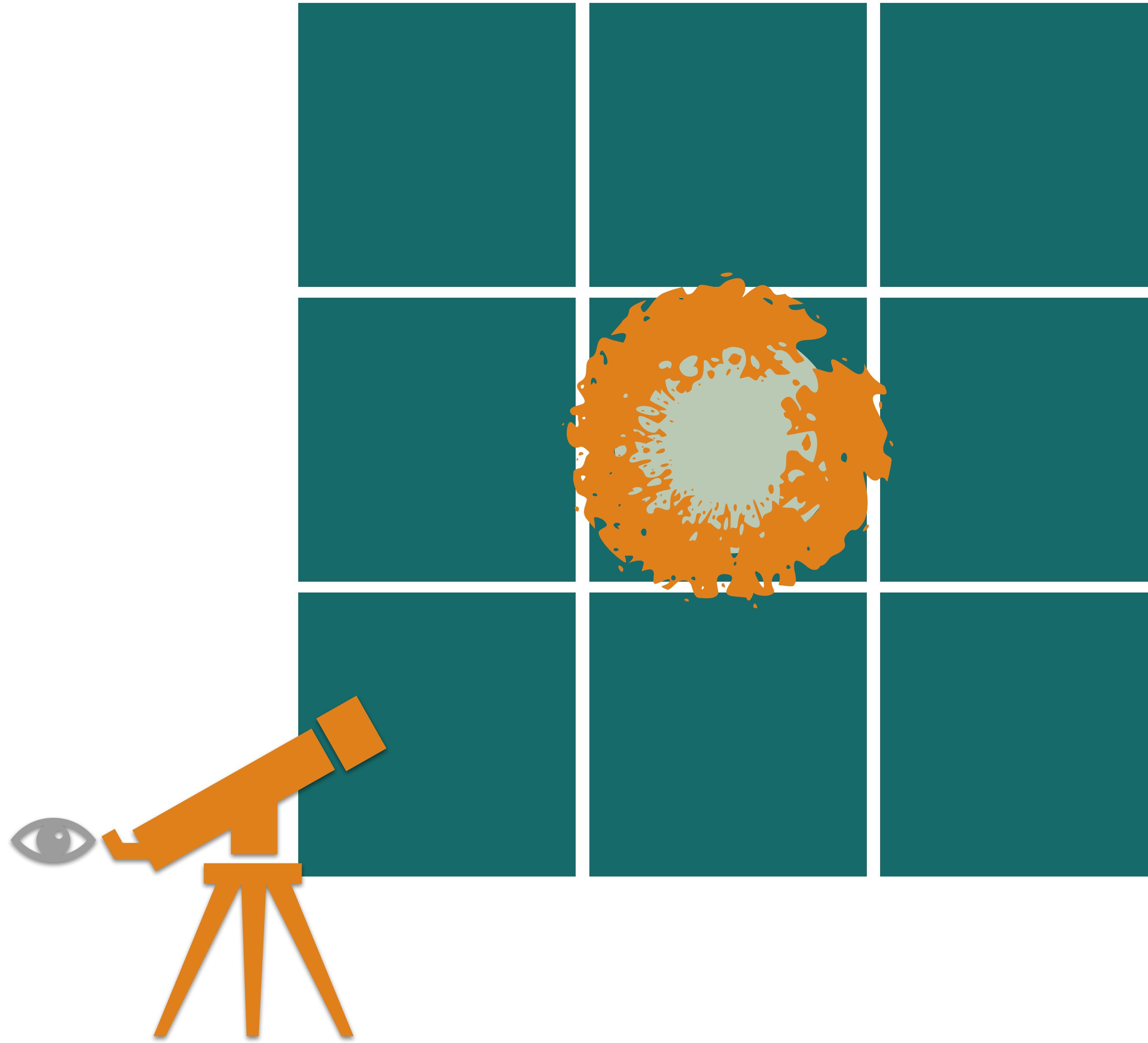
would we be able to tell?

what do we observe?

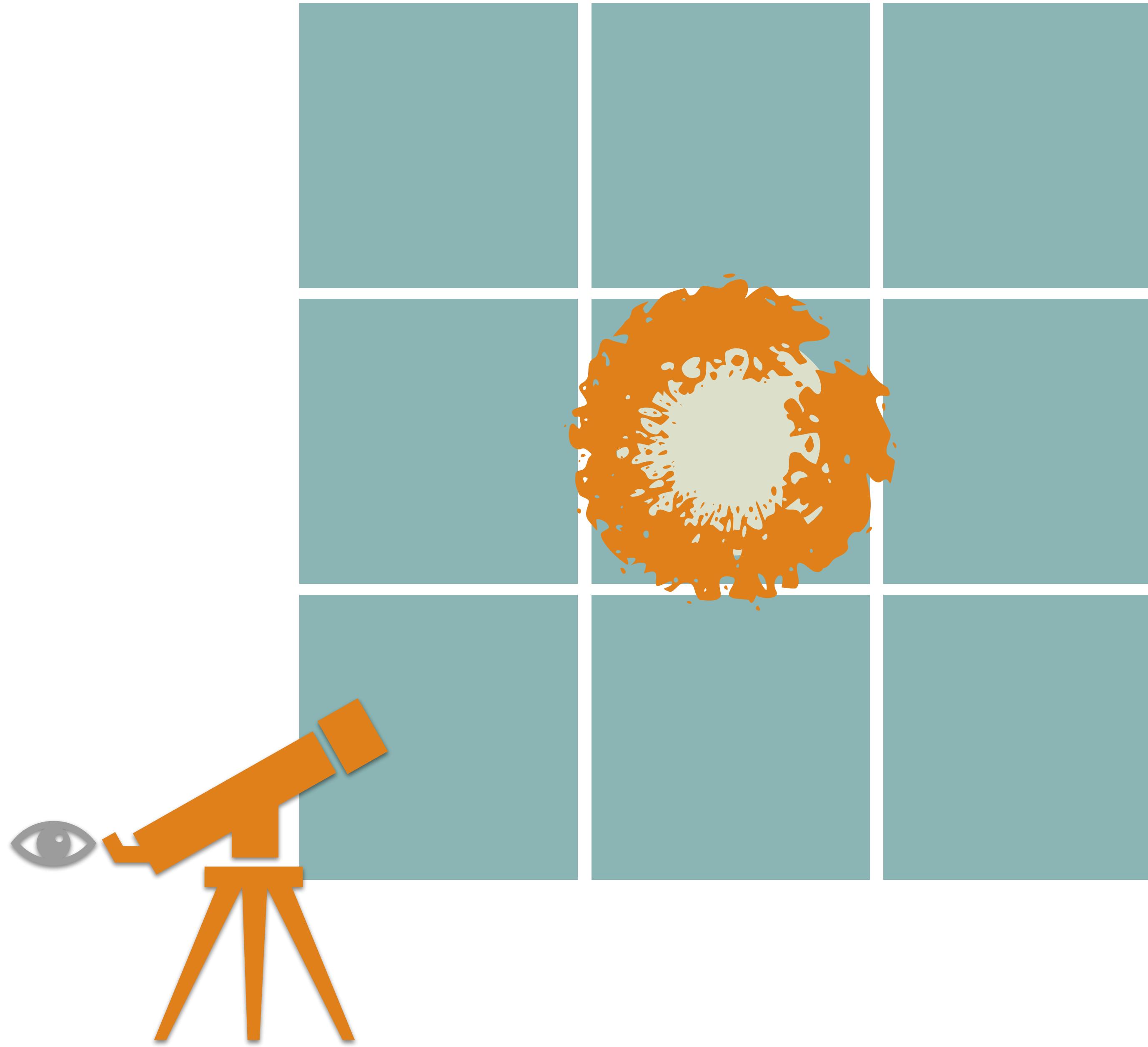
what do we observe?



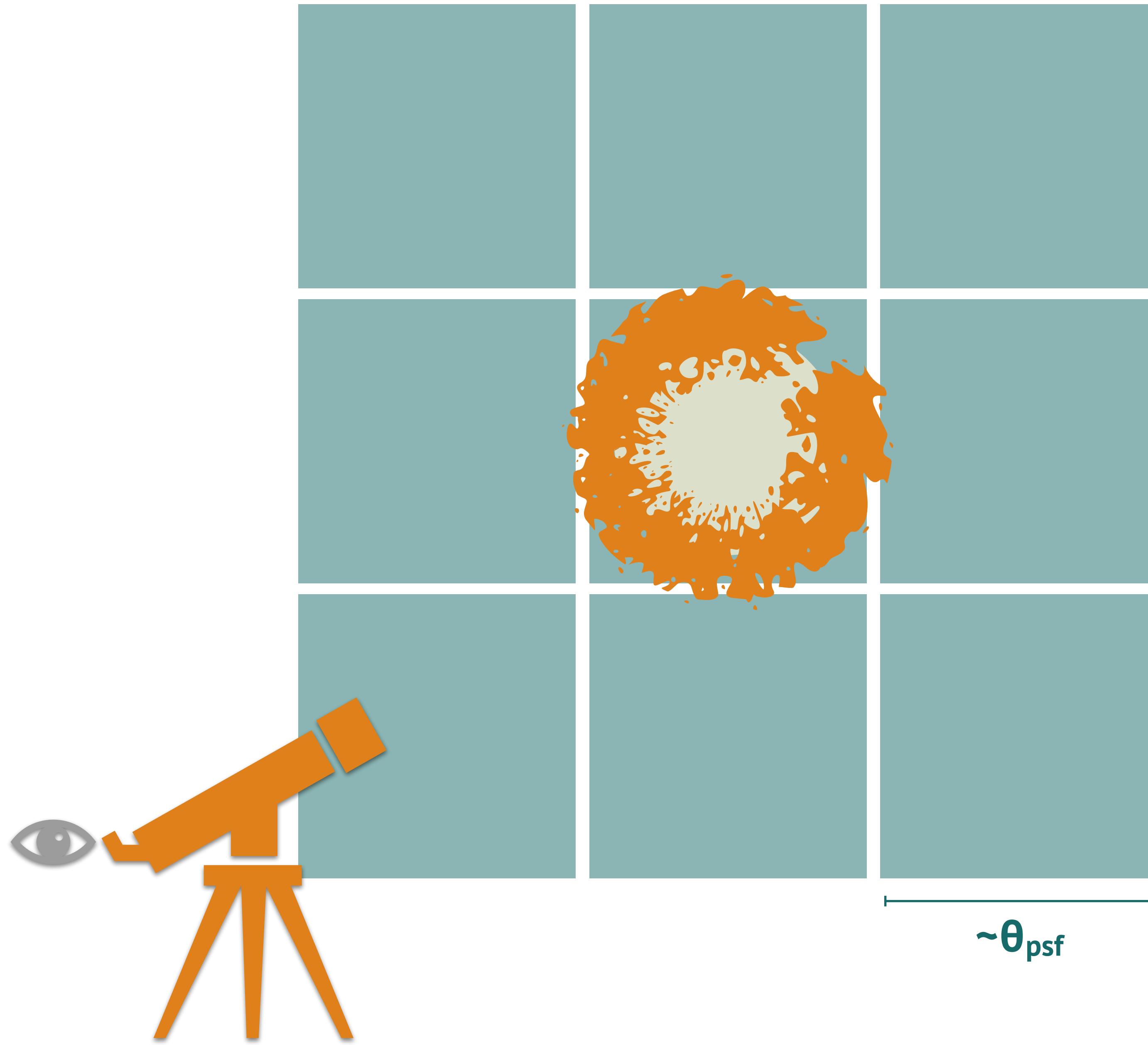
what do we observe?



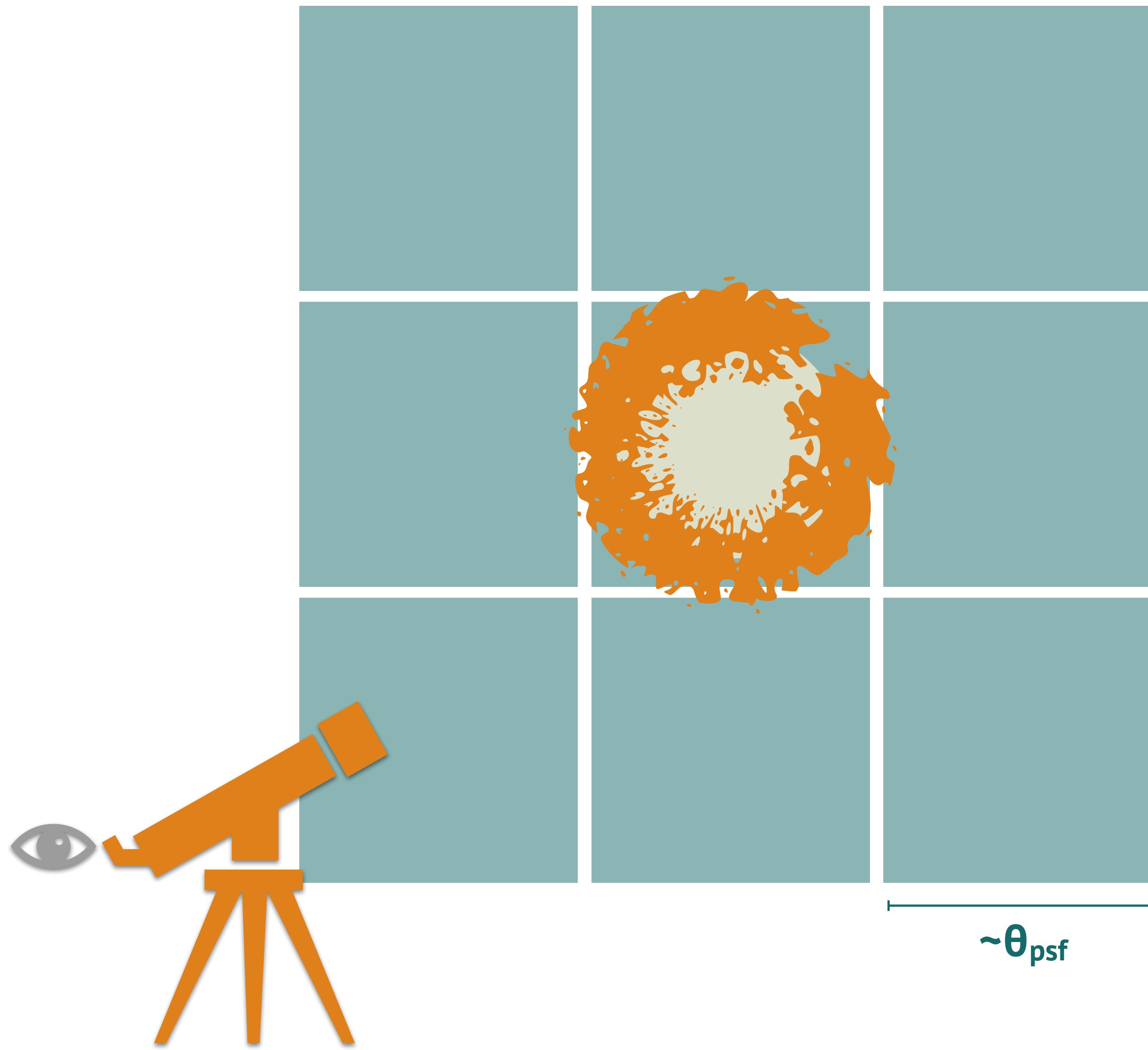
what do we observe?



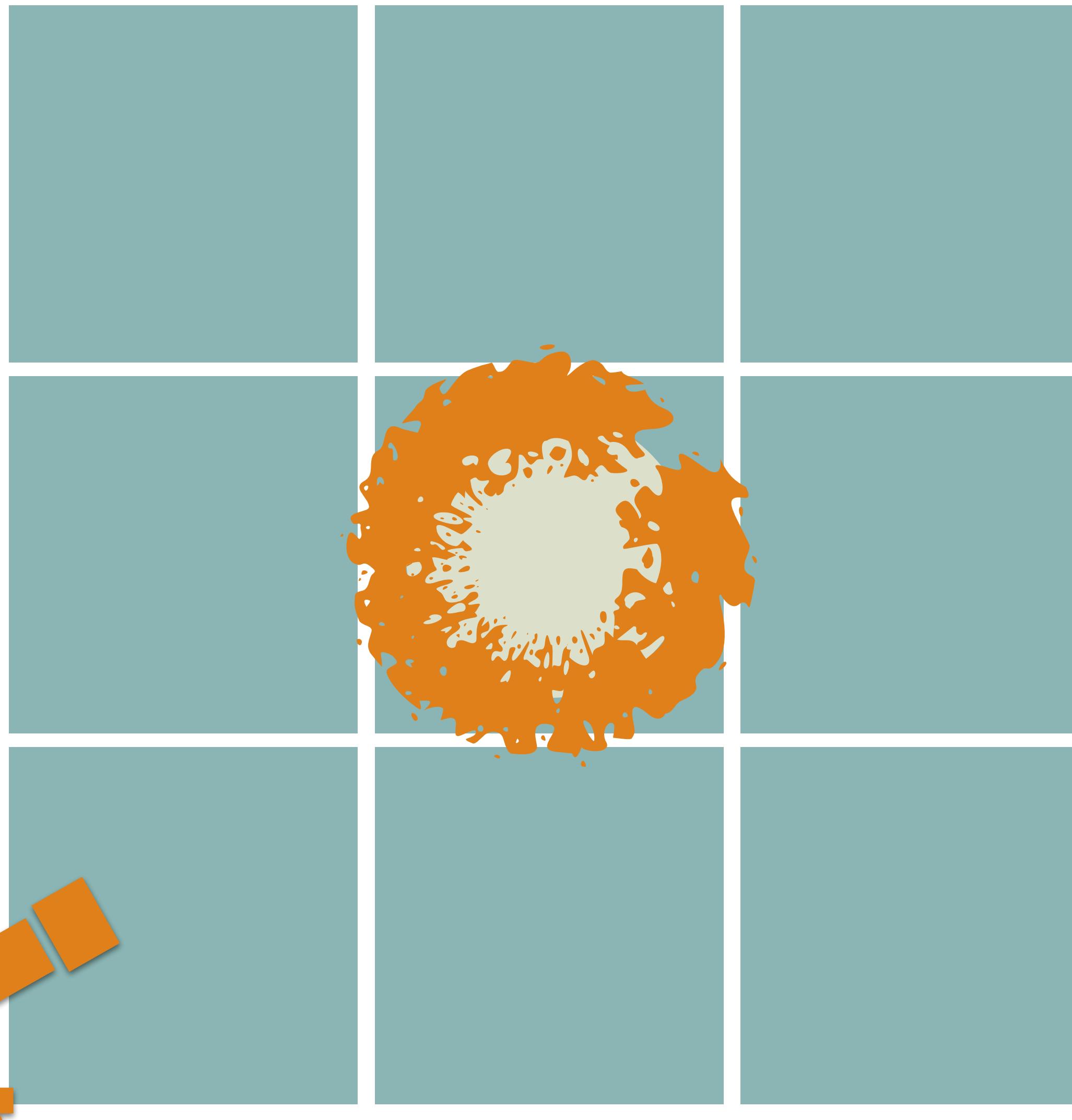
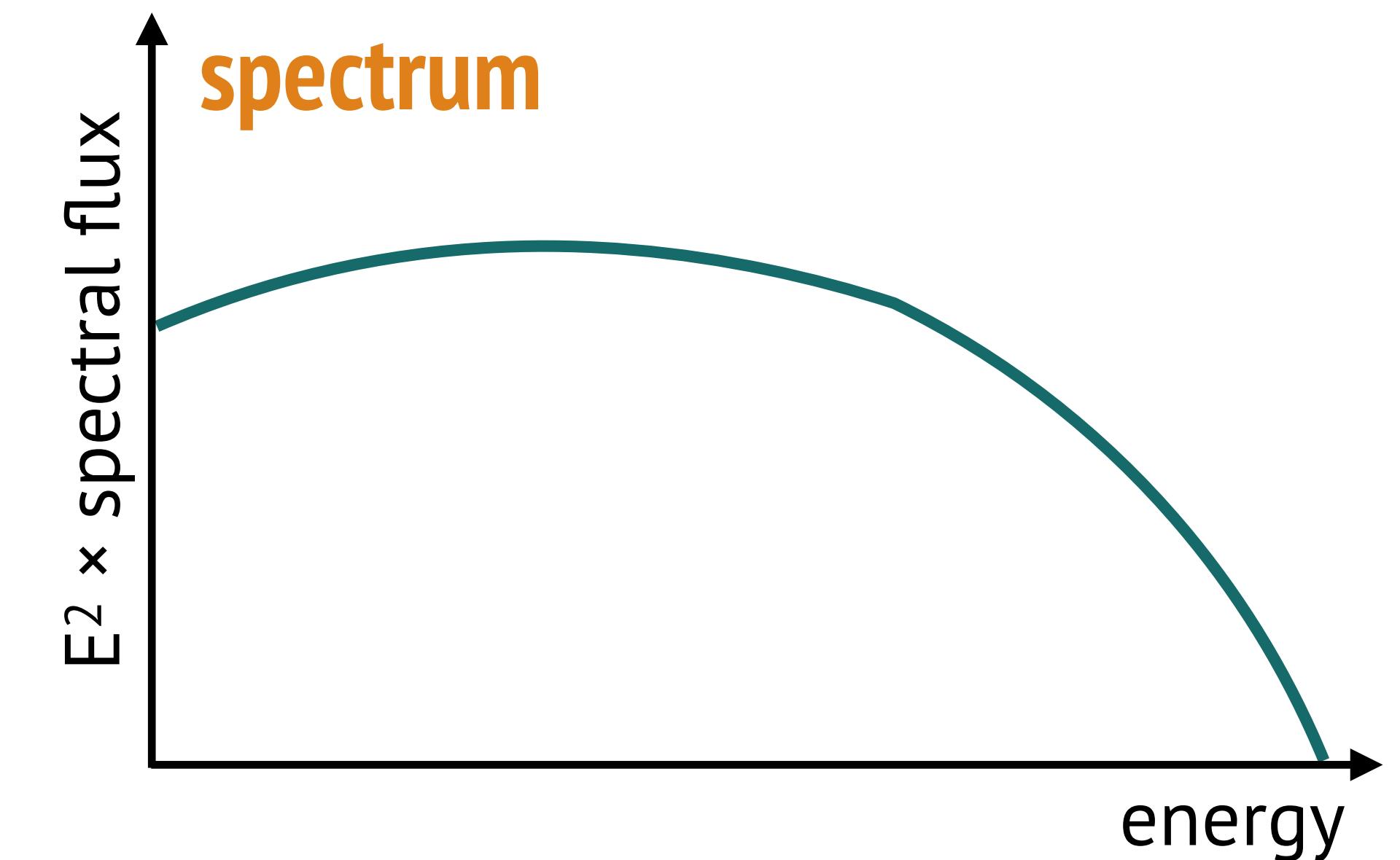
what do we observe?



arrival directions

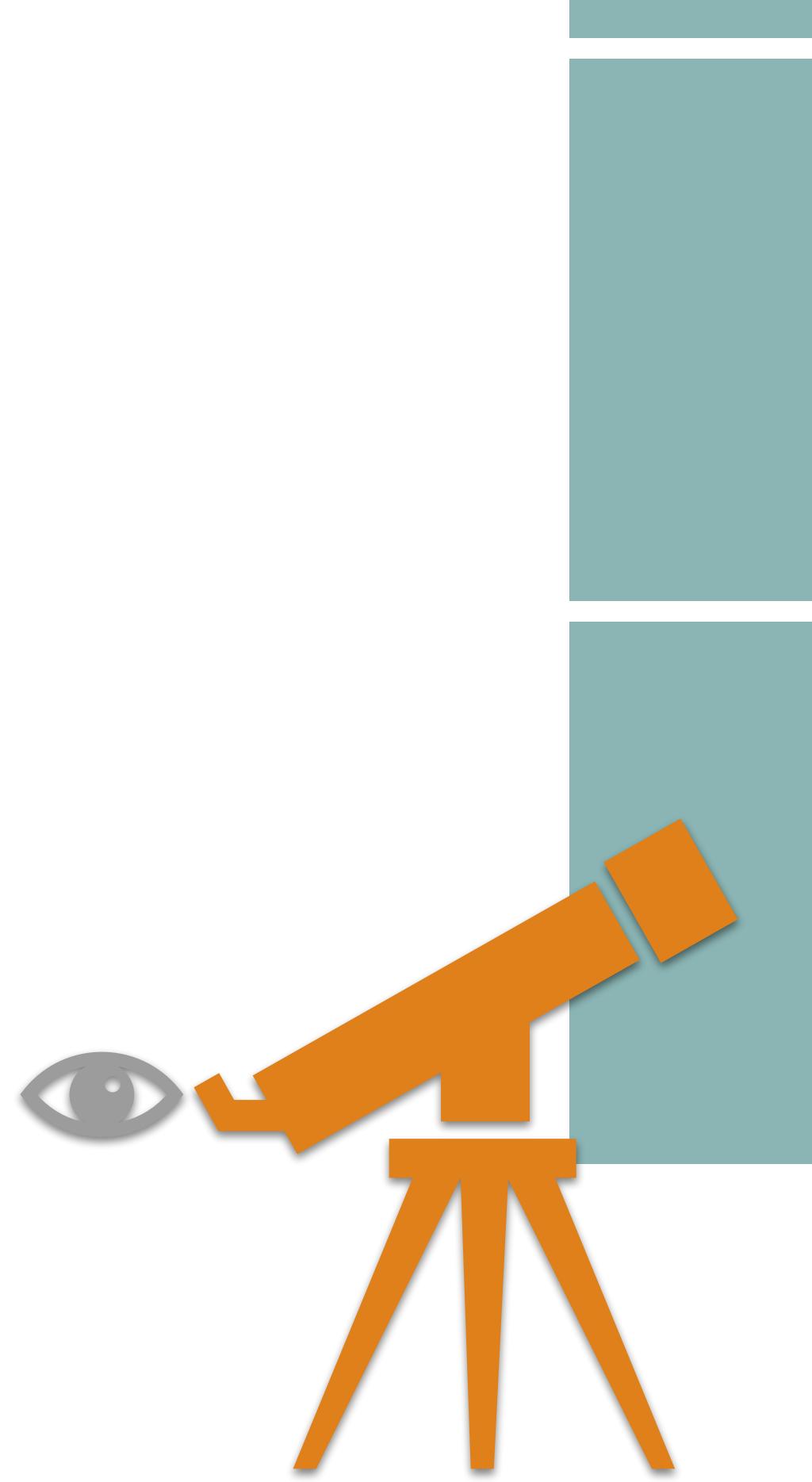


arrival directions

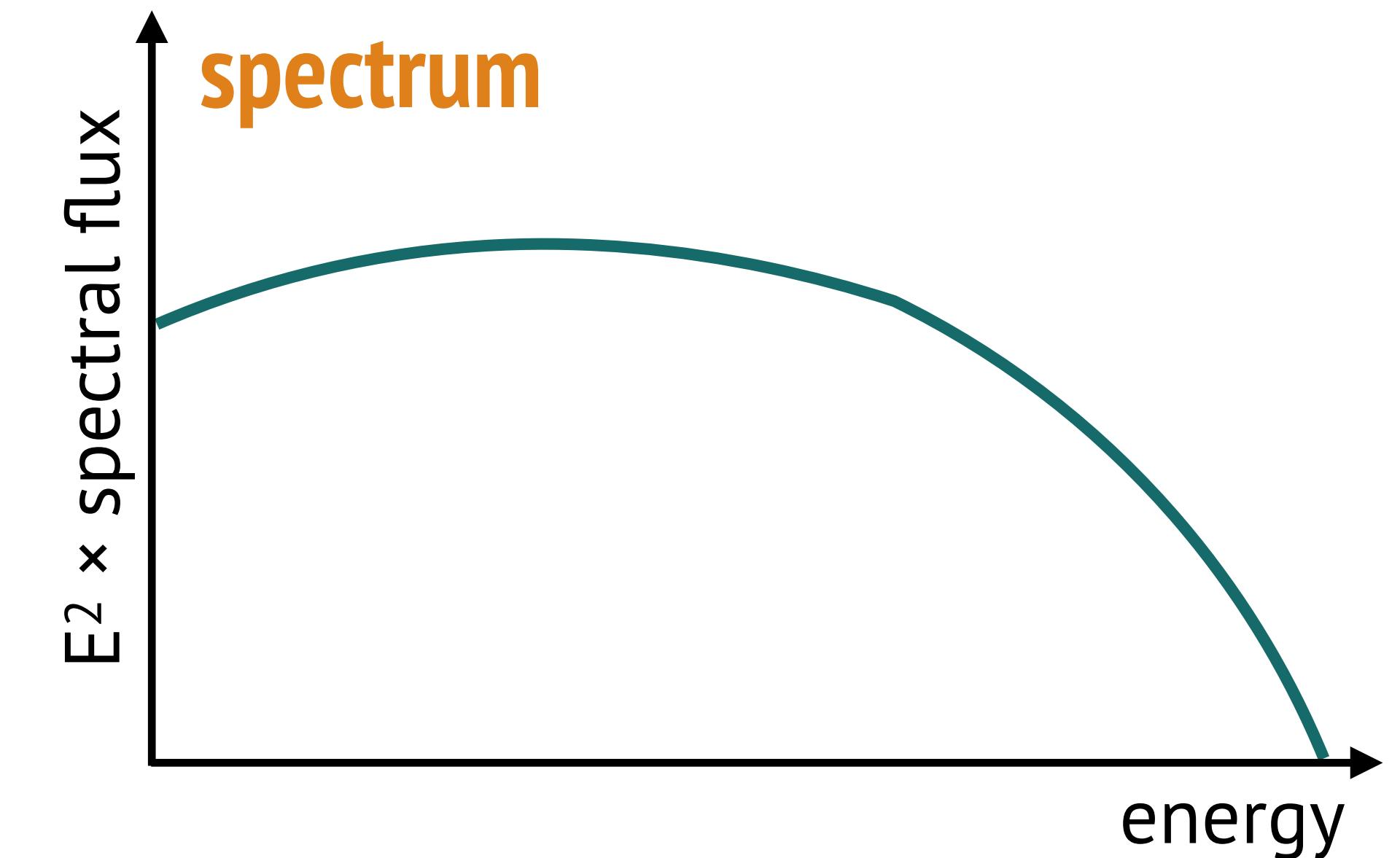
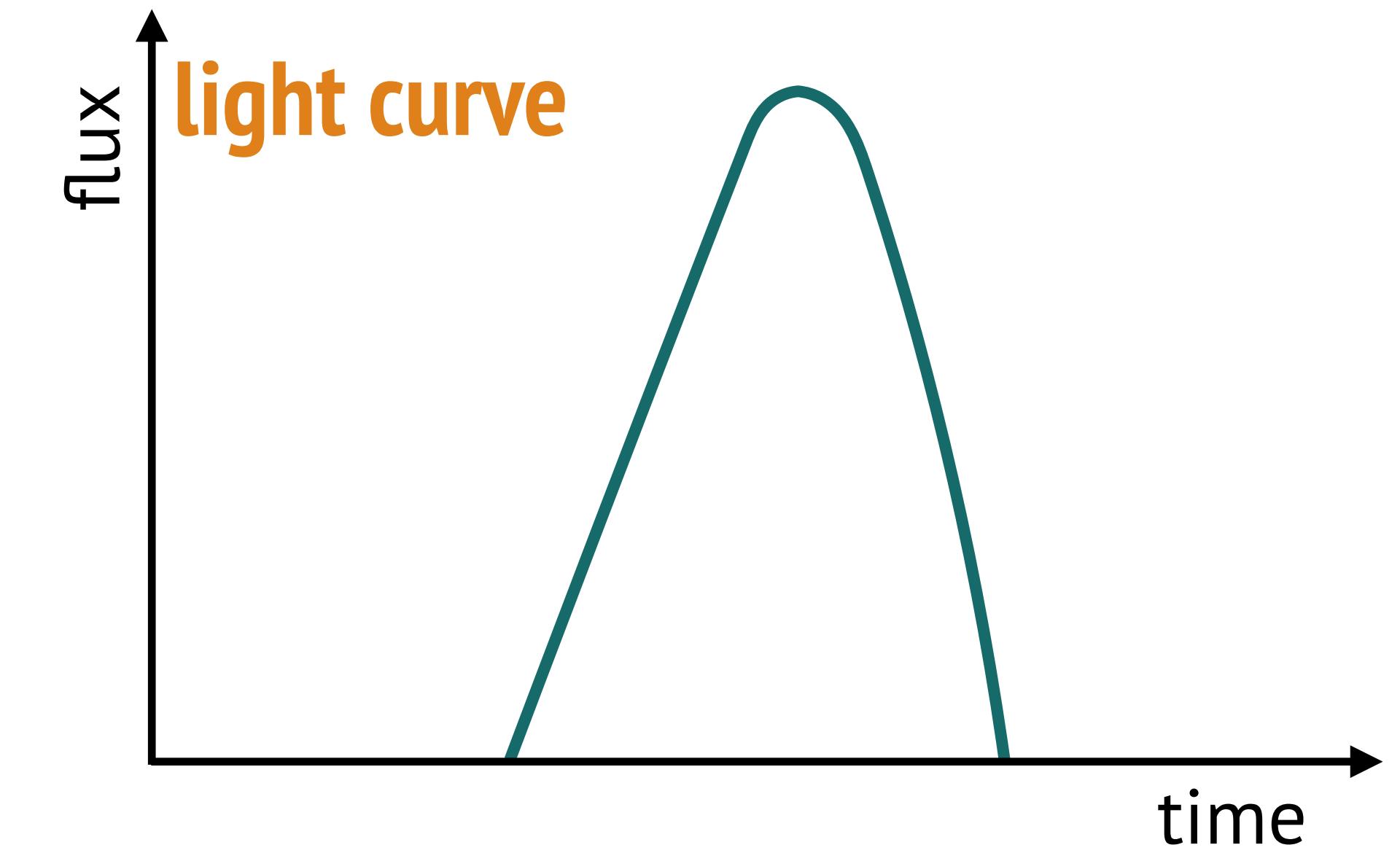


what do we observe?

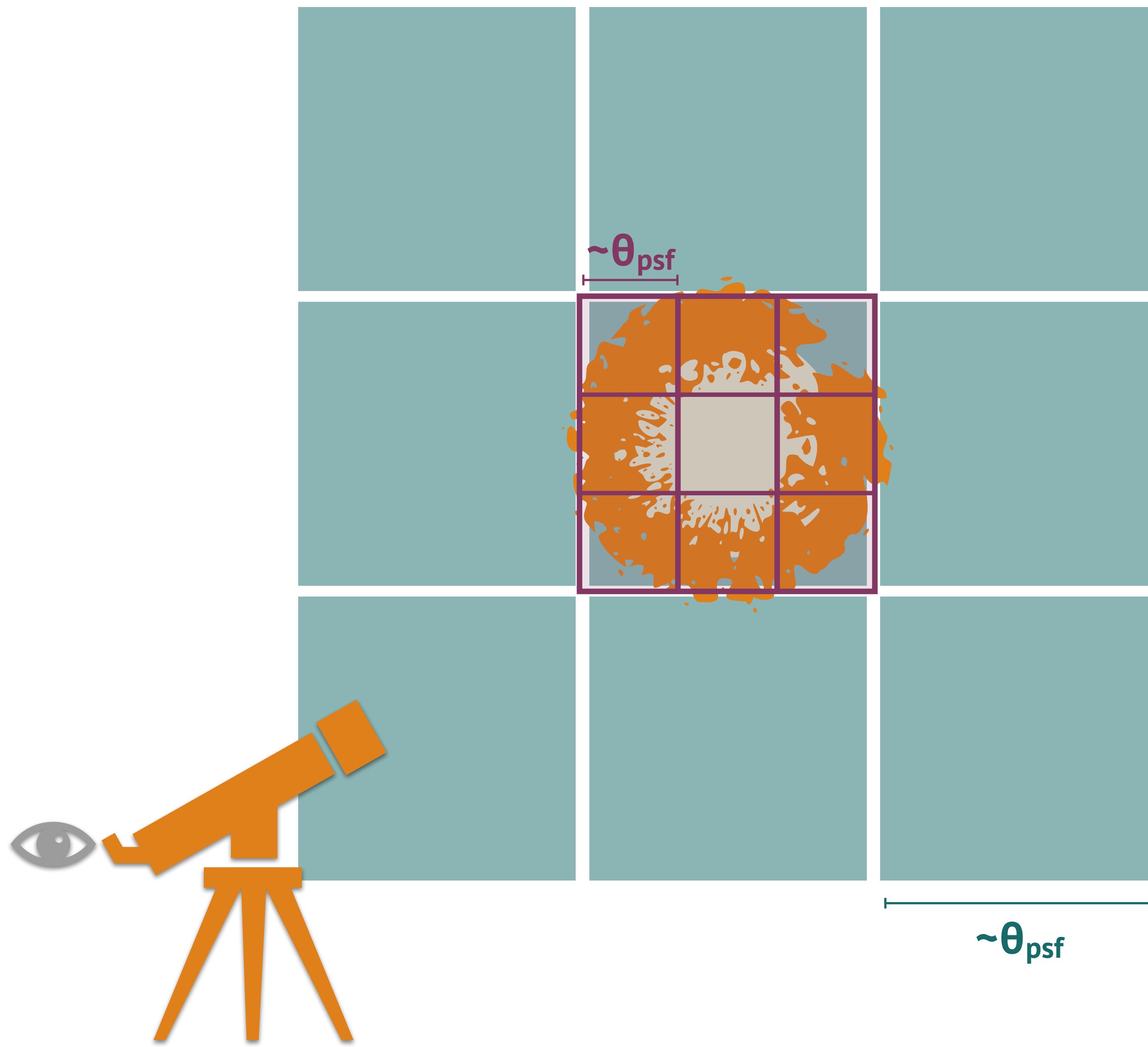
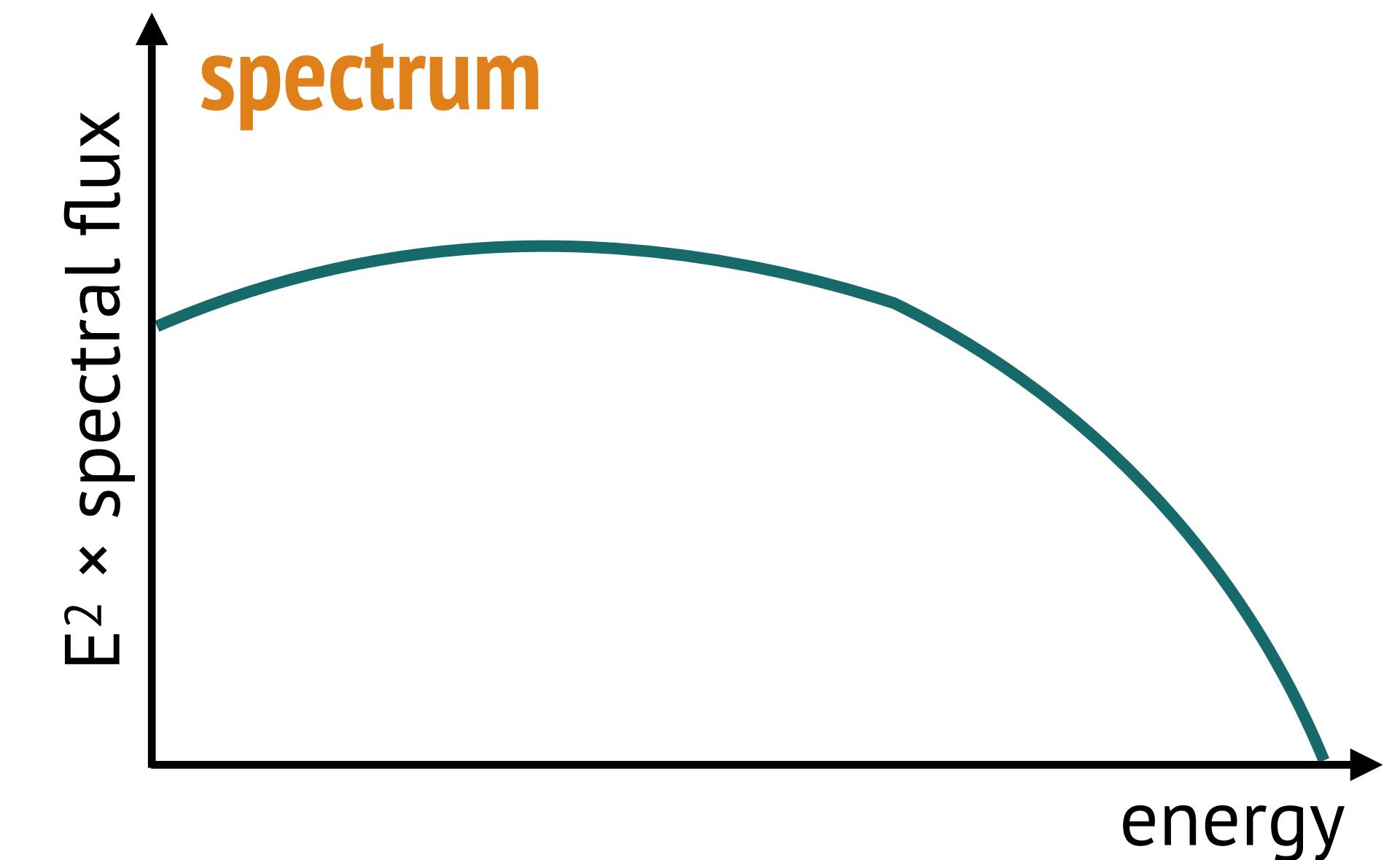
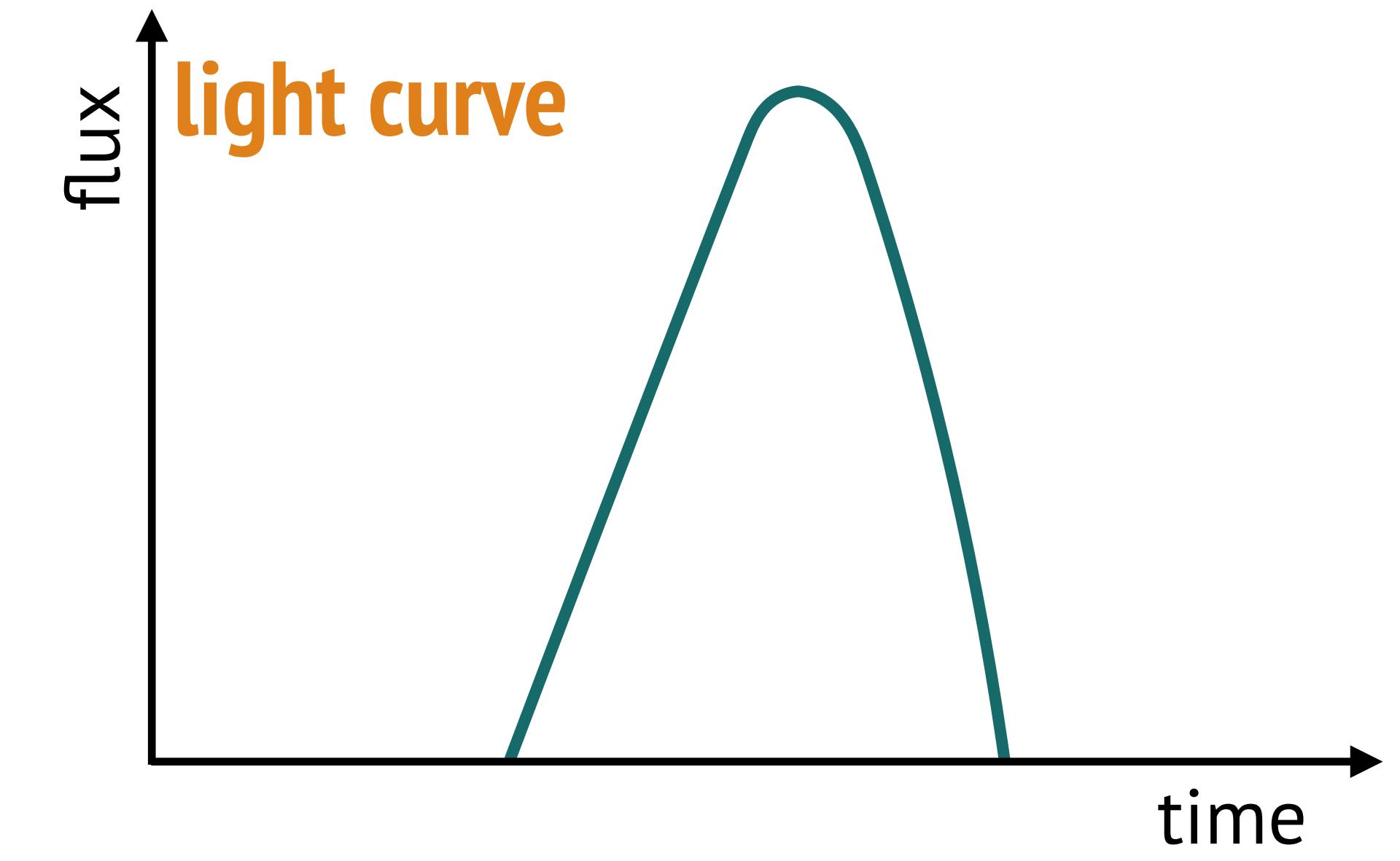
arrival directions



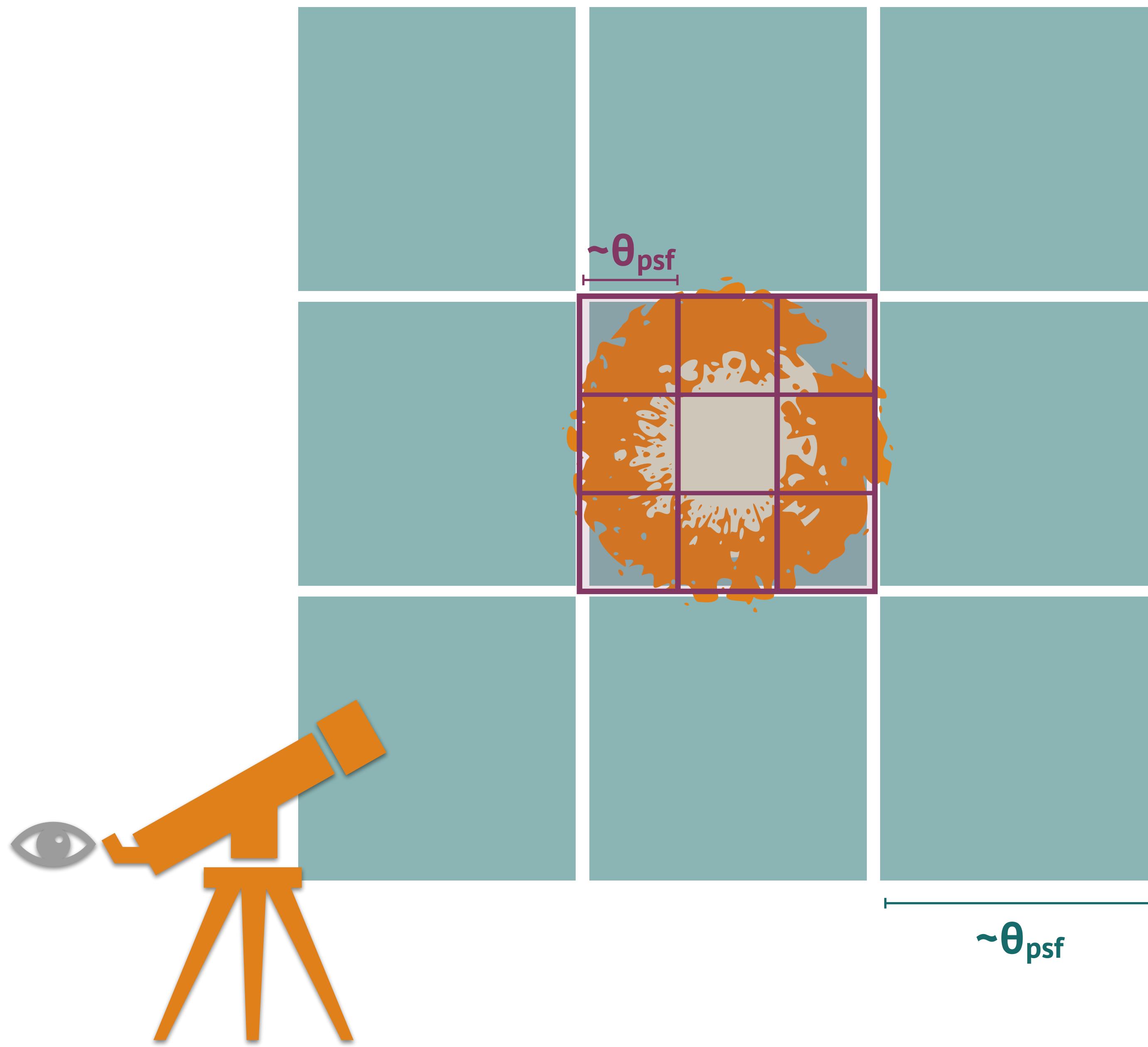
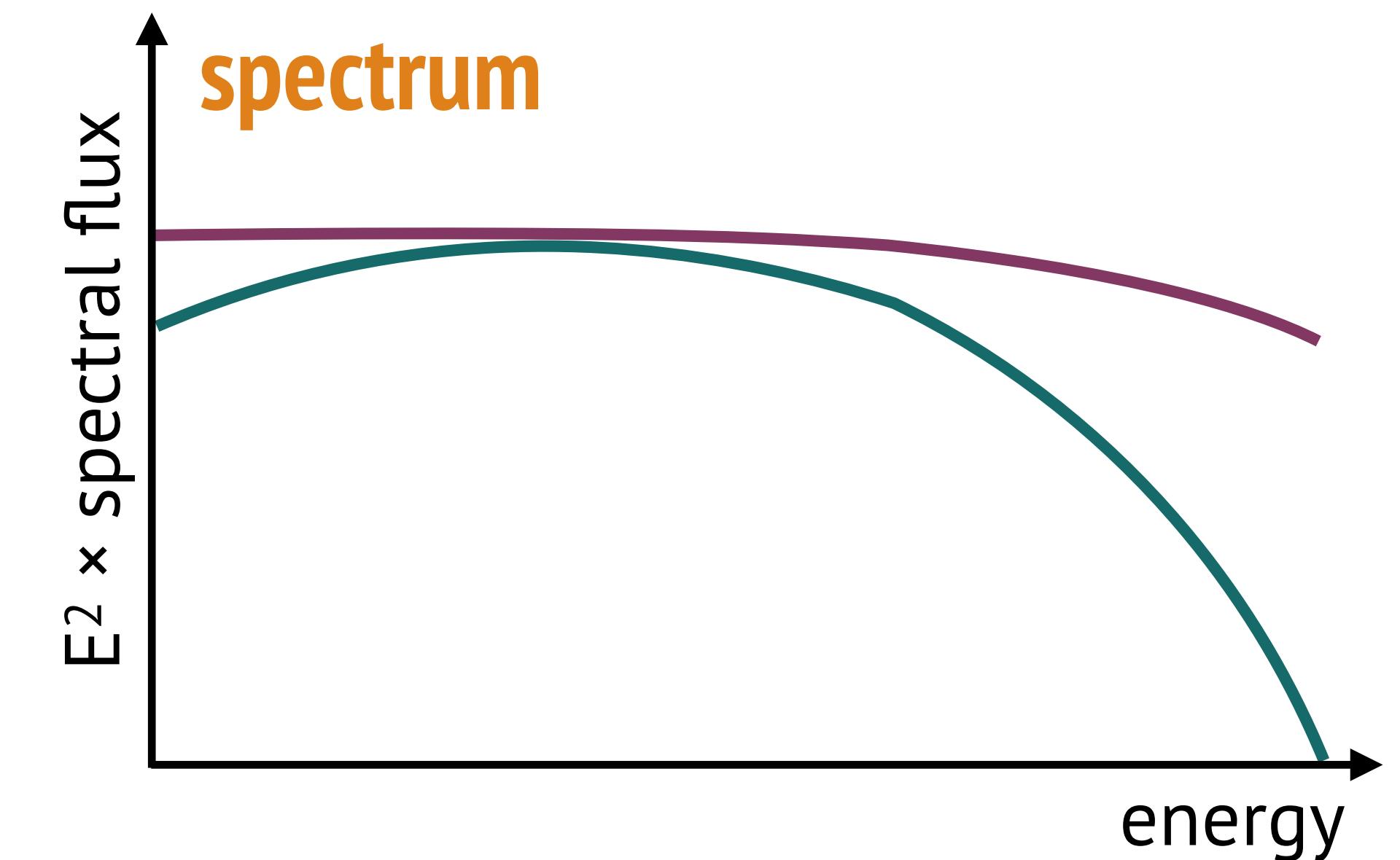
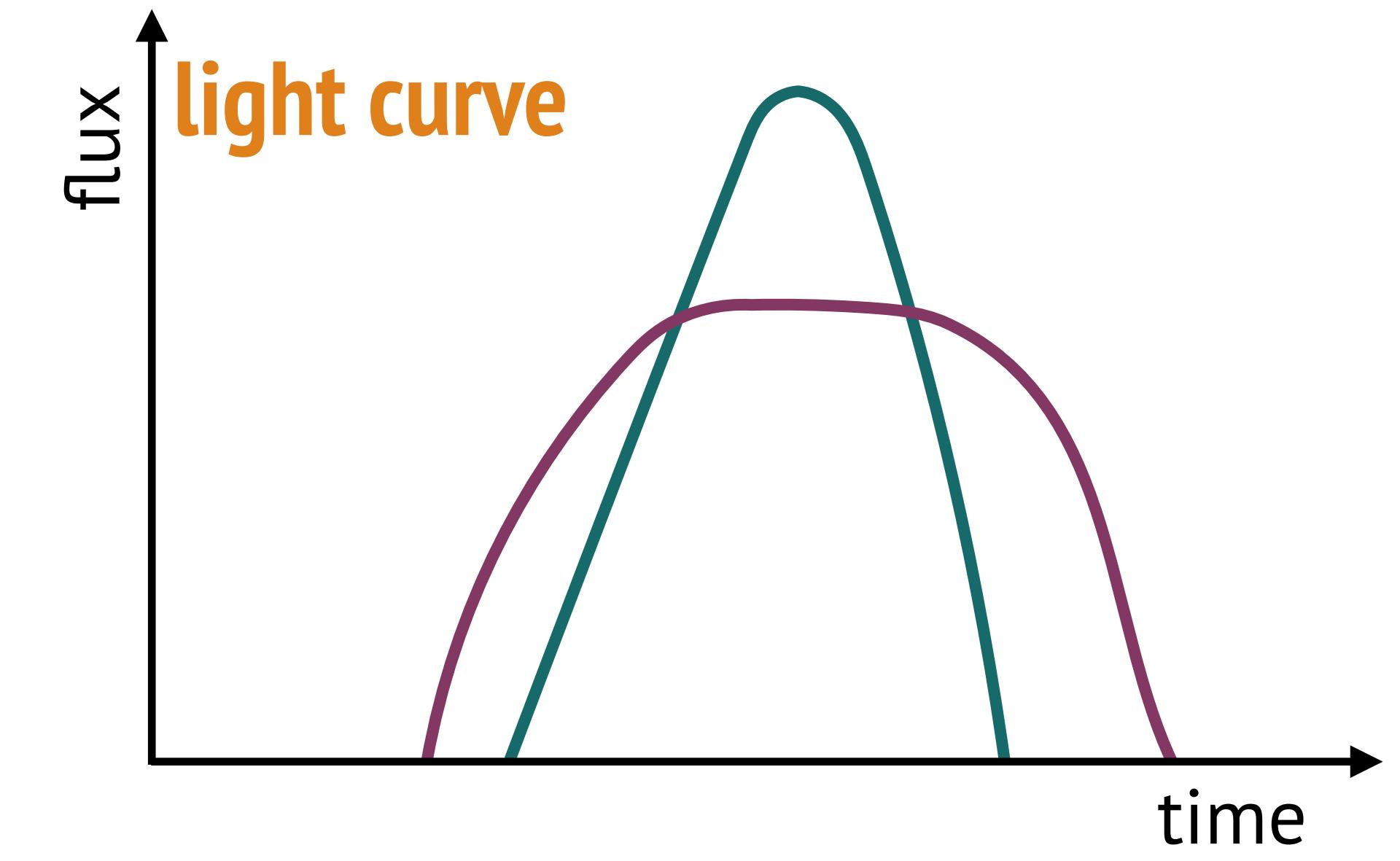
$\sim\theta_{\text{psf}}$



arrival directions

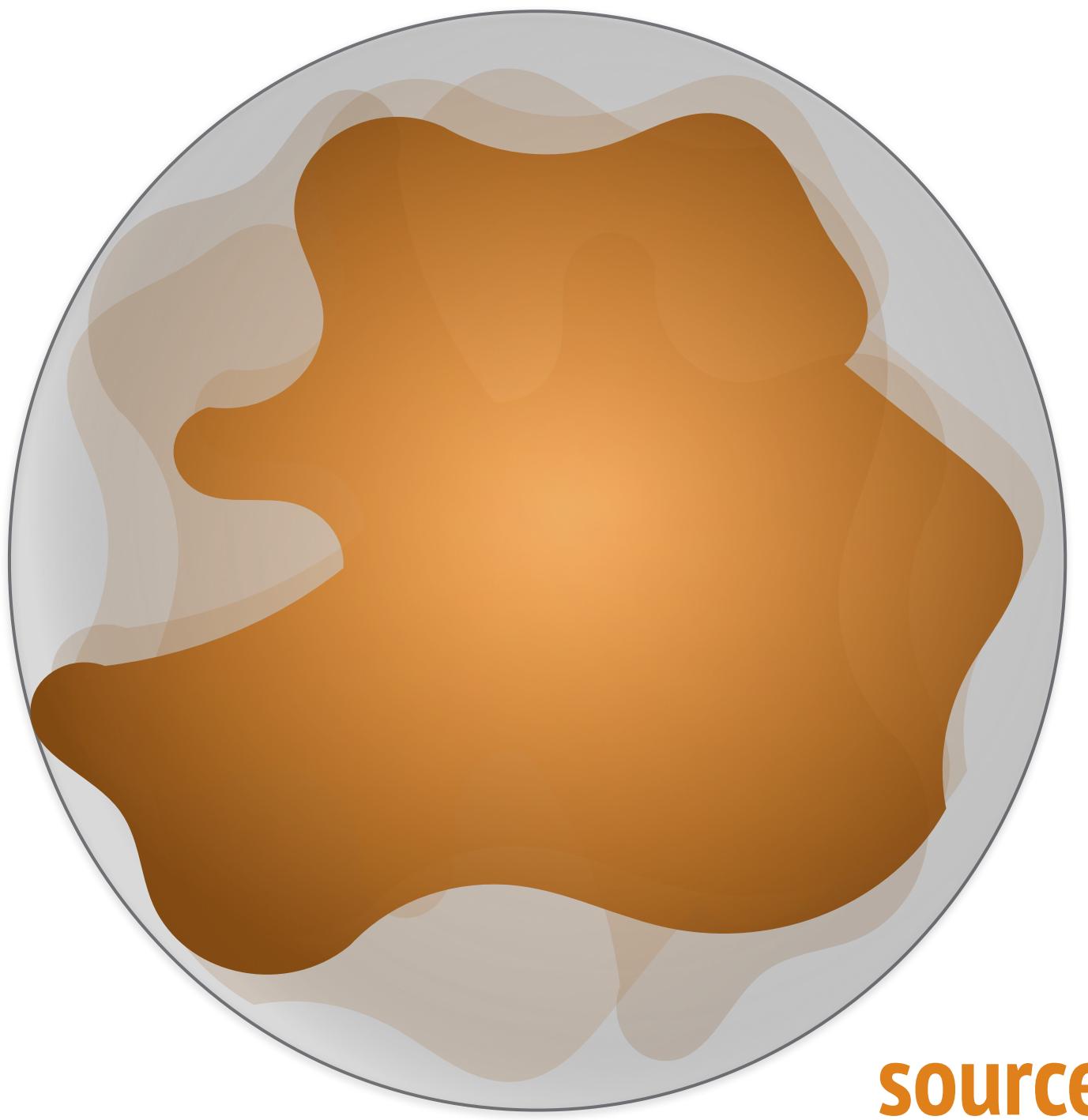


arrival directions

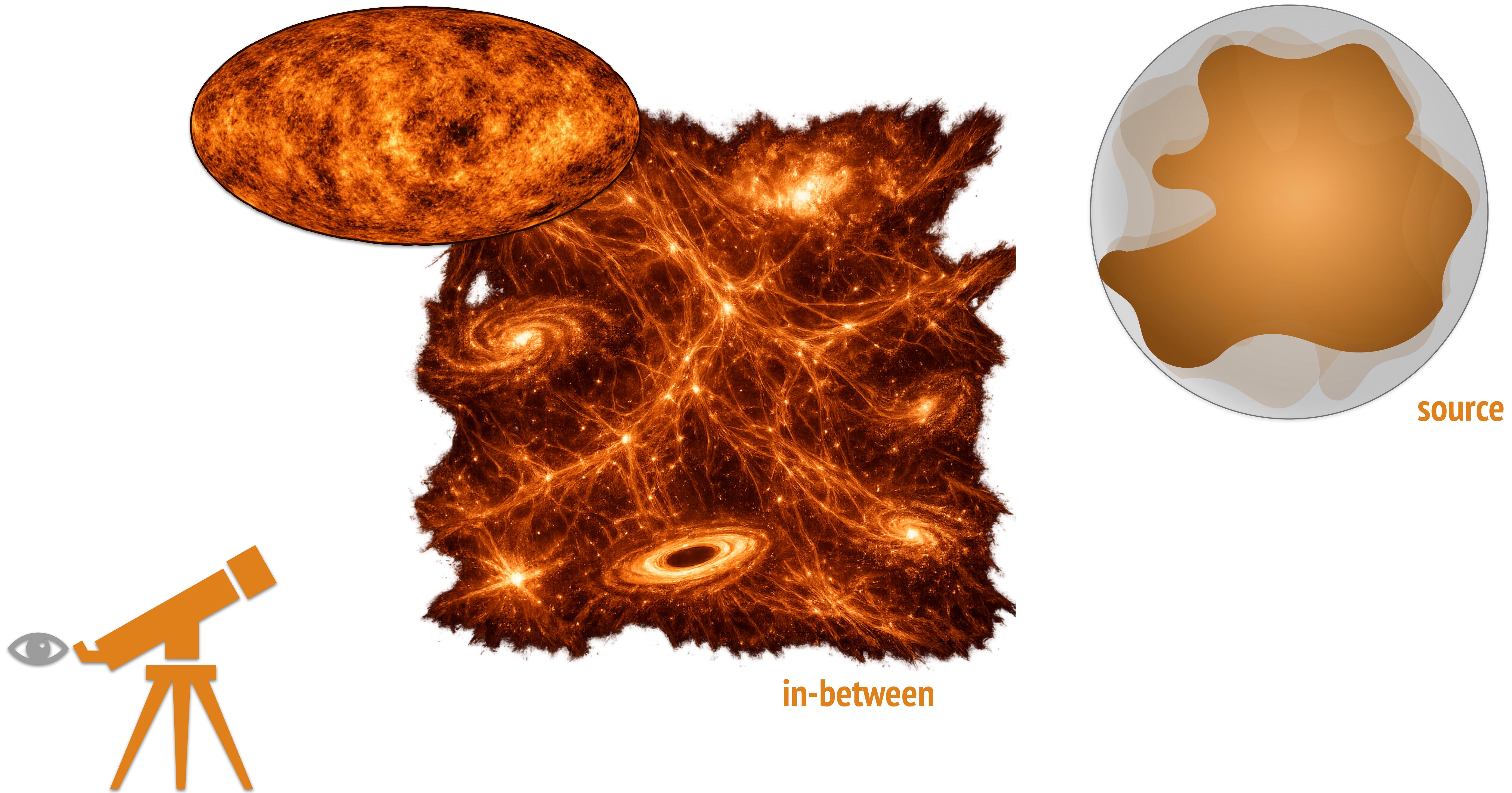


observations

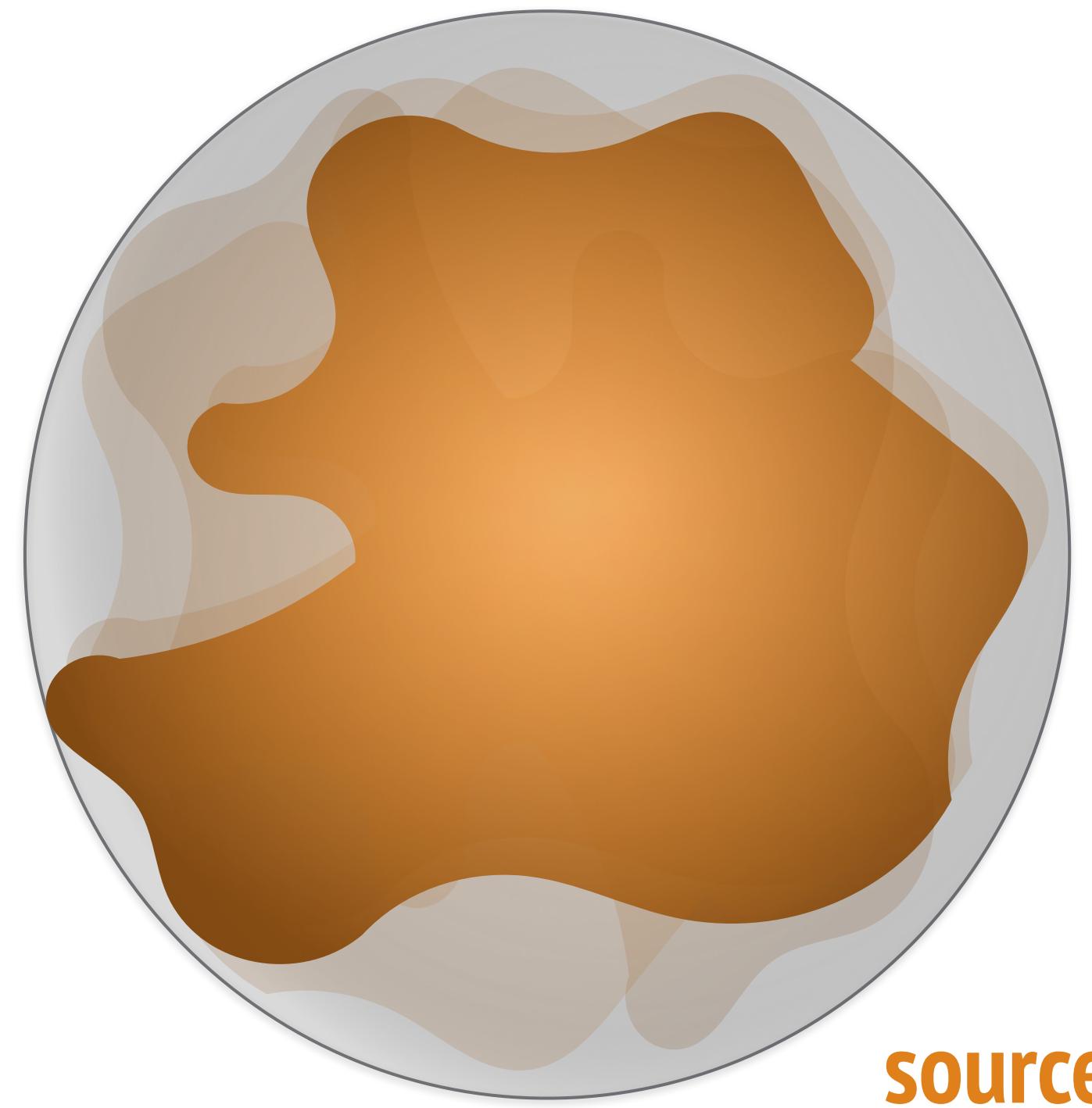
observations



observations

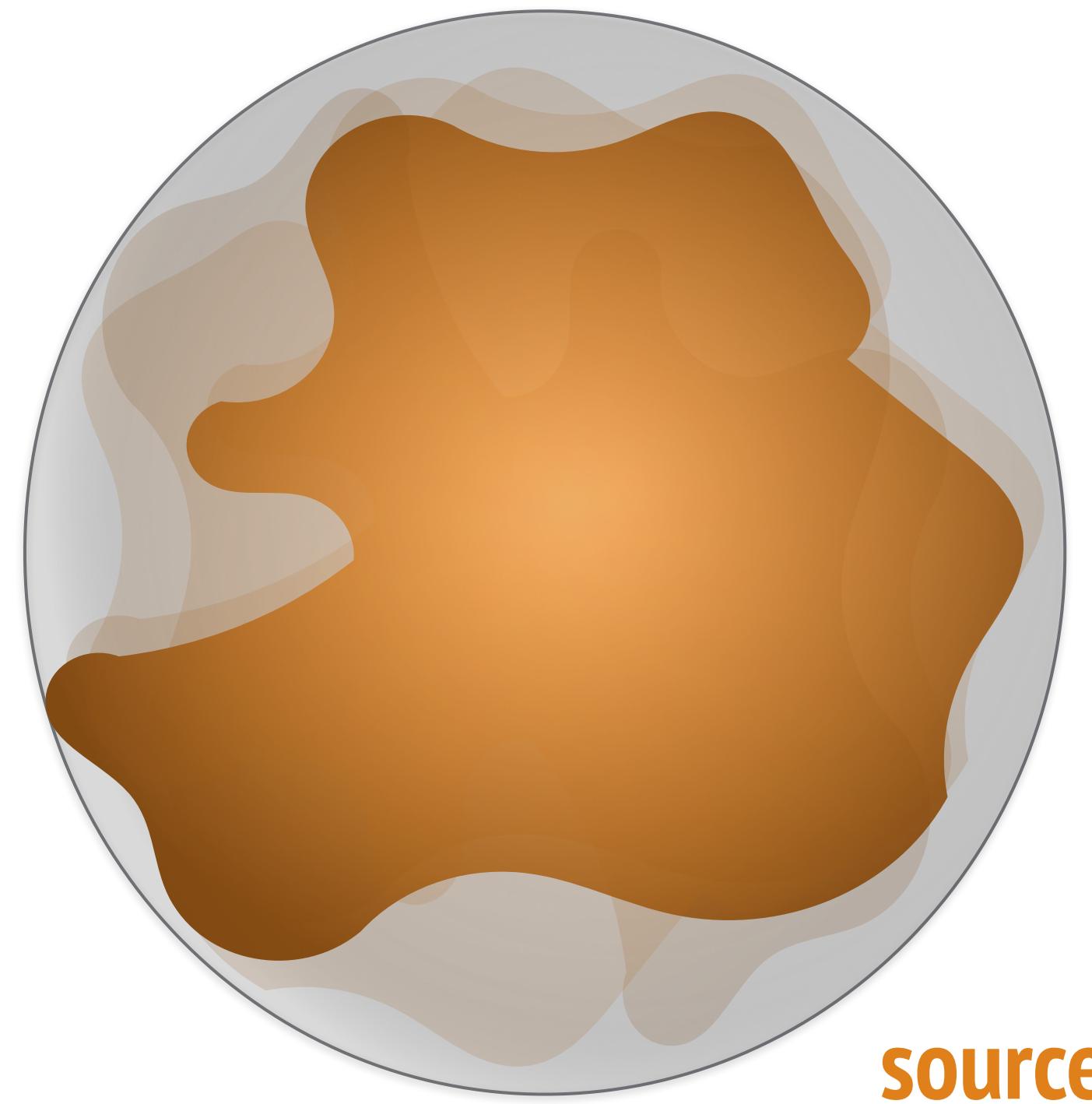


source properties. ingredients



source

source properties. ingredients

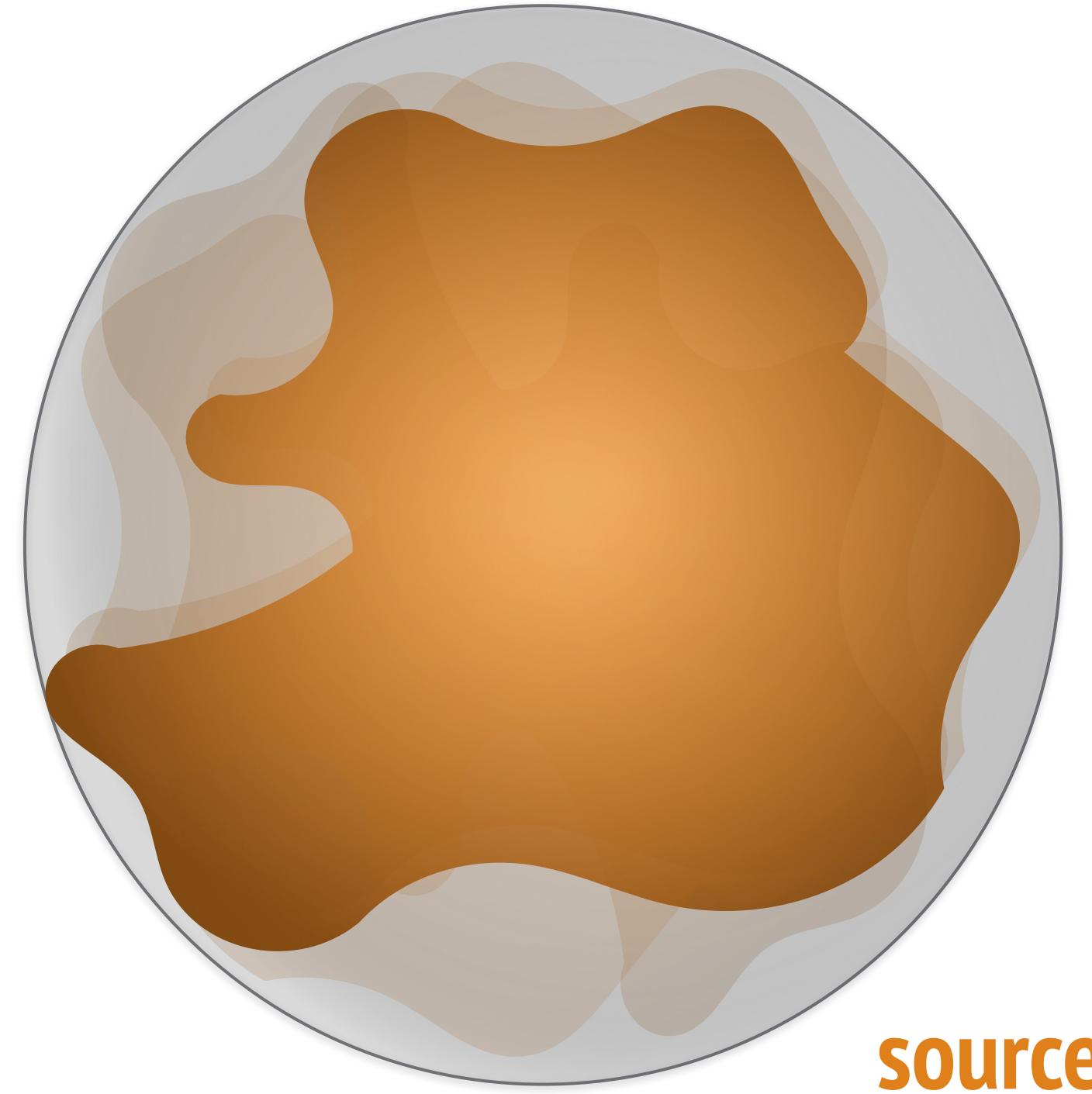


source

$$\frac{\text{number of particles}}{(\text{intervals of}) \text{ solid angle} \times \text{energy} \times \text{time}}$$

type of particle

composition, flavour



source

number of particles

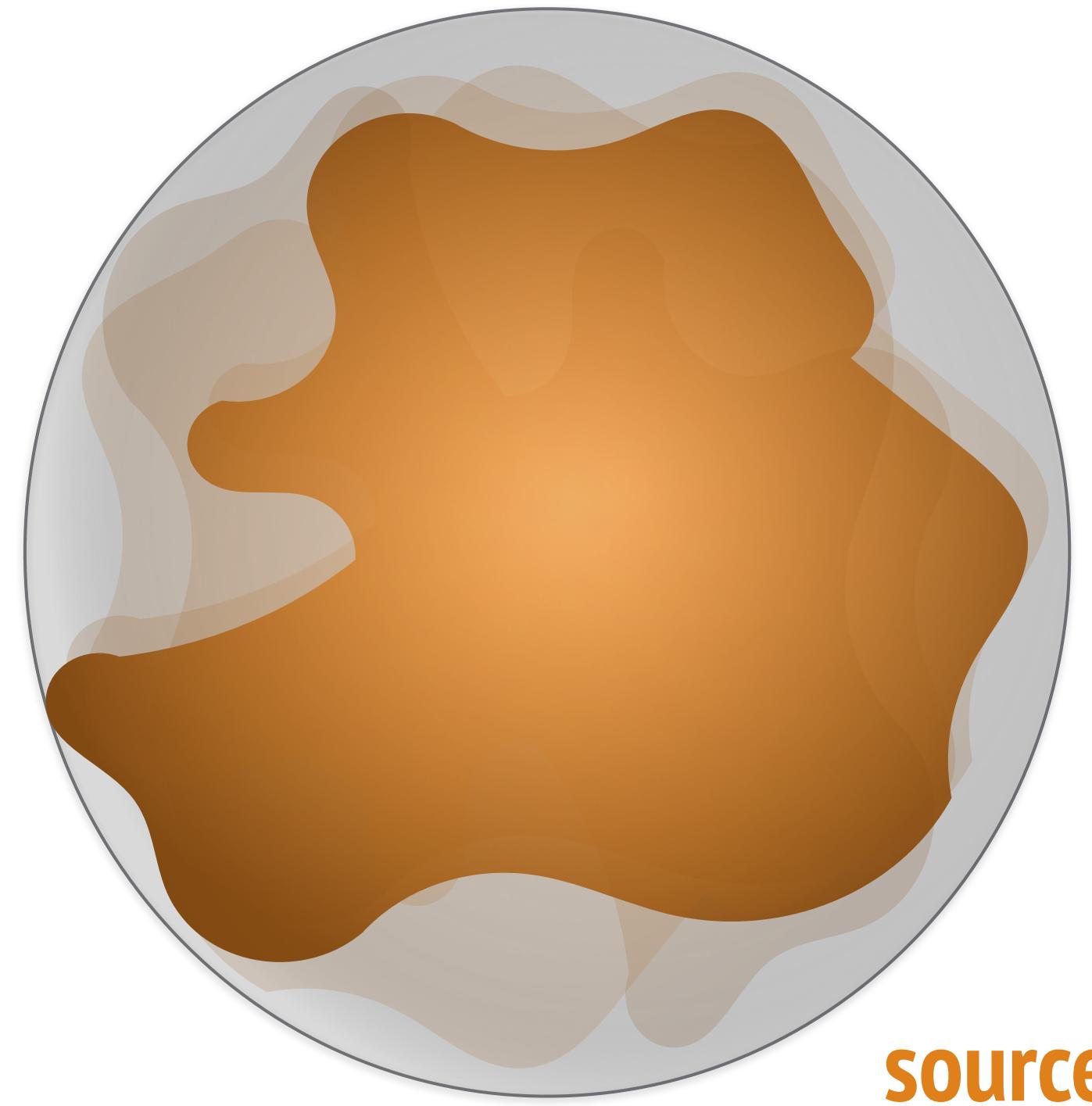
(intervals of) **solid angle** \times **energy** \times **time**

type of particle

composition, flavour

position of emission site

position of each source and within the source



number of particles

(intervals of) $\frac{\text{solid angle} \times \text{energy} \times \text{time}}{\text{time}}$

type of particle

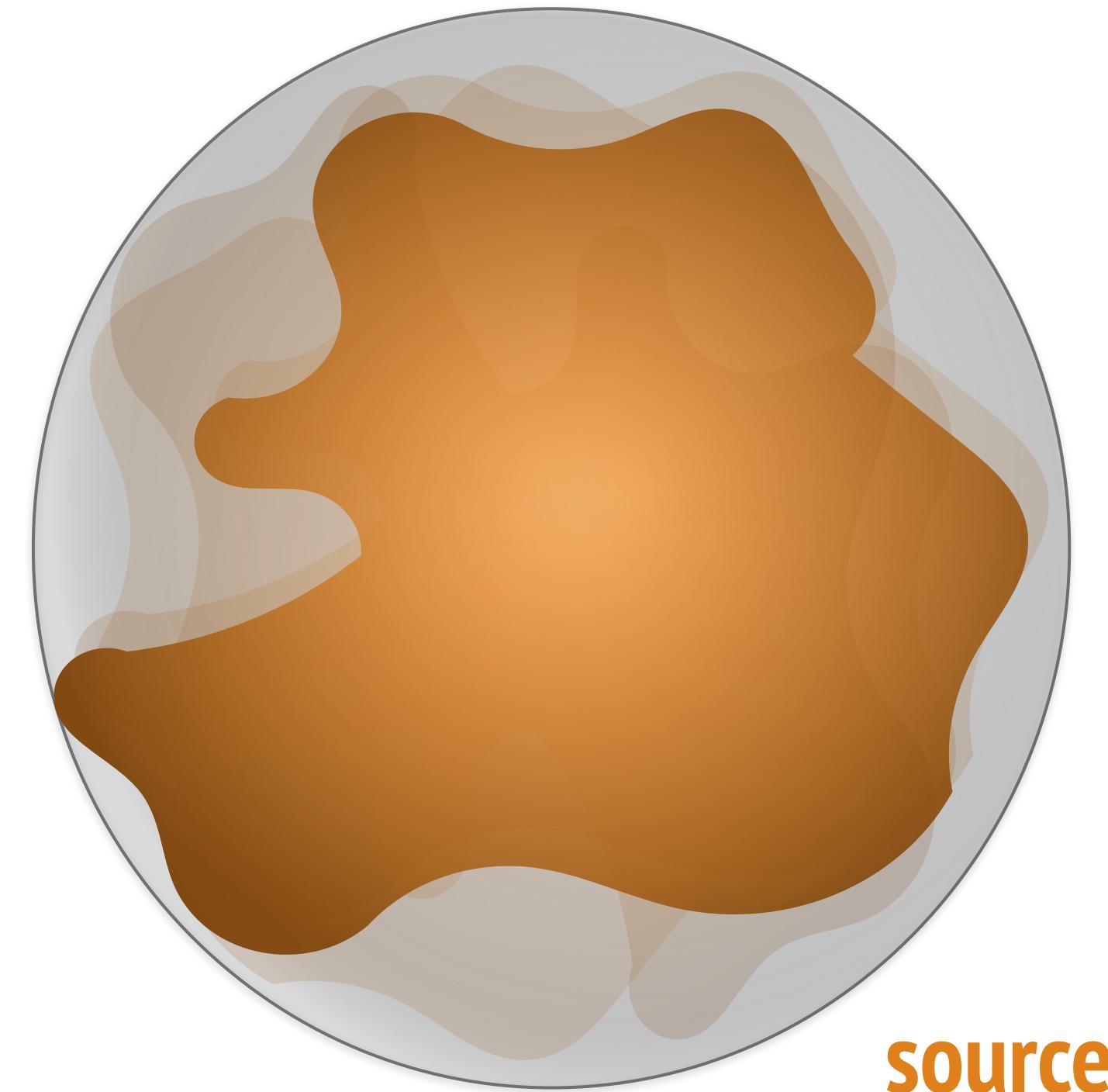
composition, flavour

position of emission site

position of each source and within the source

temporal emission profiles

light curves



number of particles

(intervals of) **solid angle** \times **energy** \times **time**

type of particle

composition, flavour

position of emission site

position of each source and within the source

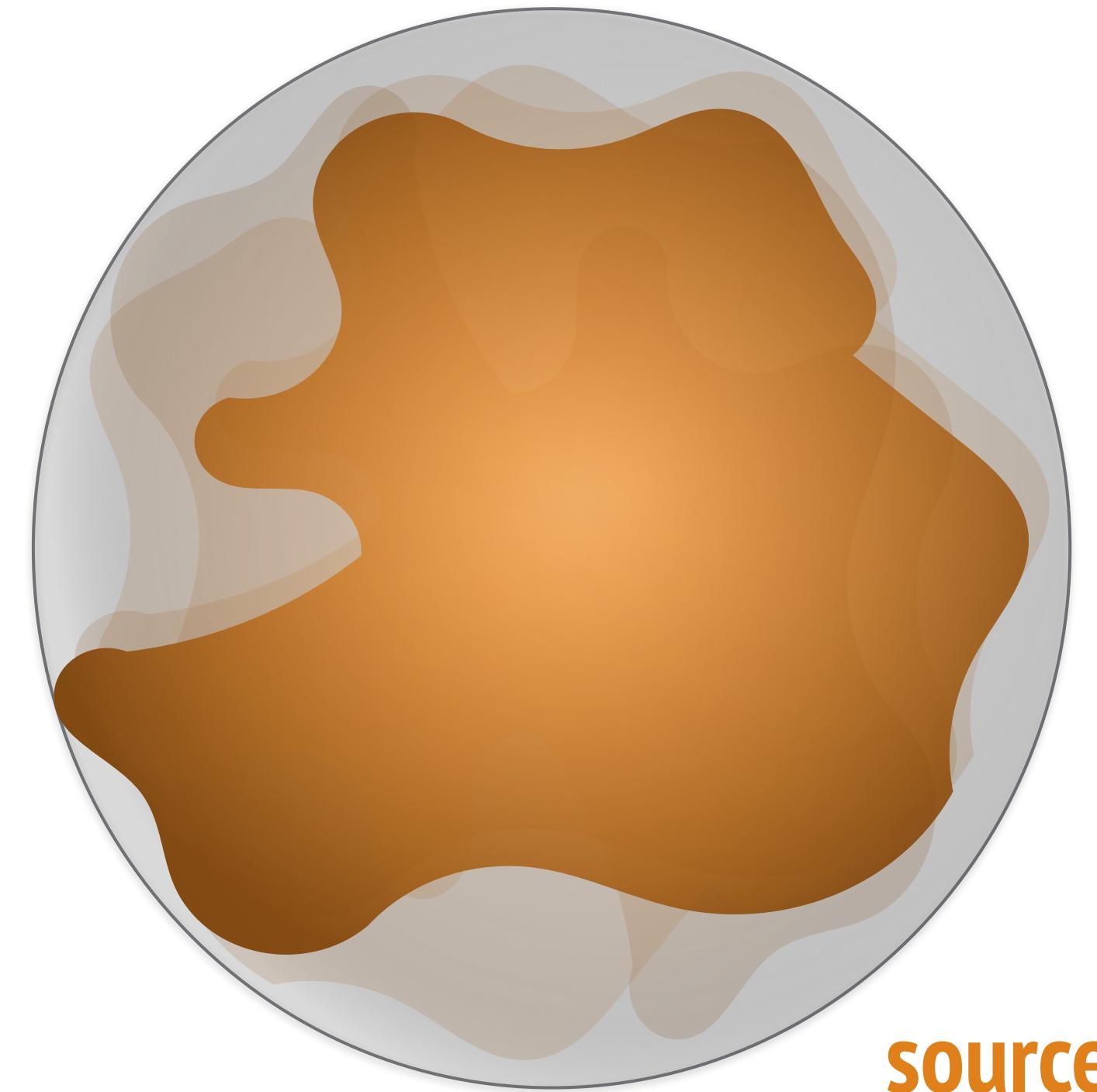
temporal emission profiles

light curves

intrinsic spectra

number of events in each energy bin

$$\frac{\text{number of particles}}{\text{(intervals of) solid angle} \times \text{energy} \times \text{time}}$$



type of particle

composition, flavour

position of emission site

position of each source and within the source

temporal emission profiles

light curves

intrinsic spectra

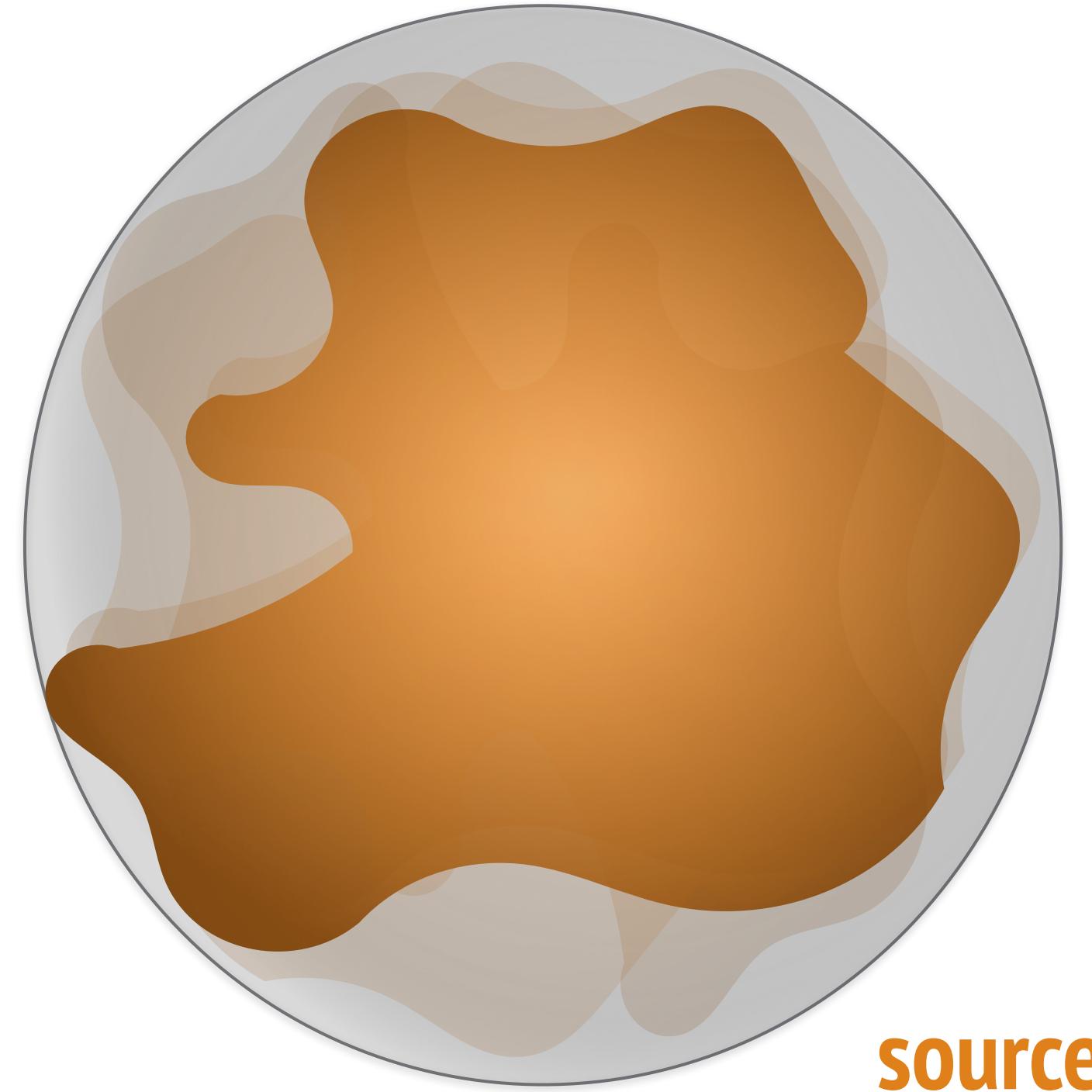
number of events in each energy bin

geometry of emission

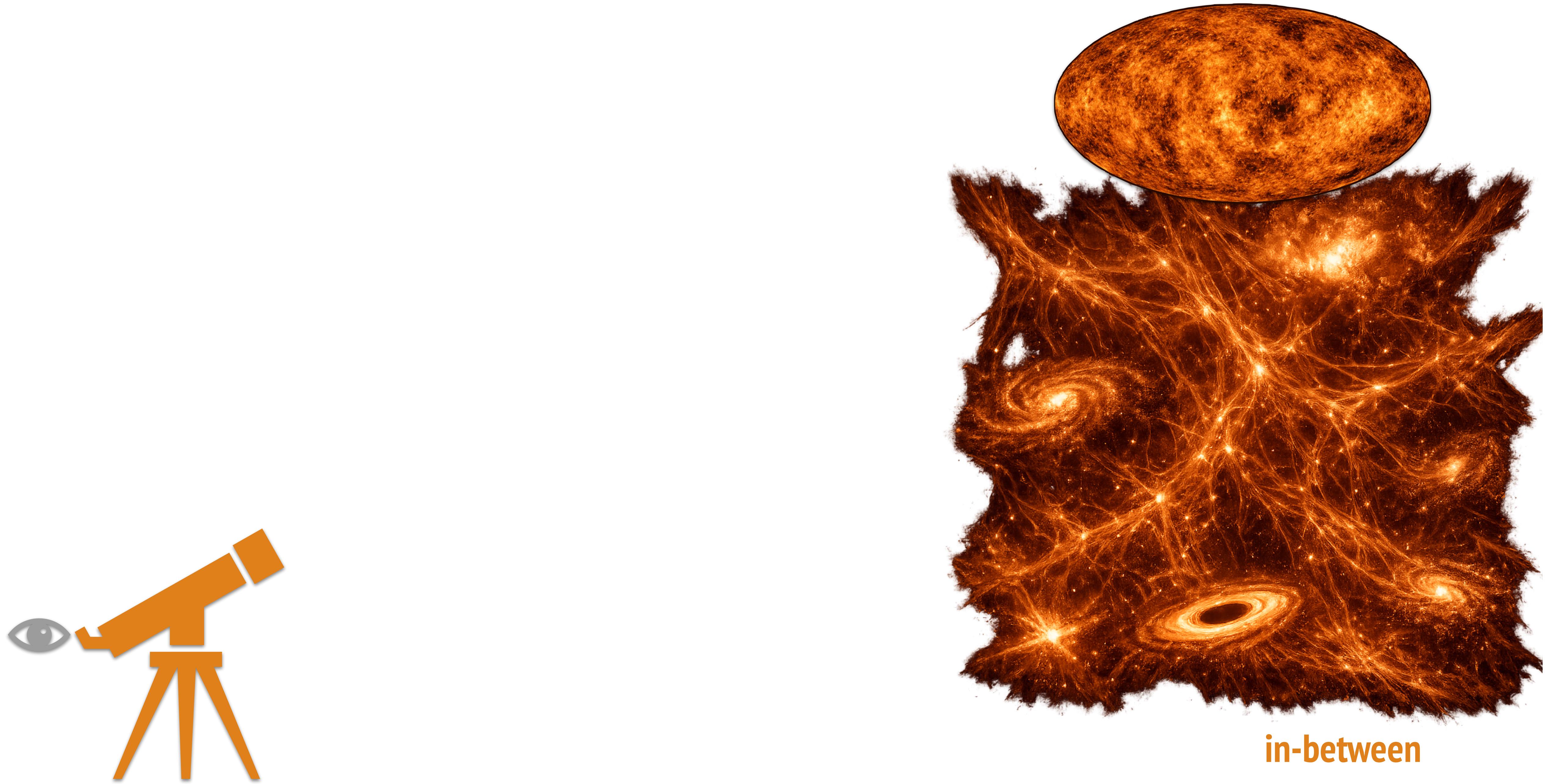
isotropic, jet

$$\frac{\text{number of particles}}{\text{solid angle} \times \text{energy} \times \text{time}}$$

(intervals of)

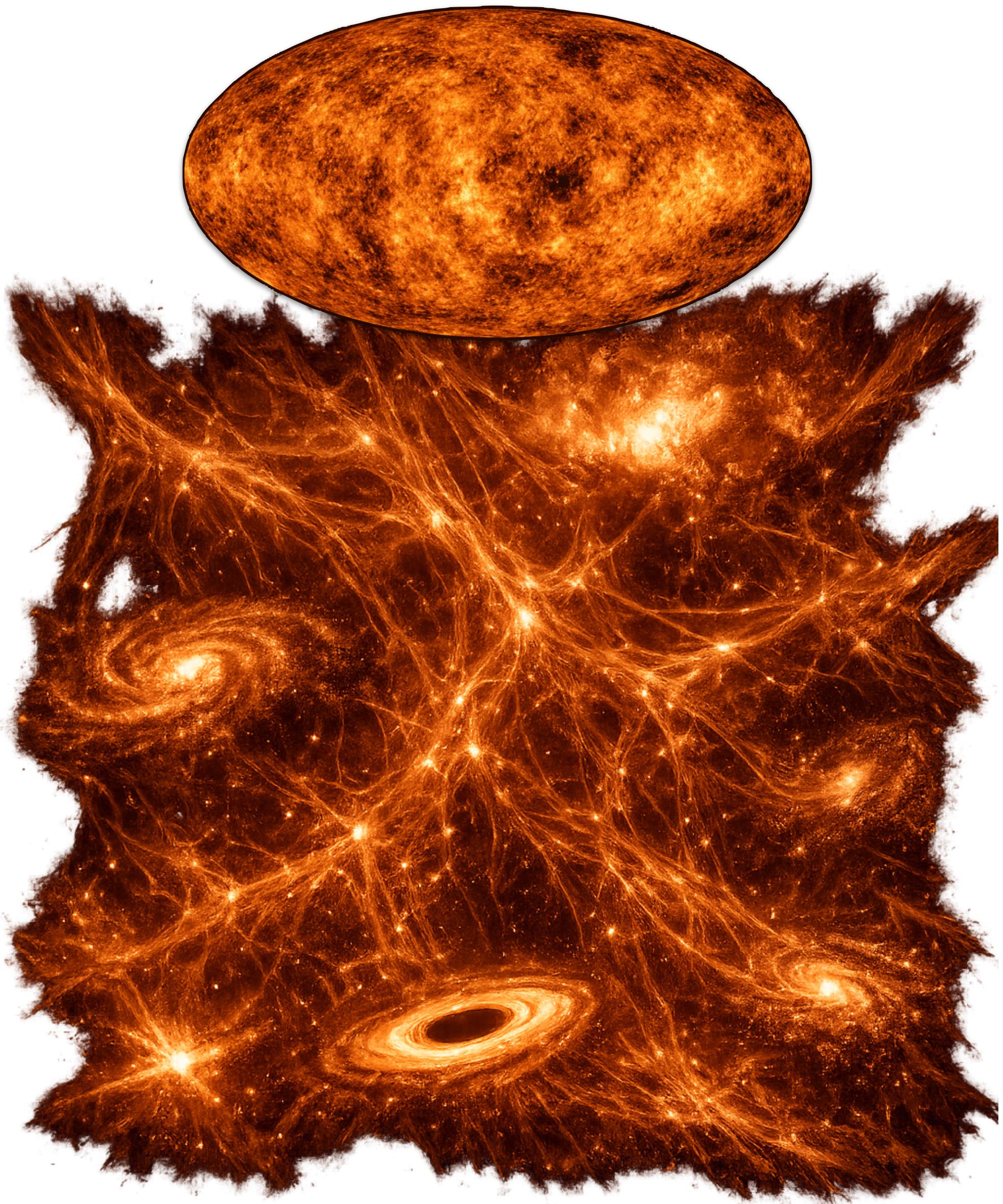


source



target distributions

photons (e.g., CMB, EBL)



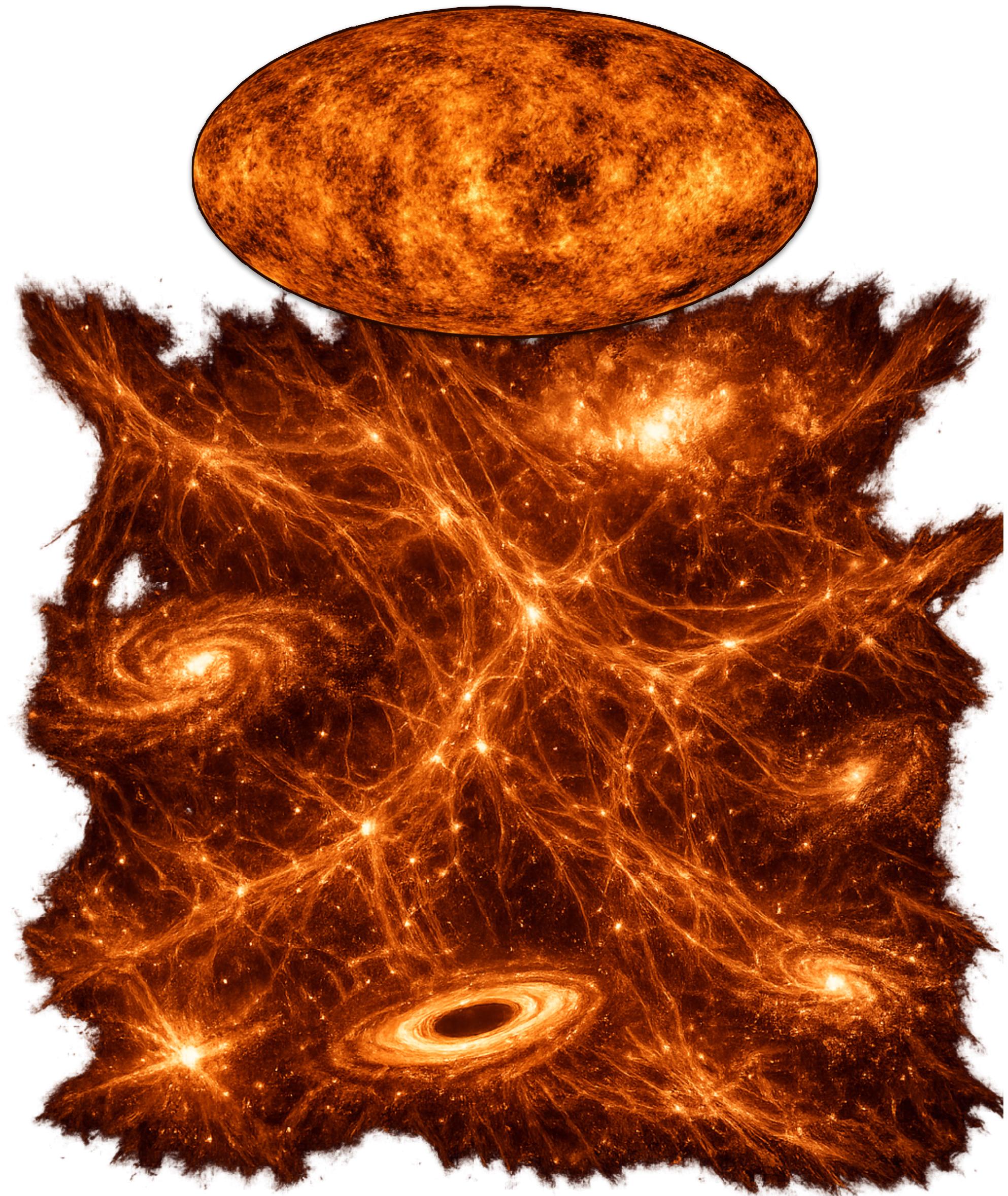
in-between

target distributions

photons (e.g., CMB, EBL)

magnetic fields

galactic, extragalactic



in-between

target distributions

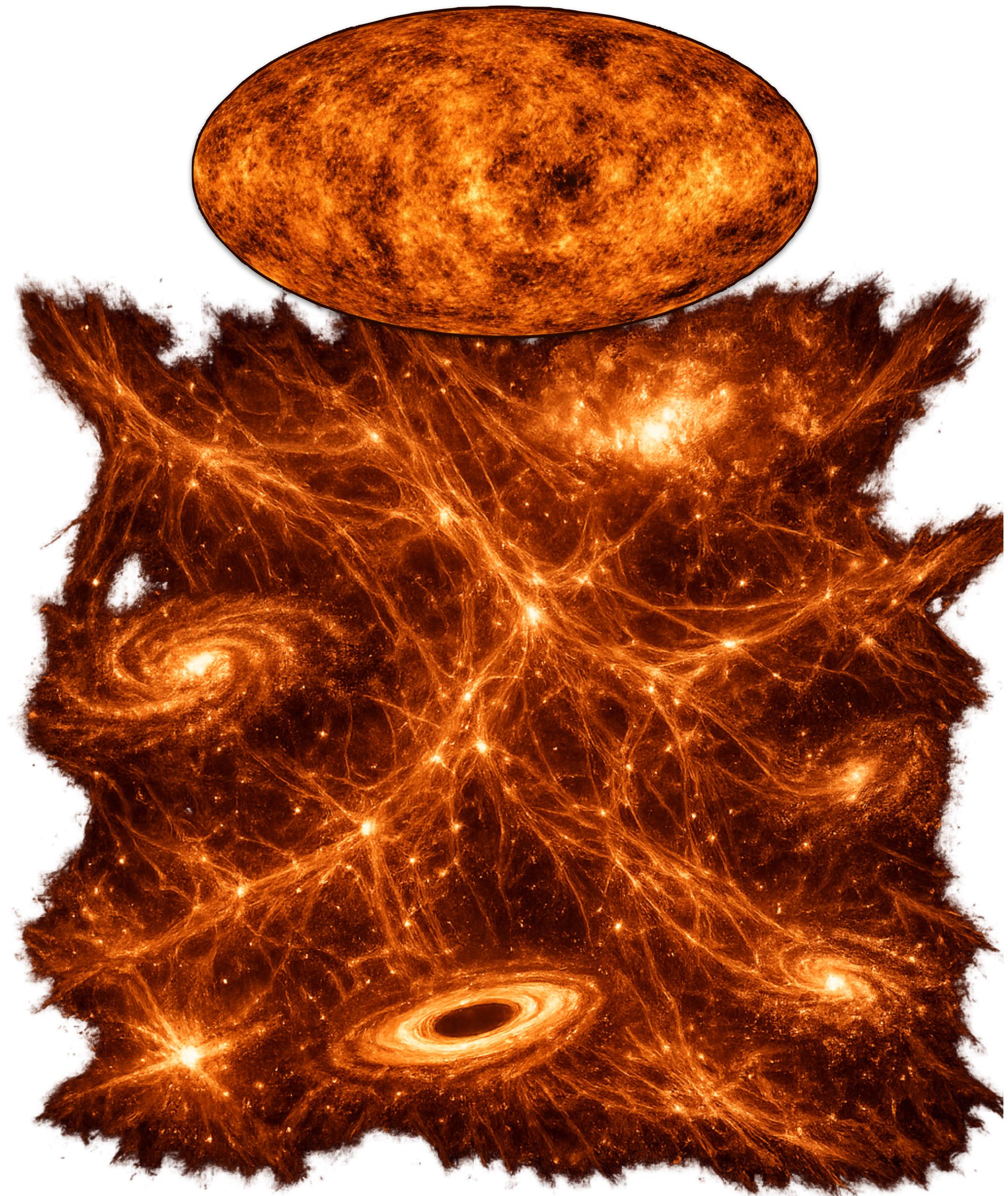
photons (e.g., CMB, EBL)

magnetic fields

galactic, extragalactic

gravitational fields

lenses



in-between

target distributions

photons (e.g., CMB, EBL)

magnetic fields

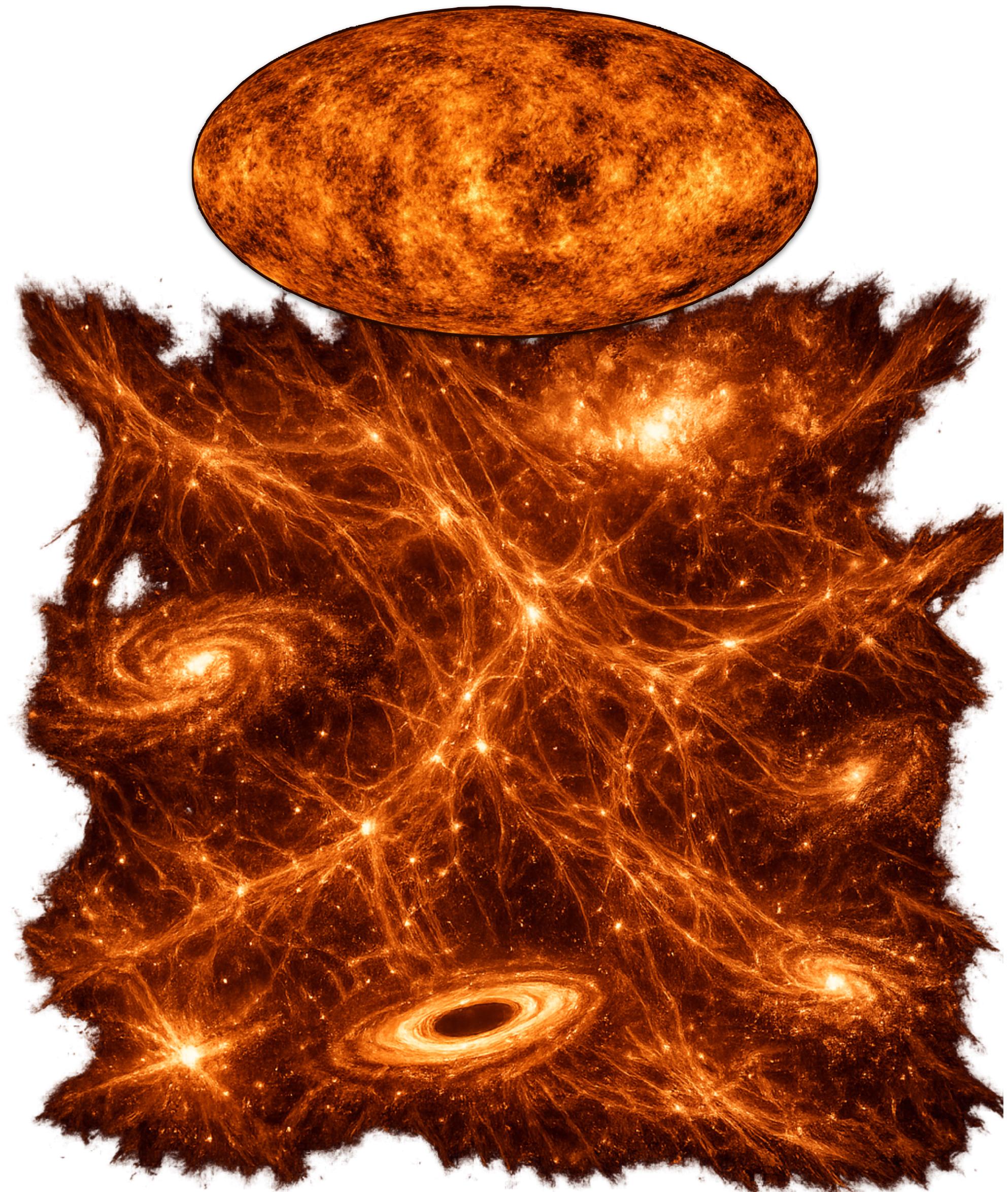
galactic, extragalactic

gravitational fields

lenses

physics of interactions

cross sections,



in-between

target distributions

photons (e.g., CMB, EBL)

magnetic fields

galactic, extragalactic

gravitational fields

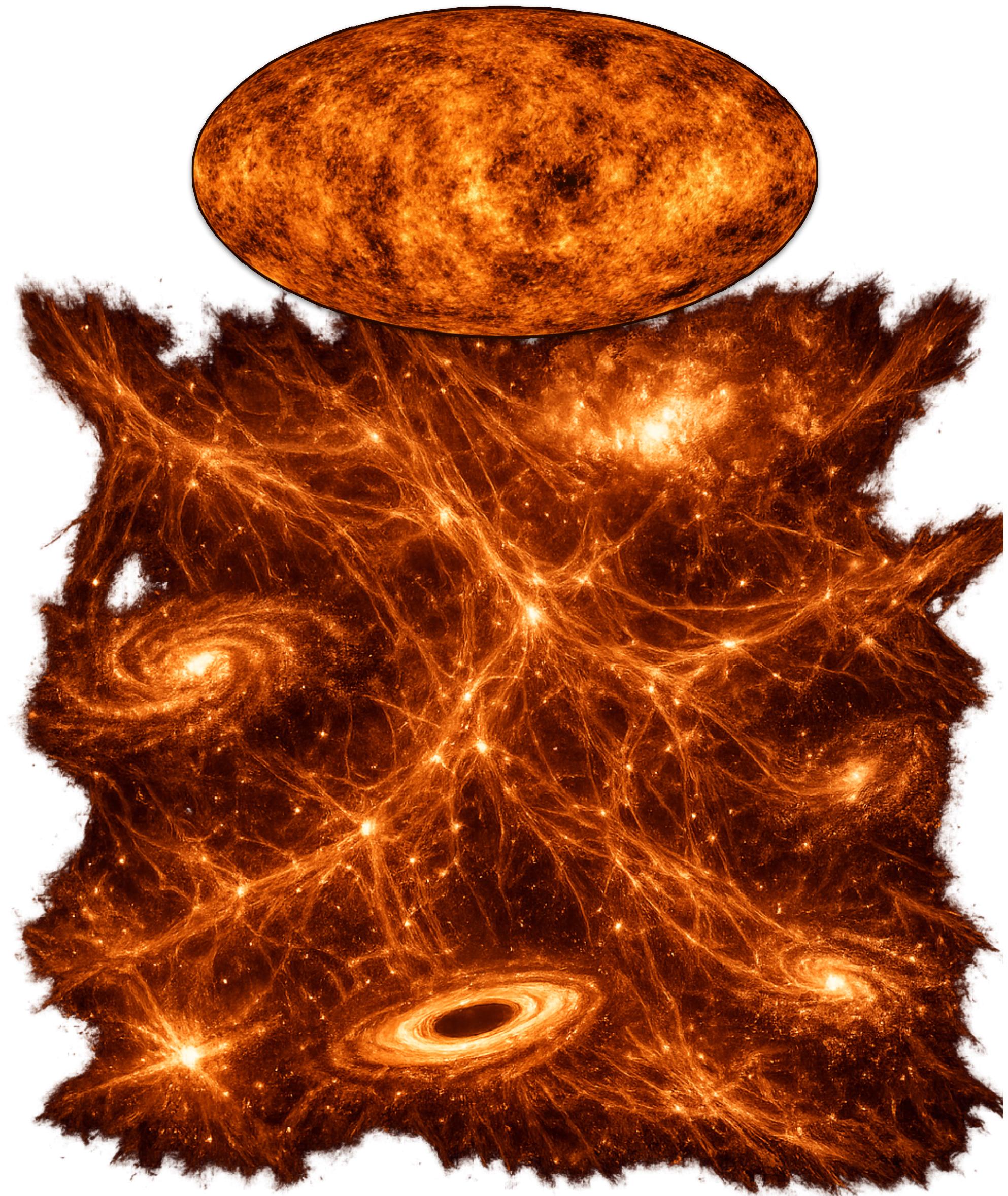
lenses

physics of interactions

cross sections,

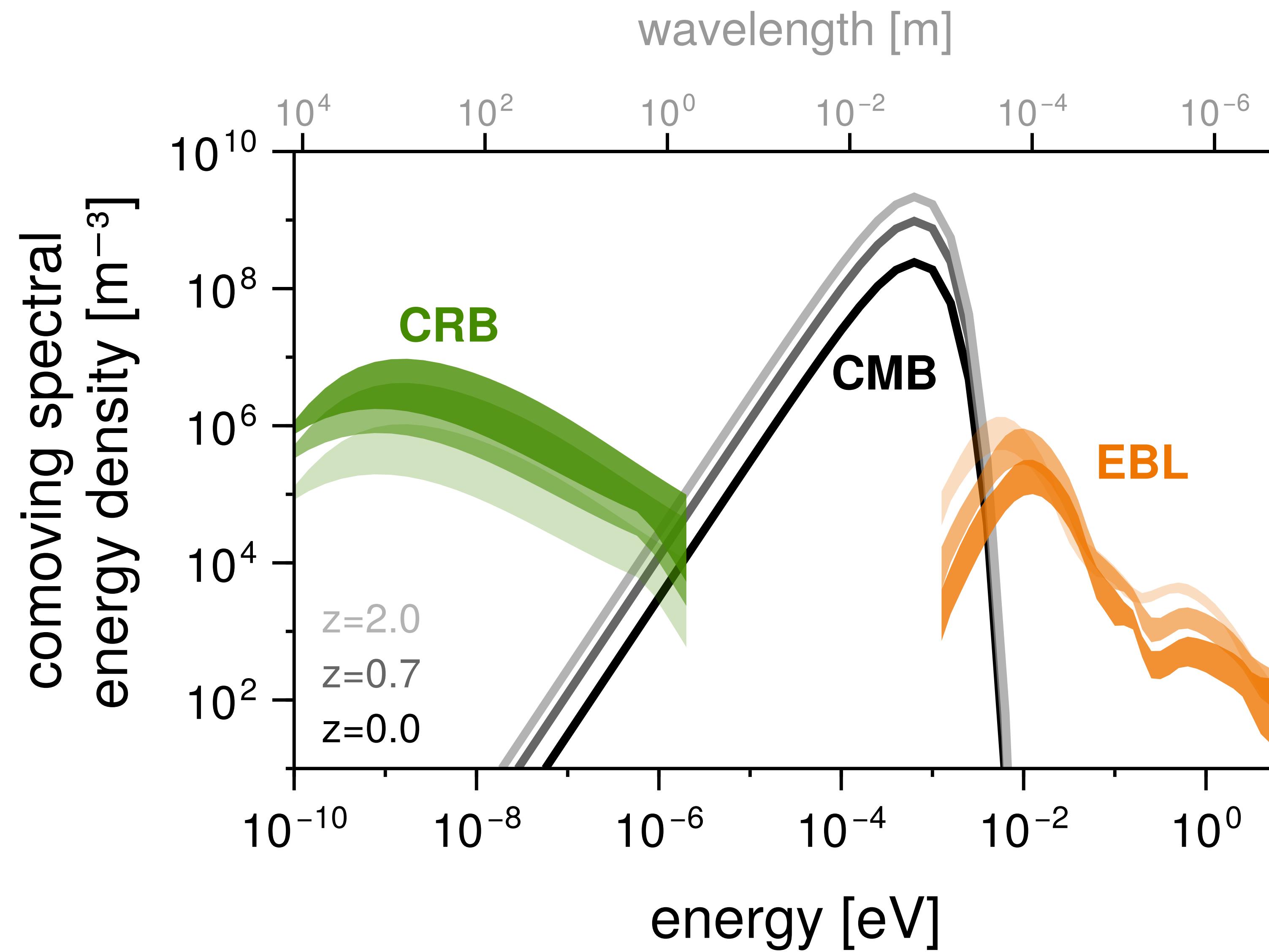
mesoscale physics

collective phenomena



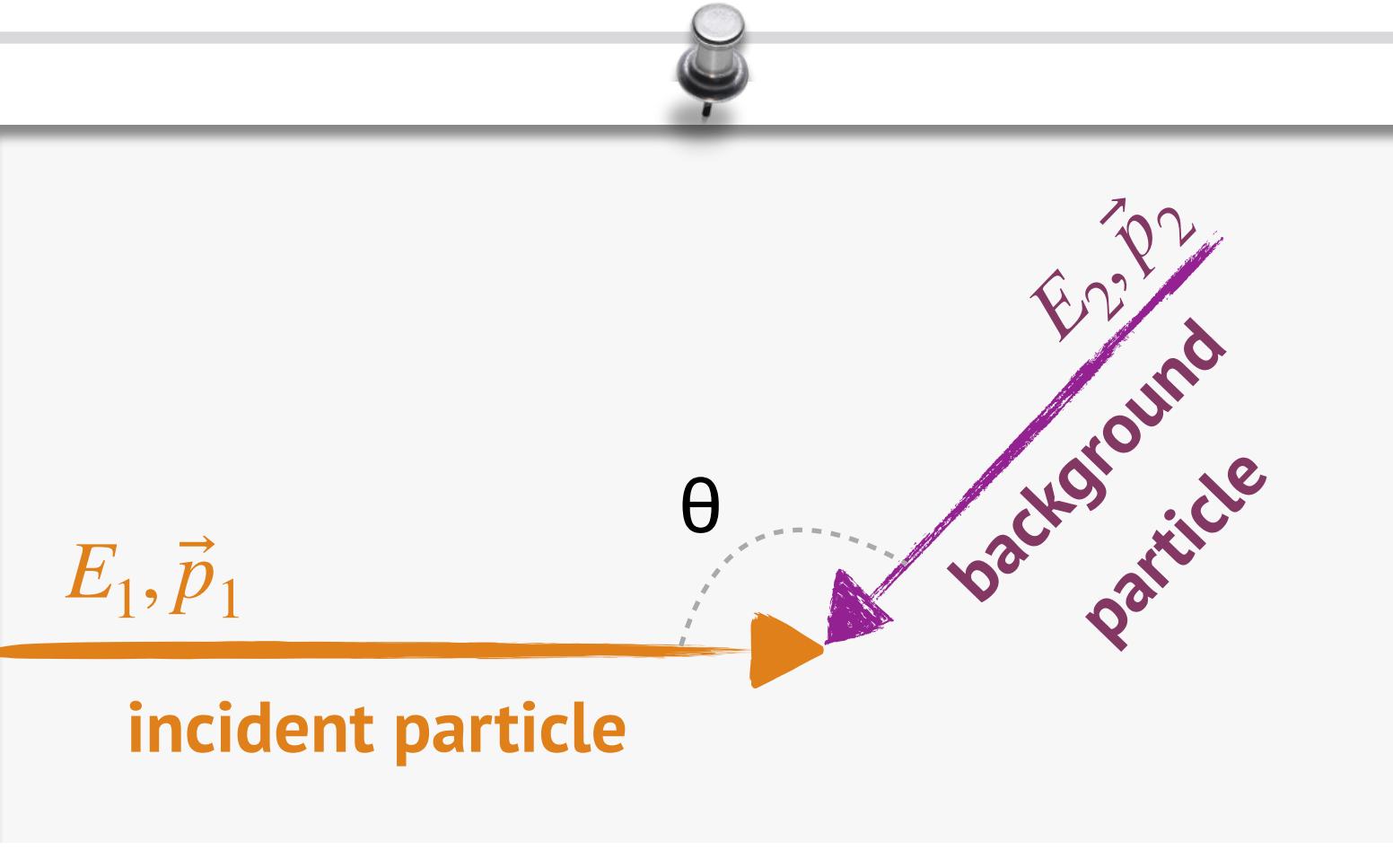
in-between

cosmological photon backgrounds

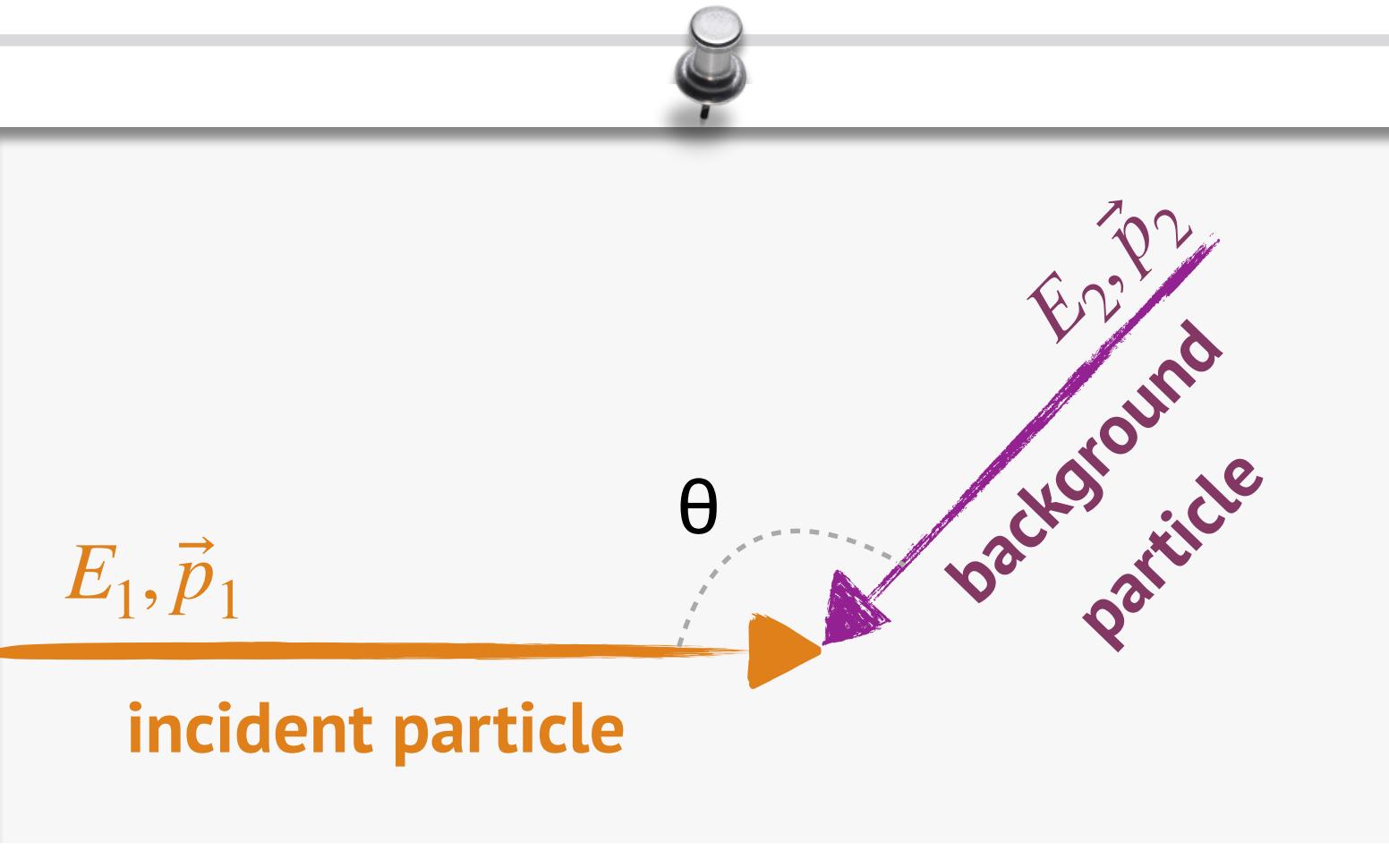


interactions and mean free path

interactions and mean free path



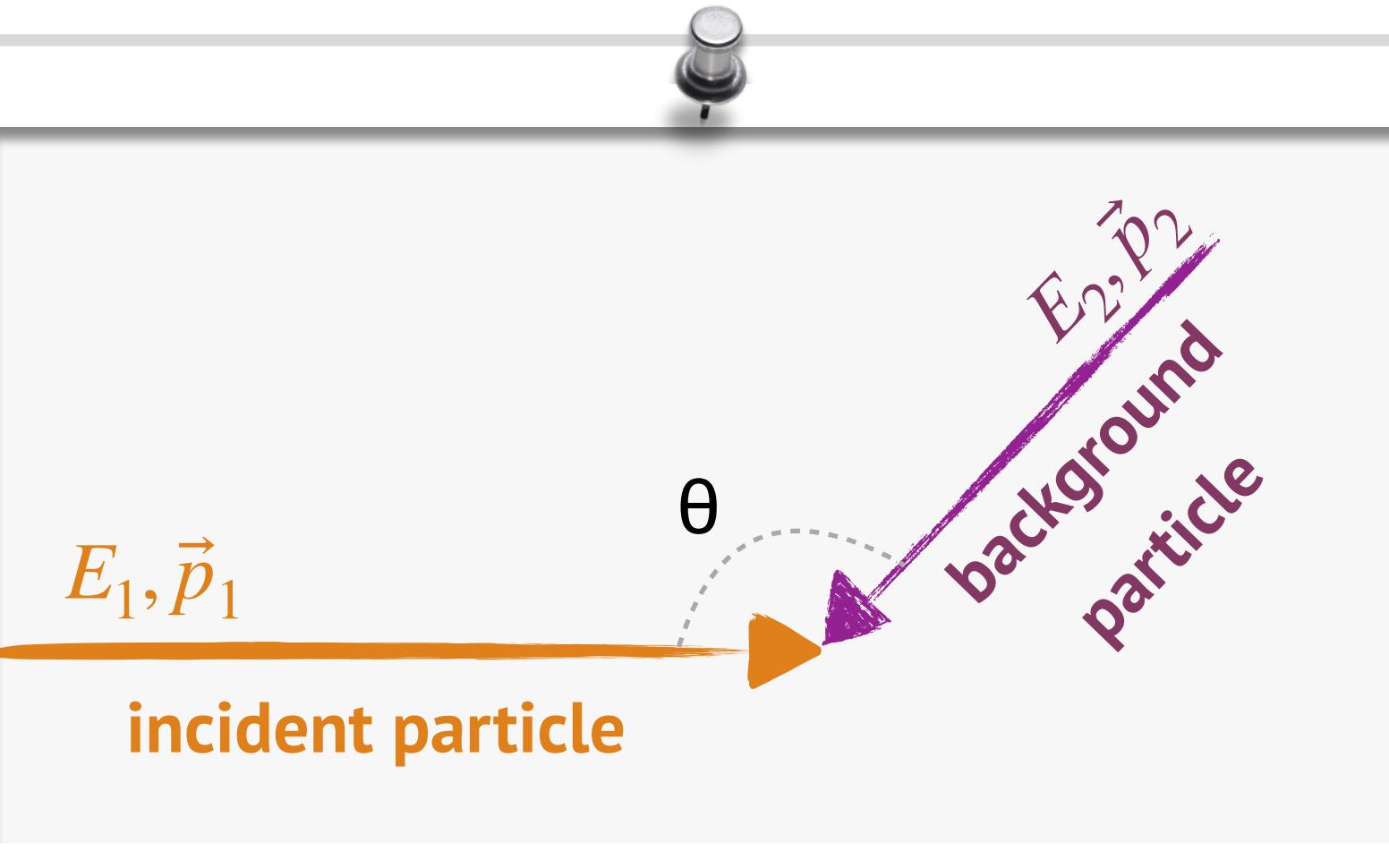
interactions and mean free path



centre of mass energy

$$s = m_1^2 c^4 + m_2^2 c^4 + 2E_1 E_2 (1 - \beta_1 \beta_2 \cos \theta)$$

interactions and mean free path



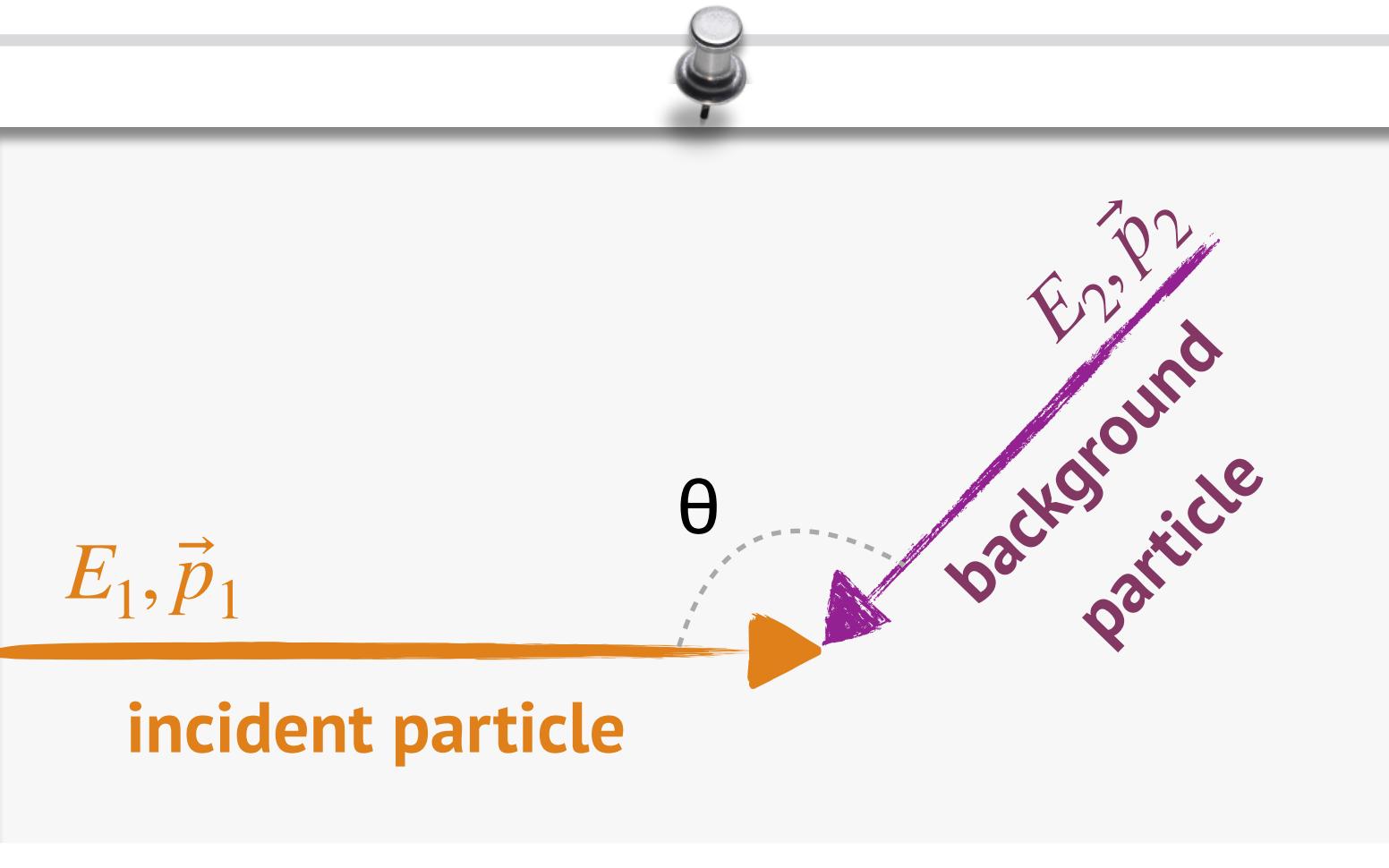
**centre of mass
energy**

**relative
velocity**

$$s = m_1^2 c^4 + m_2^2 c^4 + 2E_1 E_2 (1 - \beta_1 \beta_2 \cos \theta)$$

$$\beta_{\text{rel}} = \sqrt{\frac{(P_1 \cdot P_2)^2 - (m_1 m_2 c^2)^2}{(P_1 \cdot P_2)^2}}$$

interactions and mean free path



centre of mass energy

$$s = m_1^2 c^4 + m_2^2 c^4 + 2E_1 E_2 (1 - \beta_1 \beta_2 \cos \theta)$$

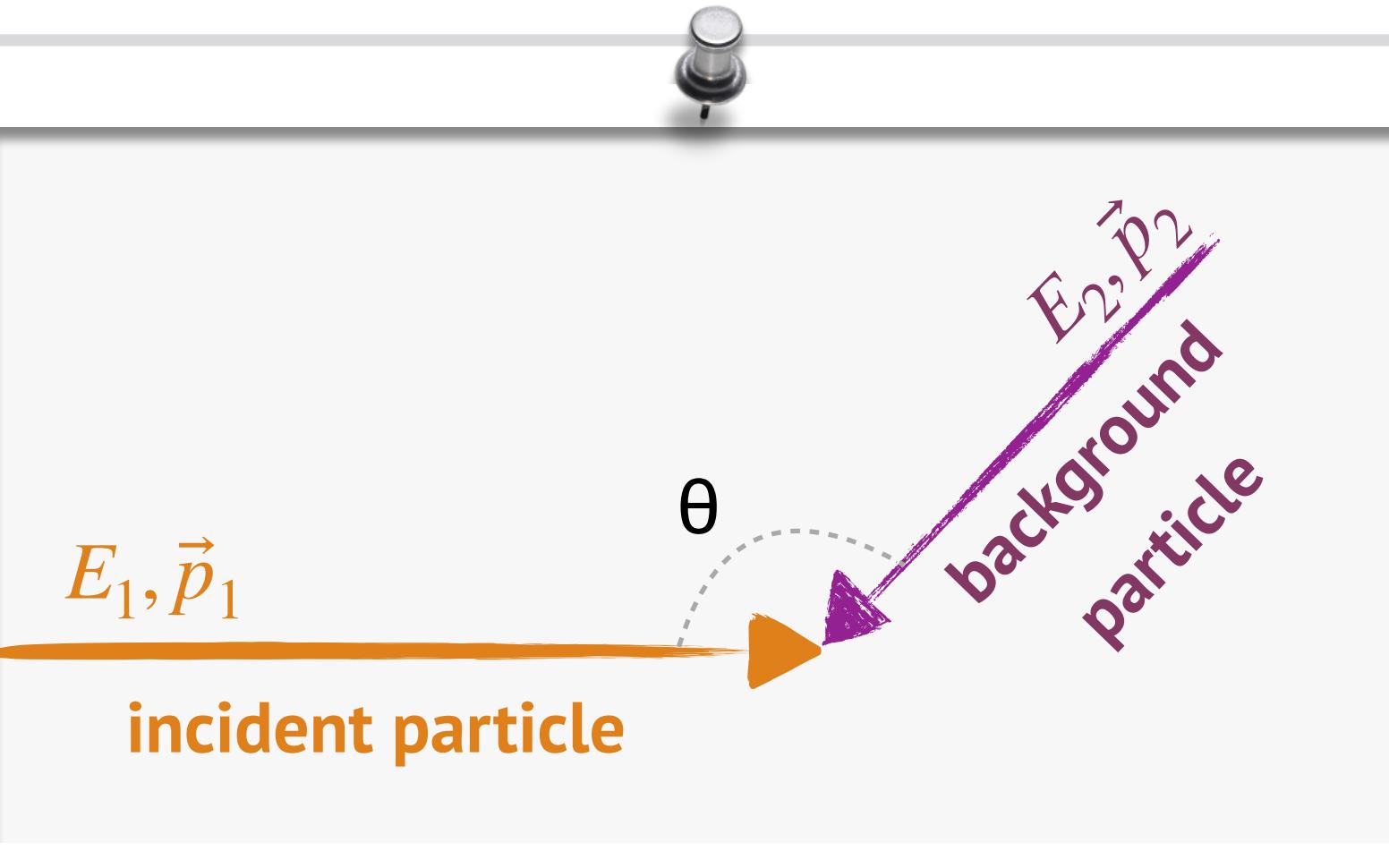
relative velocity

$$\beta_{\text{rel}} = \sqrt{\frac{(P_1 \cdot P_2)^2 - (m_1 m_2 c^2)^2}{(P_1 \cdot P_2)^2}}$$

interaction length

for particle of type 1
interacting with (isotropic)
background of type 2

interactions and mean free path



interaction length

for particle of type 1
interacting with (isotropic)
background of type 2

centre of mass energy

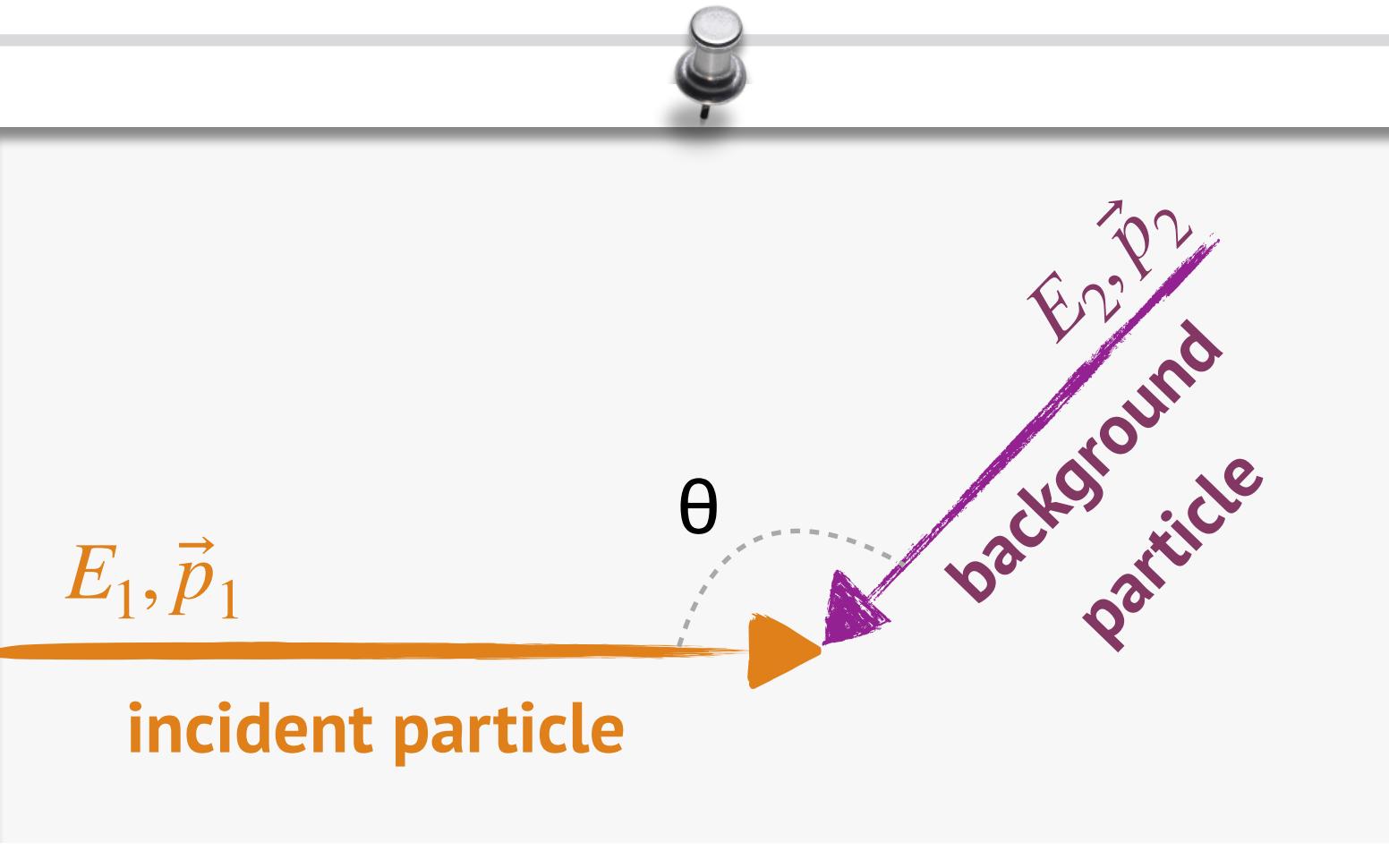
relative velocity

$$s = m_1^2 c^4 + m_2^2 c^4 + 2E_1 E_2 (1 - \beta_1 \beta_2 \cos \theta)$$

$$\beta_{\text{rel}} = \sqrt{\frac{(P_1 \cdot P_2)^2 - (m_1 m_2 c^2)^2}{(P_1 \cdot P_2)^2}}$$

generic $\lambda^{-1} = \frac{1}{2} \iint dp_2 \, d\cos \theta \, \sigma(s) \, \beta_{\text{rel}}(P_1, P_2) \, (1 - \beta_1 \beta_2 \cos \theta) \, \frac{dn_2(\vec{p}_2)}{dp_2}$

interactions and mean free path



interaction length

for particle of type 1
interacting with (isotropic)
background of type 2

photons

$$\text{generic} \quad \lambda^{-1} = \frac{1}{2} \iint dp_2 \, d\cos\theta \, \sigma(s) \, \beta_{\text{rel}}(P_1, P_2) \, (1 - \beta_1 \beta_2 \cos\theta) \, \frac{dn_2(\vec{p}_2)}{dp_2}$$

centre of mass energy

$$s = m_1^2 c^4 + m_2^2 c^4 + 2E_1 E_2 (1 - \beta_1 \beta_2 \cos\theta)$$

relative velocity

$$\beta_{\text{rel}} = \sqrt{\frac{(P_1 \cdot P_2)^2 - (m_1 m_2 c^2)^2}{(P_1 \cdot P_2)^2}}$$

$$\lambda^{-1}(E, z) = \frac{1}{8\beta E^2} \int_{\varepsilon_{\min}(E)}^{+\infty} \frac{1}{\varepsilon^2} \frac{dn(\varepsilon, z)}{d\varepsilon} \int_{s_{\min}}^{s_{\max}(E, \varepsilon)} (s - m^2 c^4) \sigma(s) \, ds \, d\varepsilon$$

modified interactions with photon backgrounds

modified interactions with photon backgrounds

$$\lambda^{-1} = \frac{1}{2} \iint dp_2 \, d\cos\theta \, \sigma(s) \, \beta_{\text{rel}}(P_1, P_2) \, (1 - \beta_1 \beta_2 \cos\theta) \, \frac{dn_2(\vec{p}_2)}{dp_2}$$

modified interactions with photon backgrounds

$$\lambda^{-1} = \frac{1}{2} \iint dp_2 \, d\cos\theta \, \sigma(s) \beta_{\text{rel}}(P_1, P_2) \left(1 - \beta_1 \beta_2 \cos\theta\right) \frac{dn_2(\vec{p}_2)}{dp_2}$$

$$\lambda^{-1}(E, z) = \frac{1}{8\beta E^2} \int_{\varepsilon_{\min}(E)}^{+\infty} \frac{1}{\varepsilon^2} \frac{dn(\varepsilon, z)}{d\varepsilon} \int_{s_{\min}}^{s_{\max}(E, \varepsilon)} (s - m^2 c^4) \sigma(s) ds d\varepsilon$$

modified interactions with photon backgrounds

$$\lambda^{-1} = \frac{1}{2} \iint dp_2 \, d\cos\theta \, \sigma(s) \beta_{\text{rel}}(P_1, P_2) \left(1 - \beta_1 \beta_2 \cos\theta\right) \frac{dn_2(\vec{p}_2)}{dp_2}$$

$$\lambda^{-1}(E, z) = \frac{1}{8\beta E^2} \int_{\varepsilon_{\min}(E)}^{+\infty} \frac{1}{\varepsilon^2} \frac{dn(\varepsilon, z)}{d\varepsilon} \int_{s_{\min}}^{s_{\max}(E, \varepsilon)} (s - m^2 c^4) \sigma(s) ds d\varepsilon$$

can we use the same equation
with Lorentz violation?

modified interactions with photon backgrounds

$$\lambda^{-1} = \frac{1}{2} \iint dp_2 \, d\cos\theta \, \sigma(s) \beta_{\text{rel}}(P_1, P_2) \left(1 - \beta_1 \beta_2 \cos\theta\right) \frac{dn_2(\vec{p}_2)}{dp_2}$$

$$\lambda^{-1}(E, z) = \frac{1}{8\beta E^2} \int_{\varepsilon_{\min}(E)}^{+\infty} \frac{1}{\varepsilon^2} \frac{dn(\varepsilon, z)}{d\varepsilon} \int_{s_{\min}}^{s_{\max}(E, \varepsilon)} (s - m^2 c^4) \sigma(s) ds d\varepsilon$$

change:

$\varepsilon_{\min}, s, s_{\min}, s_{\max}, \beta_{\text{rel}}$

can we use the same equation
with Lorentz violation?

We never *really* know the real origin of a particle

We never *really* know the real origin of a particle

necessary conditions to state the a flux of a messenger is primary

We never *really* know the real origin of a particle

necessary conditions to state the a flux of a messenger is primary

- ▶ know the **intrinsic spectrum** well to exclude **cascade contribution**
 - ◆ *but:* unobserved gamma rays at higher energies

We never *really* know the real origin of a particle

necessary conditions to state the a flux of a messenger is primary

- ▶ know the **intrinsic spectrum** well to exclude **cascade contribution**
 - ◆ *but:* unobserved gamma rays at higher energies
- ▶ know the **flux of other particles** along the **line of sight**
 - ◆ degeneracy between absorption of parent and observations of the messenger

cosmic rays

LIV-induced modifications

$$E^2 = m_a^2 c^4 + p^2 c^2 + f_a(E, \vec{p})$$

$$f_a(E, \vec{p}) \approx f_a(p) = p^2 c^2 \sum_{n=0}^{\infty} \chi_n^{(a)} \left(\frac{pc}{E_{\star}} \right)^n$$

LIV-induced modifications

$$E^2 = m_a^2 c^4 + p^2 c^2 + f_a(E, \vec{p})$$

$$f_a(E, \vec{p}) \approx f_a(p) = p^2 c^2 \sum_{n=0}^{\infty} \chi_n^{(a)} \left(\frac{pc}{E_{\star}} \right)^n$$

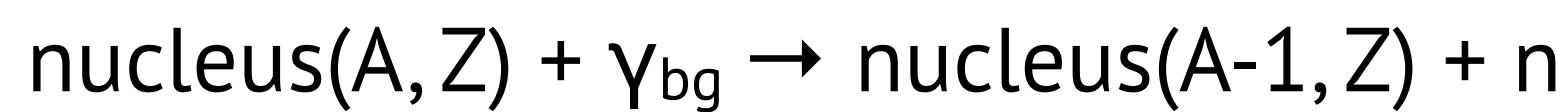
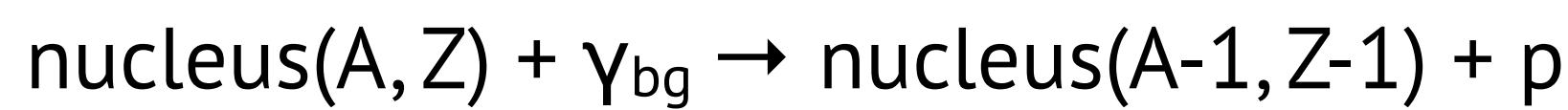
photodisintegration

LIV-induced modifications

$$E^2 = m_a^2 c^4 + p^2 c^2 + f_a(E, \vec{p})$$

$$f_a(E, \vec{p}) \approx f_a(p) = p^2 c^2 \sum_{n=0}^{\infty} \chi_n^{(a)} \left(\frac{pc}{E_{\star}} \right)^n$$

photodisintegration



....

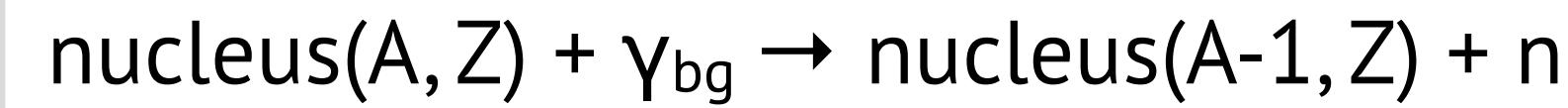
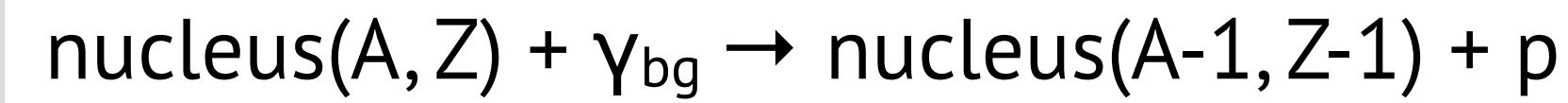
modified interaction thresholds

LIV-induced modifications

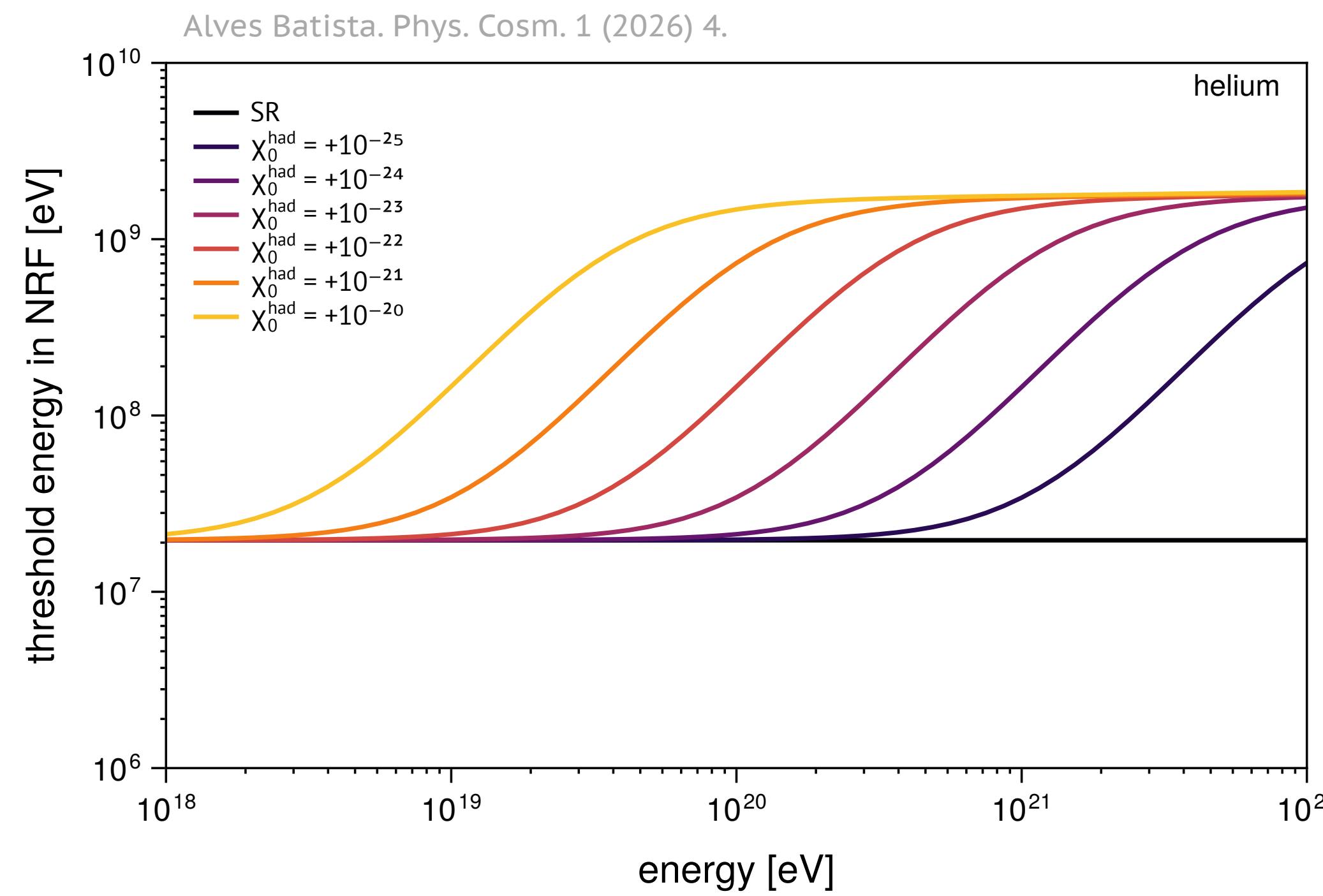
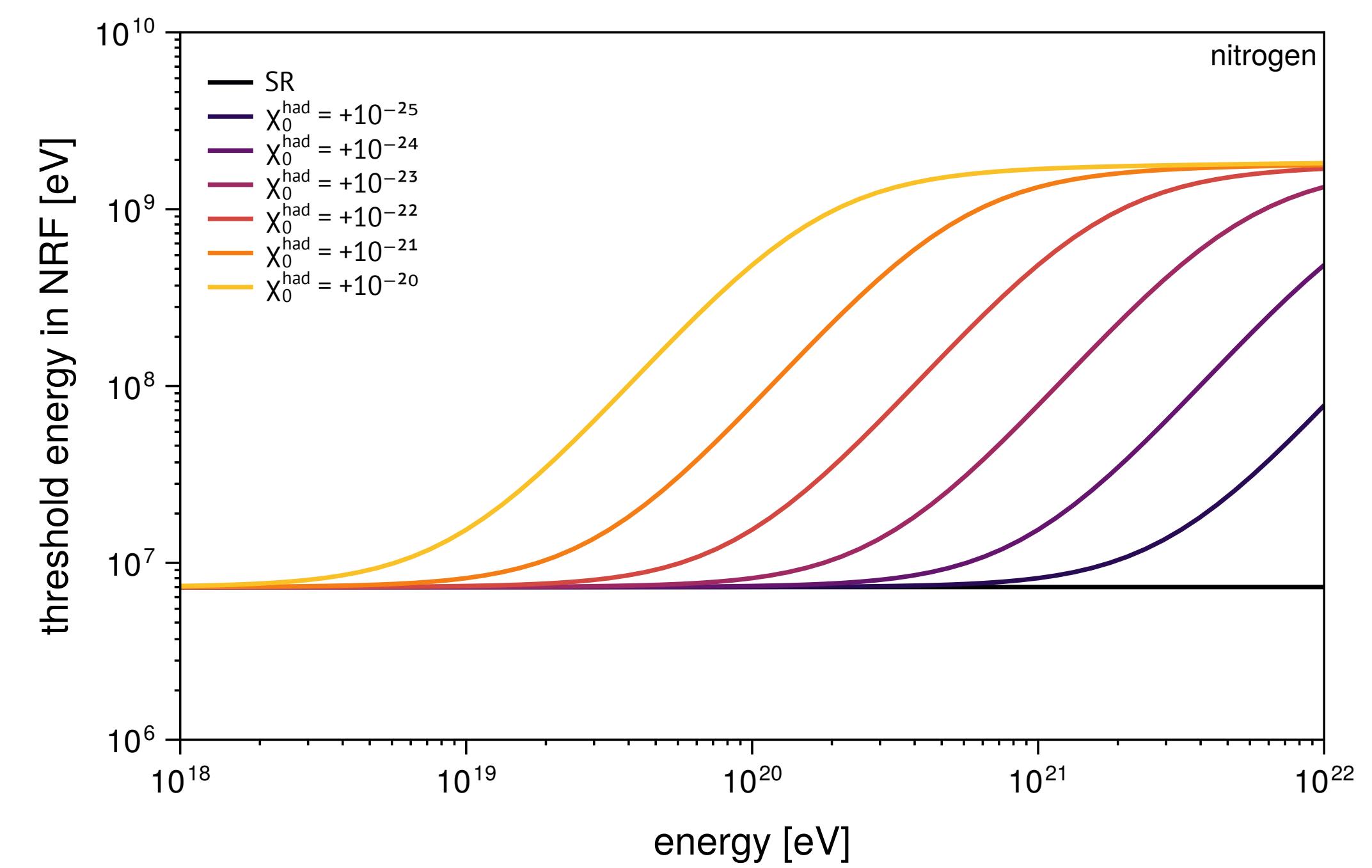
$$E^2 = m_a^2 c^4 + p^2 c^2 + f_a(E, \vec{p})$$

$$f_a(E, \vec{p}) \approx f_a(p) = p^2 c^2 \sum_{n=0}^{\infty} \chi_n^{(a)} \left(\frac{pc}{E_{\star}} \right)^n$$

photodisintegration



....



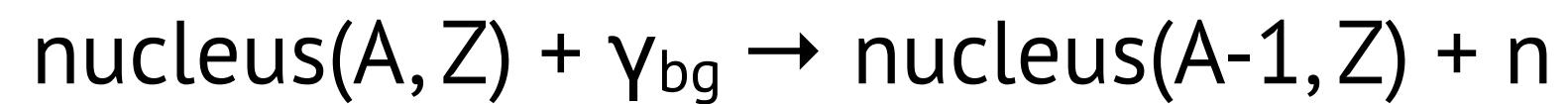
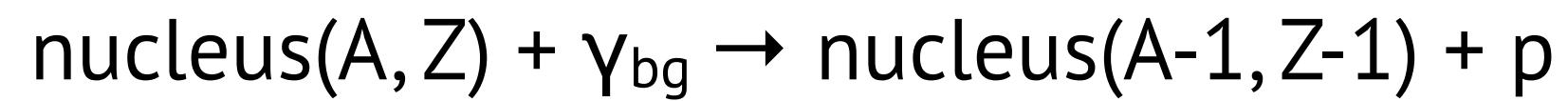
modified interaction thresholds

LIV-induced modifications

$$E^2 = m_a^2 c^4 + p^2 c^2 + f_a(E, \vec{p})$$

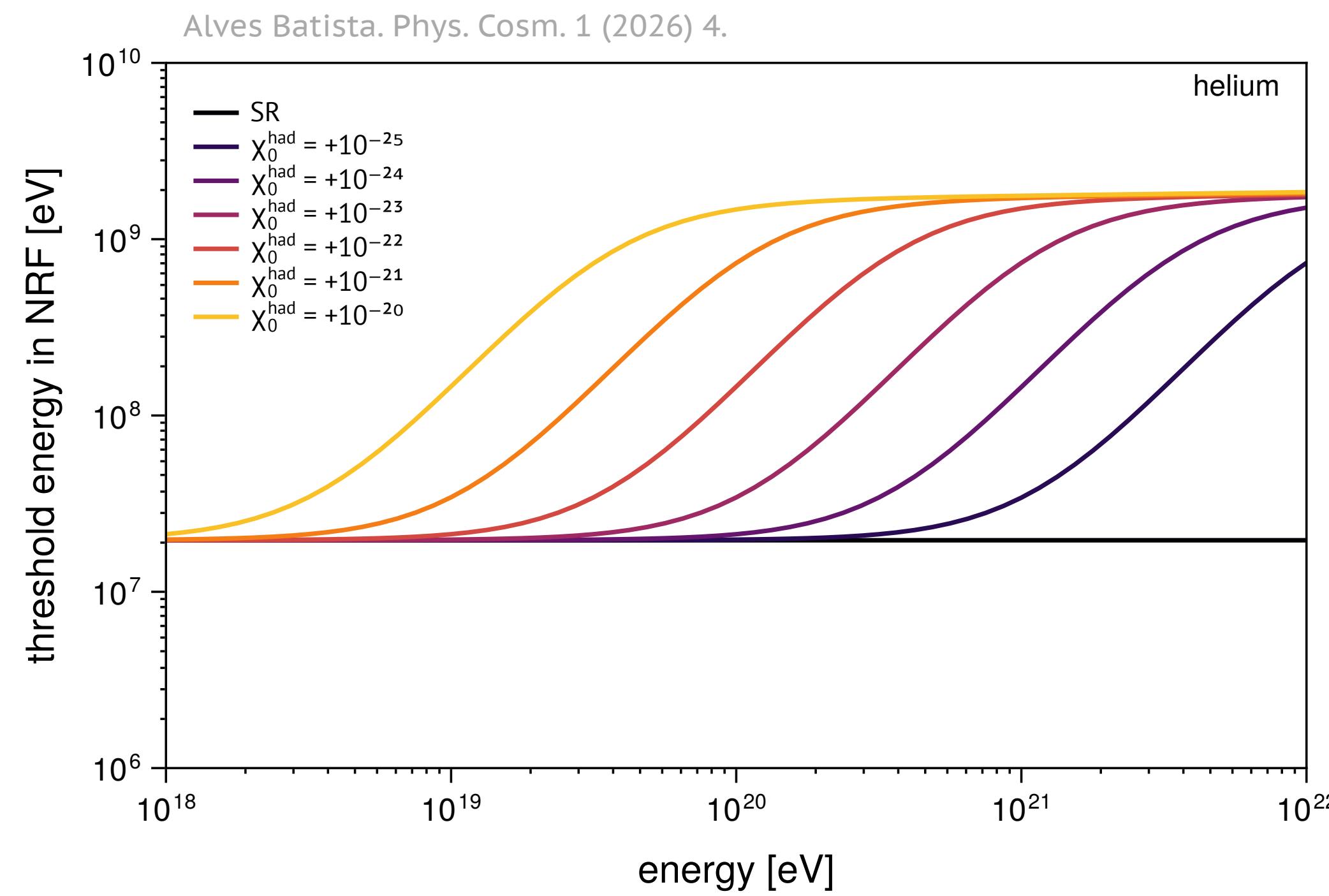
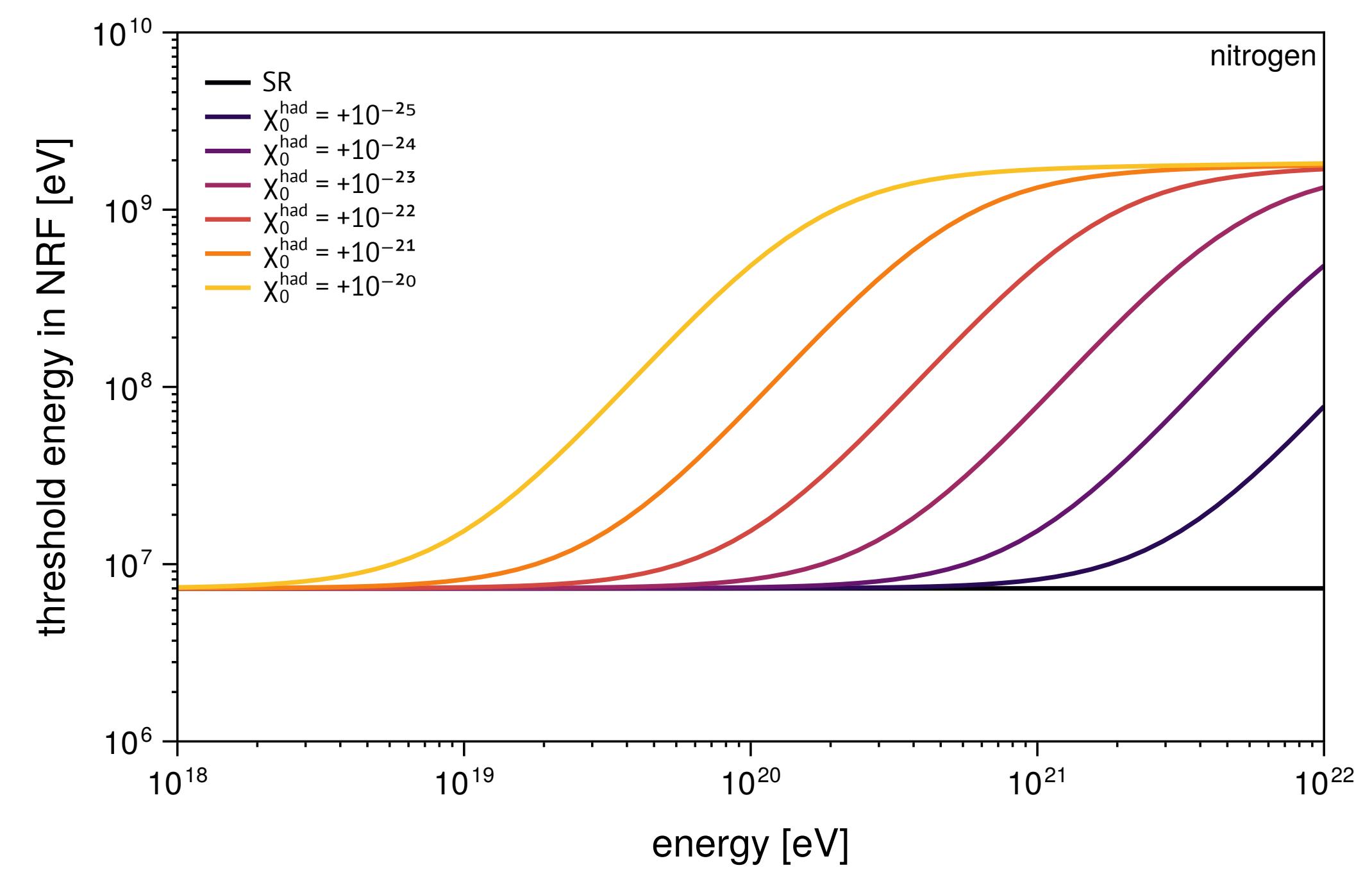
$$f_a(E, \vec{p}) \approx f_a(p) = p^2 c^2 \sum_{n=0}^{\infty} \chi_n^{(a)} \left(\frac{pc}{E_{\star}} \right)^n$$

photodisintegration



....

cosmogenic particles

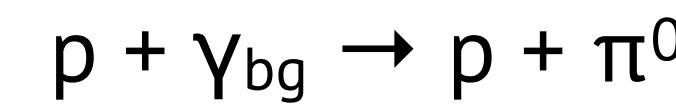


LIV-induced modifications

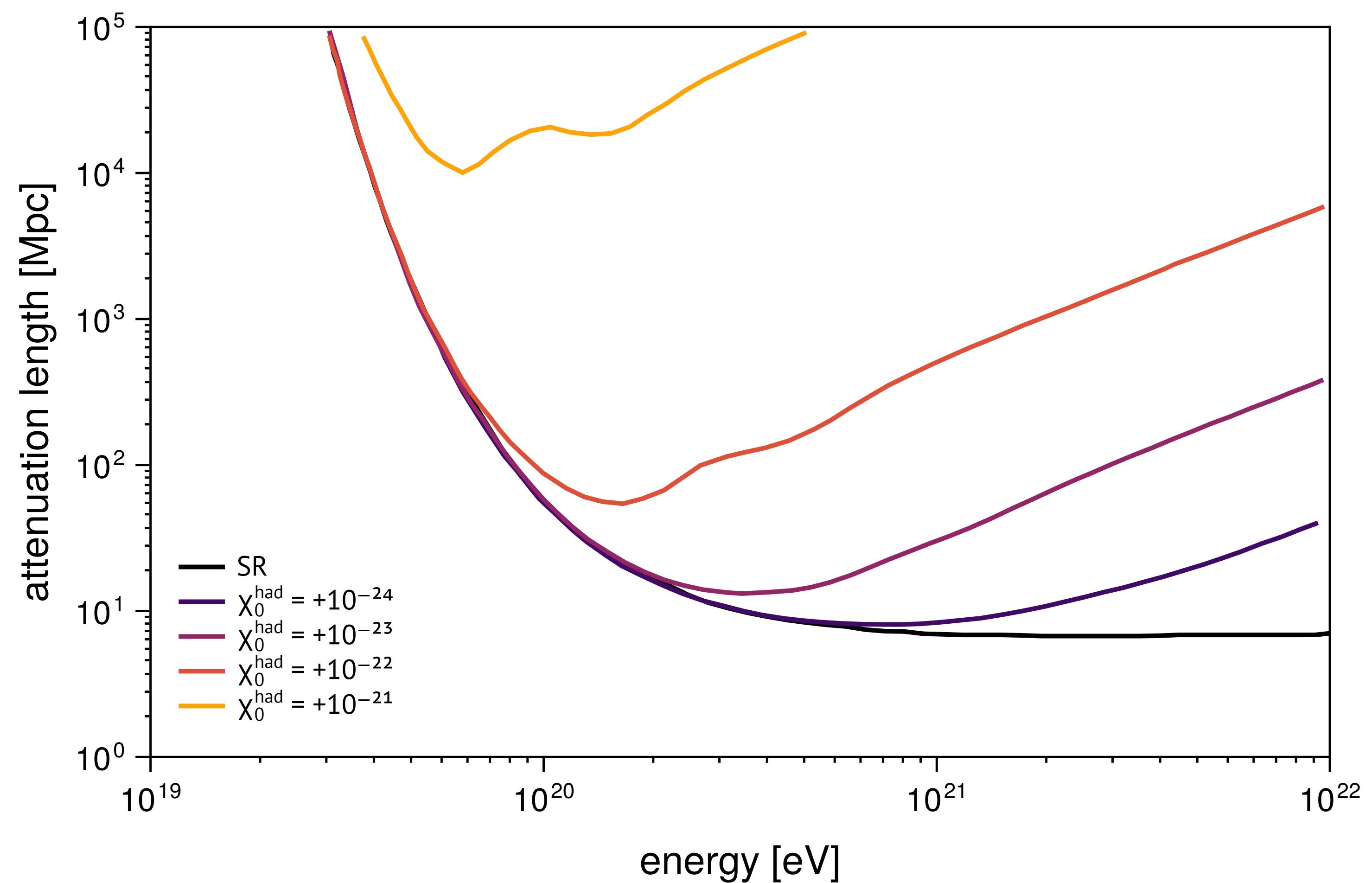
$$E^2 = m_a^2 c^4 + p^2 c^2 + f_a(E, \vec{p})$$

$$f_a(E, \vec{p}) \approx f_a(p) = p^2 c^2 \sum_{n=0}^{\infty} \chi_n^{(a)} \left(\frac{pc}{E_{\star}} \right)^n$$

photoproduction of mesons



(similar for nuclei)

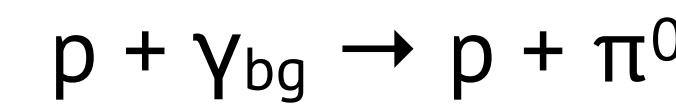


LIV-induced modifications

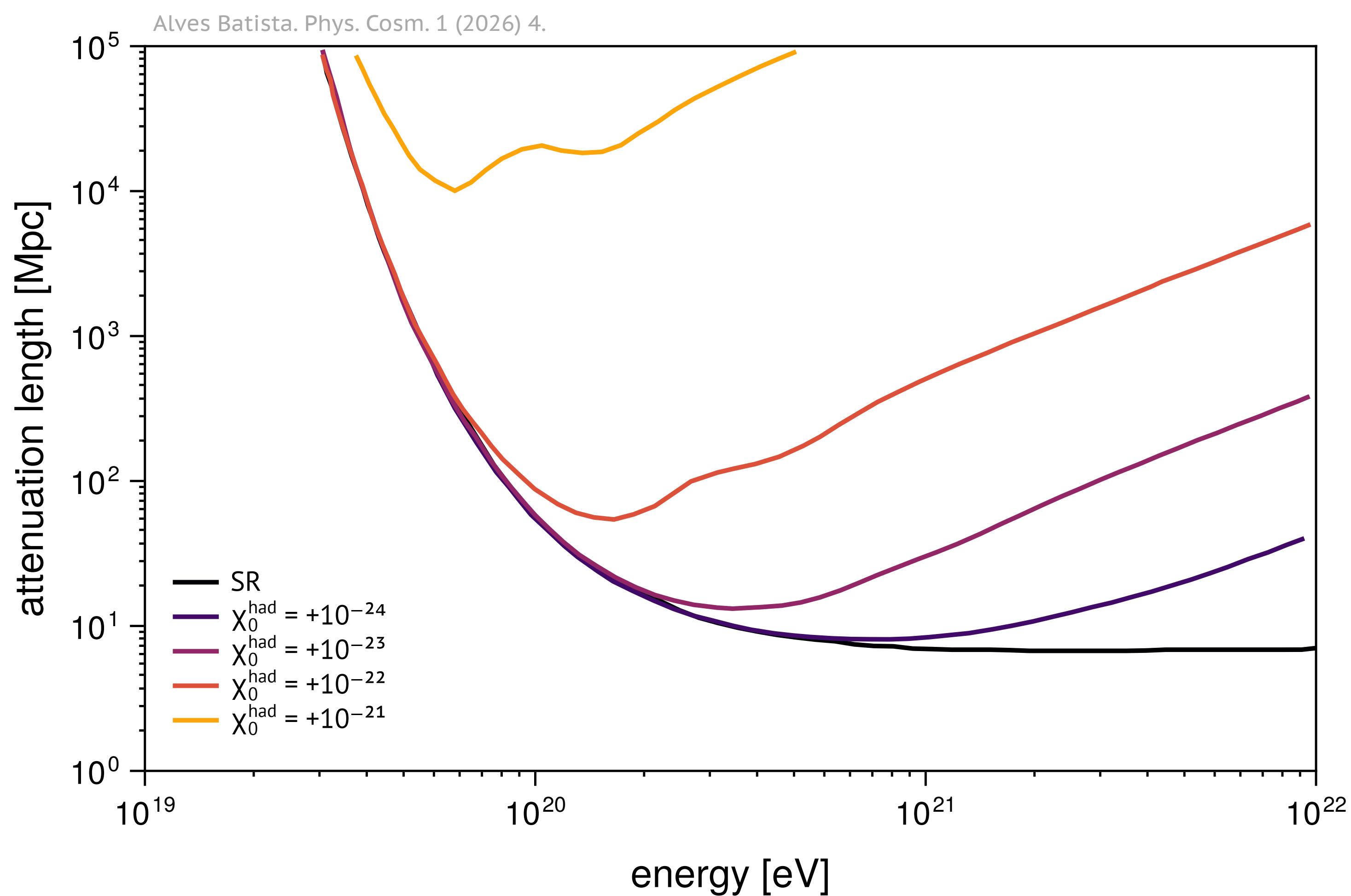
$$E^2 = m_a^2 c^4 + p^2 c^2 + f_a(E, \vec{p})$$

$$f_a(E, \vec{p}) \approx f_a(p) = p^2 c^2 \sum_{n=0}^{\infty} \chi_n^{(a)} \left(\frac{pc}{E_{\star}} \right)^n$$

photoproduction of mesons



(similar for nuclei)

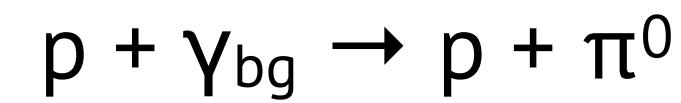
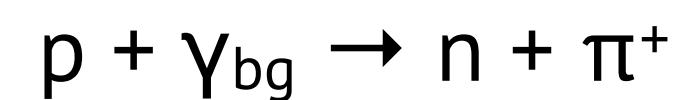


LIV-induced modifications

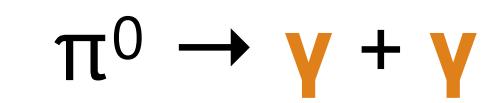
$$E^2 = m_a^2 c^4 + p^2 c^2 + f_a(E, \vec{p})$$

$$f_a(E, \vec{p}) \approx f_a(p) = p^2 c^2 \sum_{n=0}^{\infty} \chi_n^{(a)} \left(\frac{pc}{E_{\star}} \right)^n$$

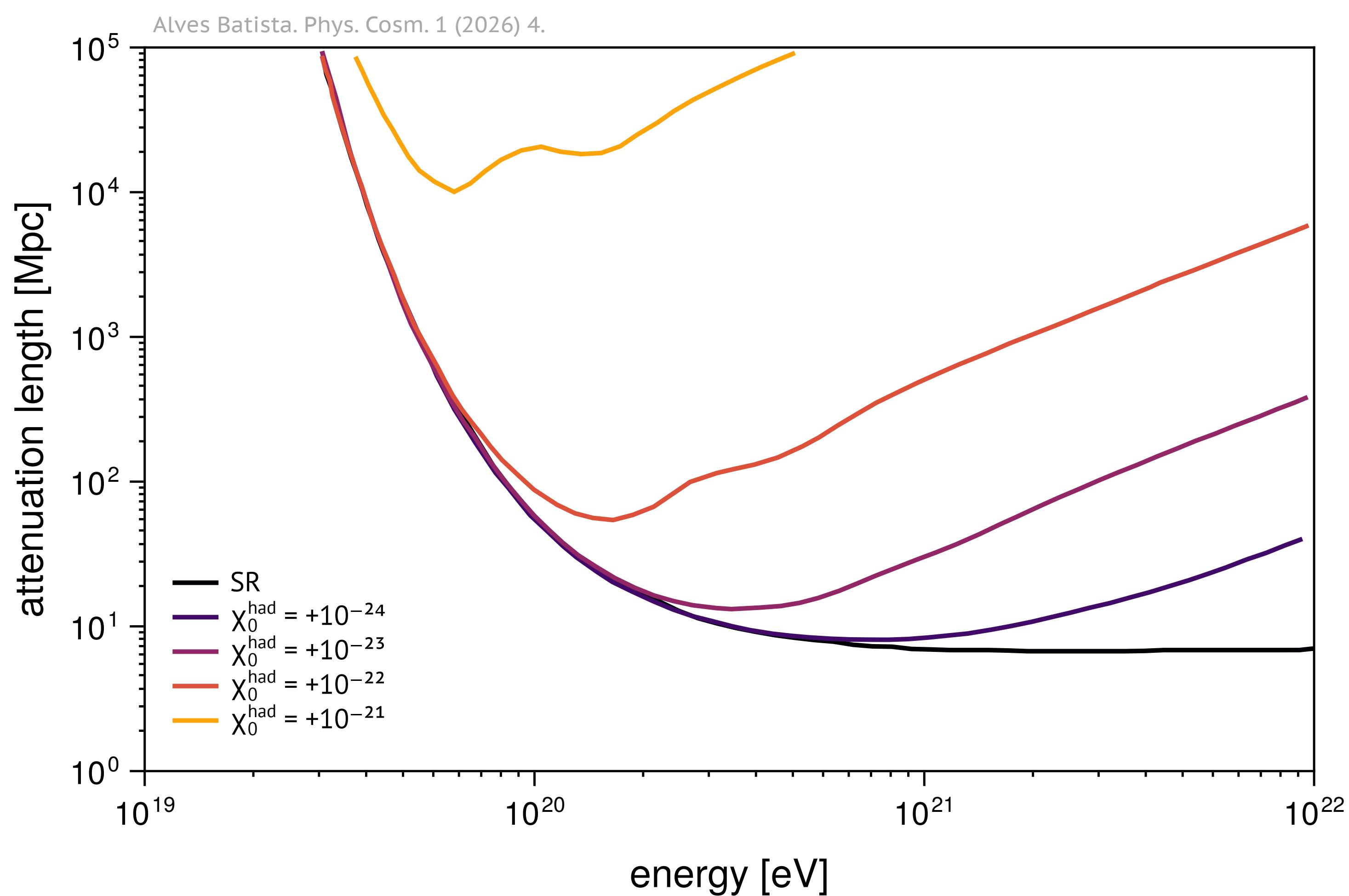
photoproduction of mesons

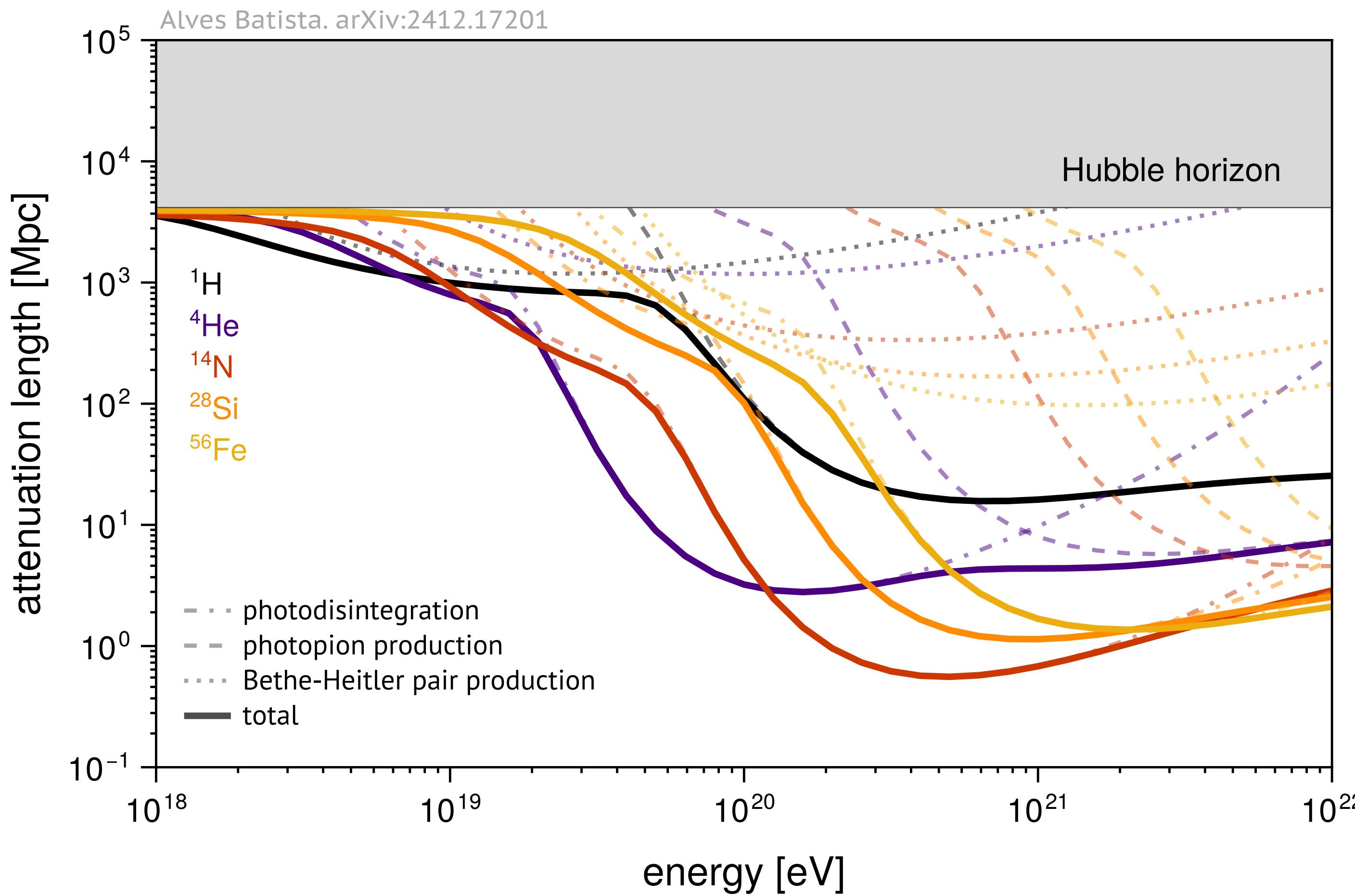


(similar for nuclei)

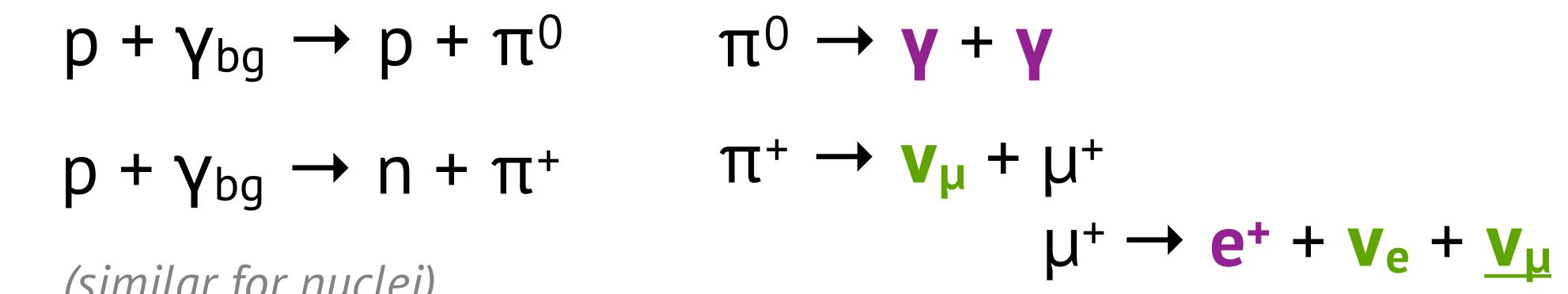


cosmogenic particles

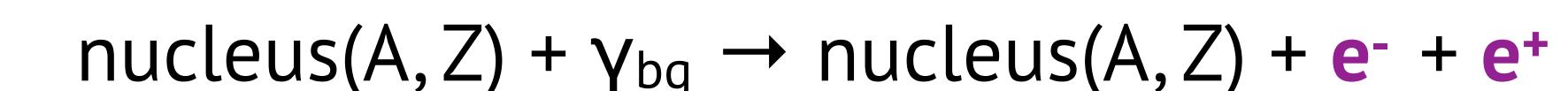




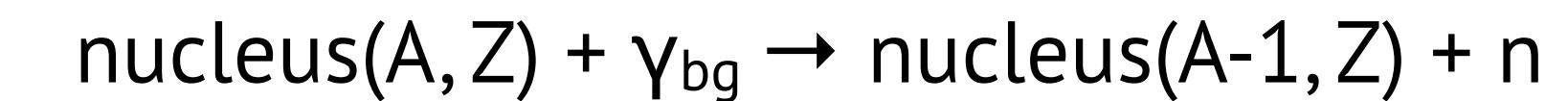
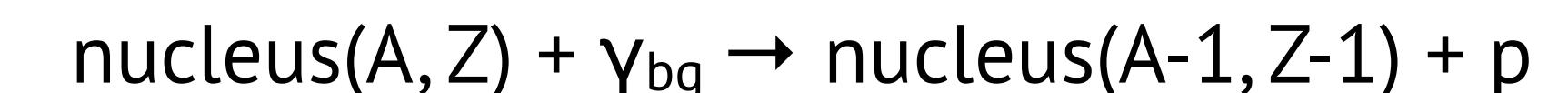
photoproduction of mesons



Bethe-Heitler pair production

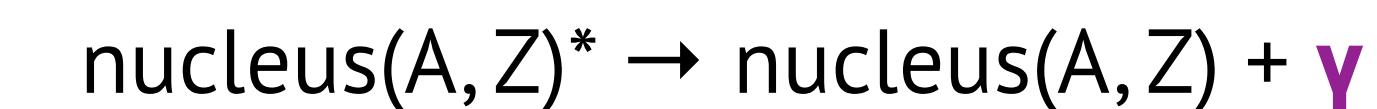


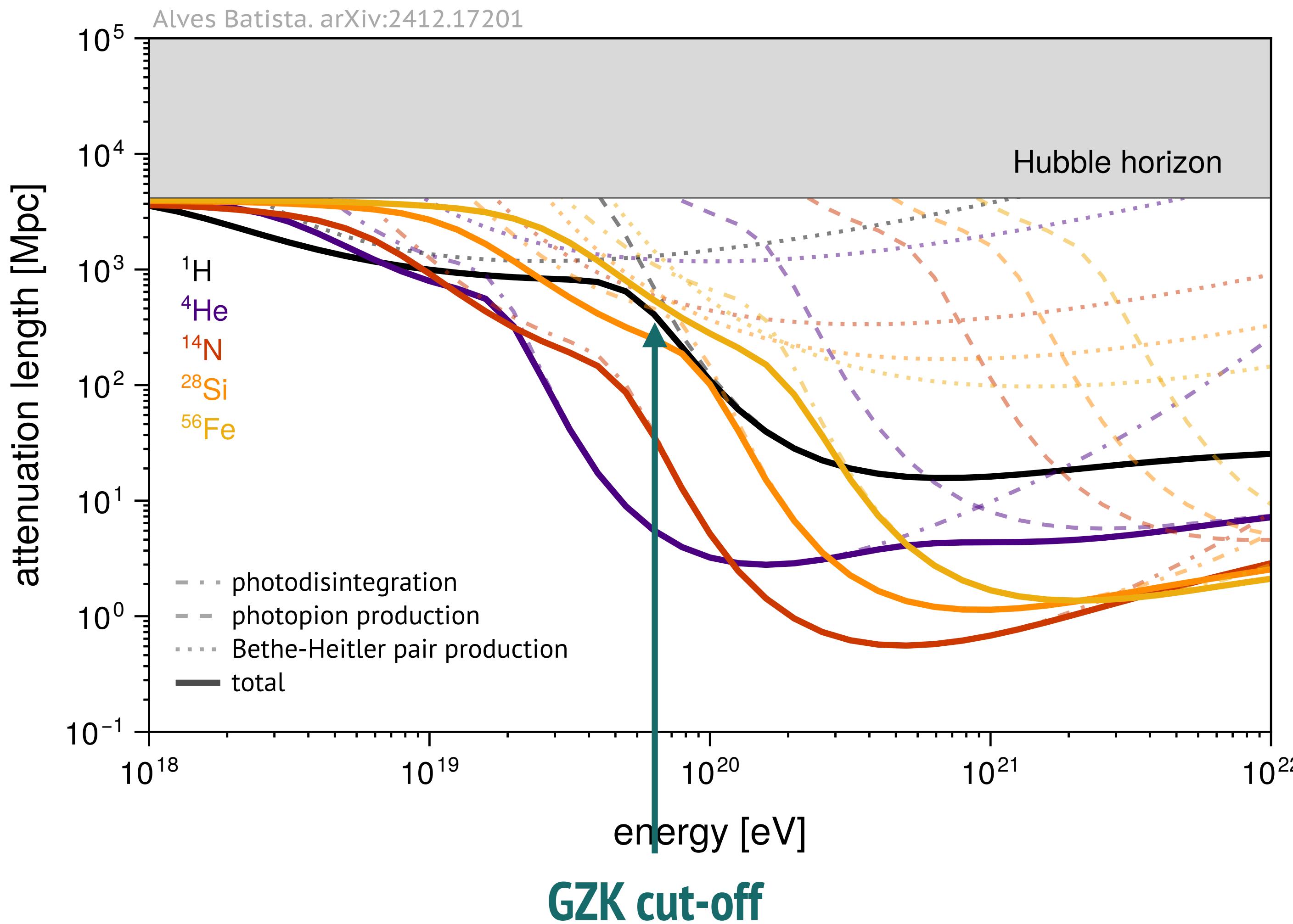
photodisintegration



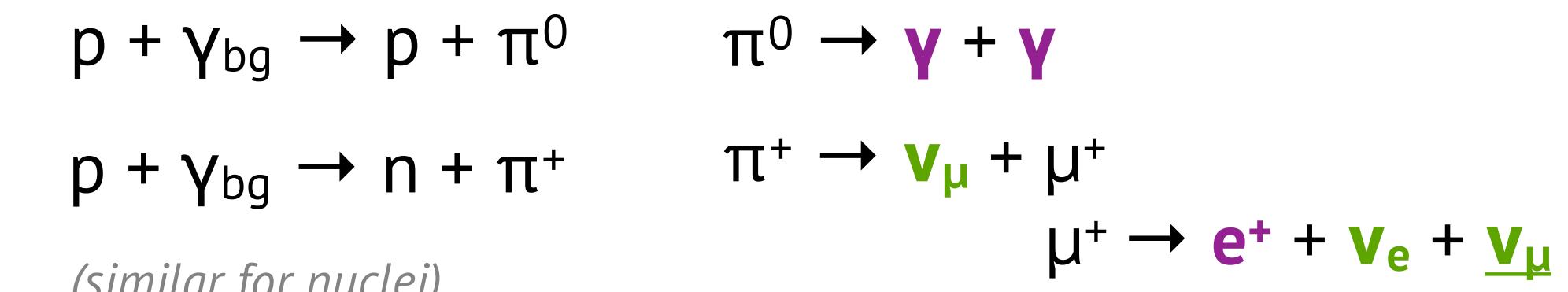
...

nuclear decays

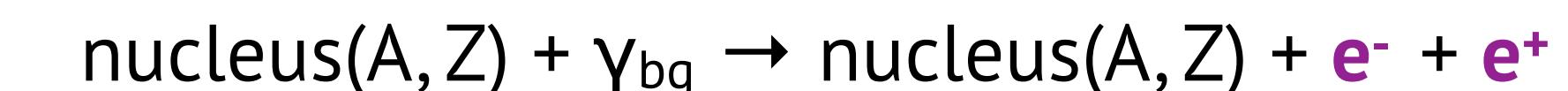




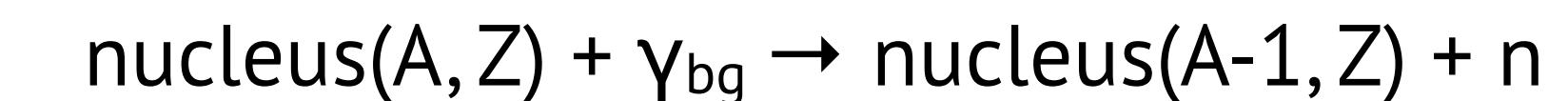
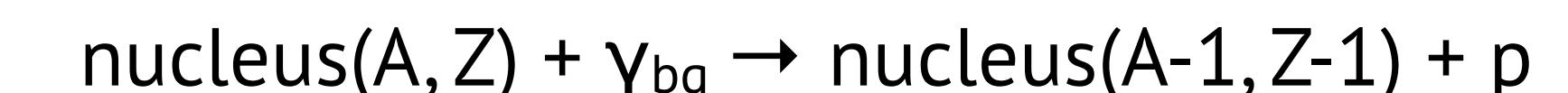
photoproduction of mesons



Bethe-Heitler pair production

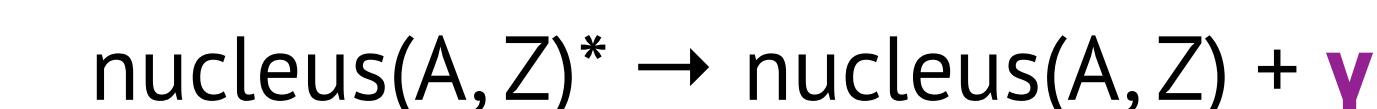


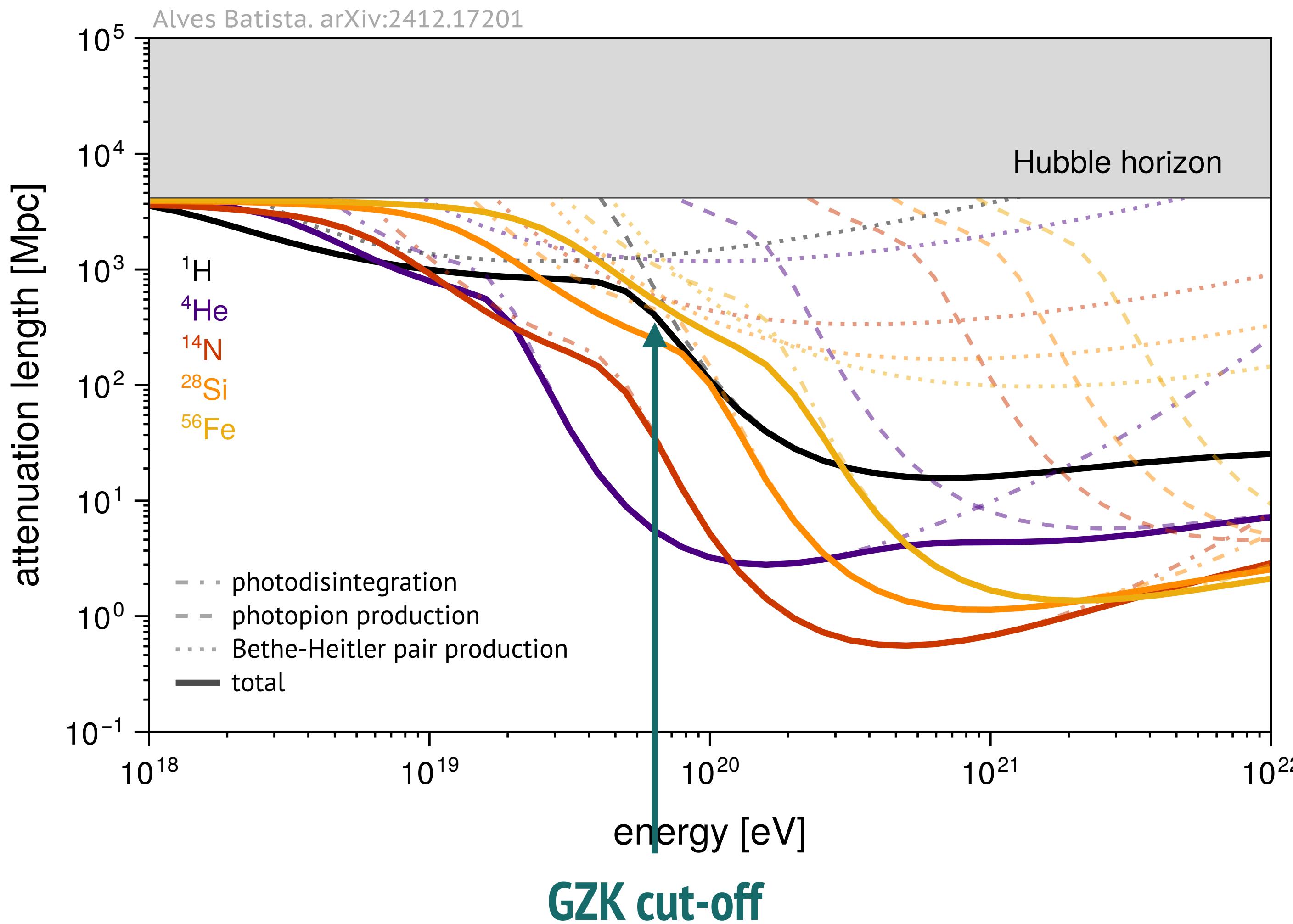
photodisintegration



...

nuclear decays

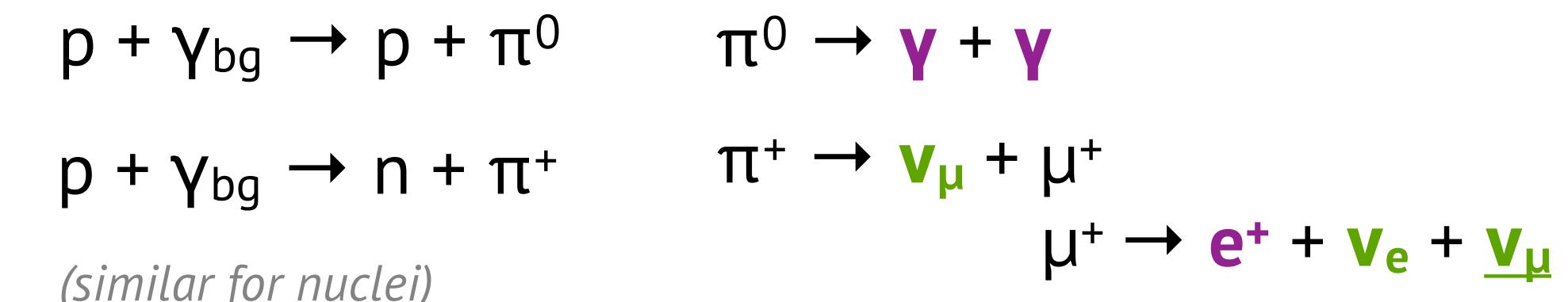




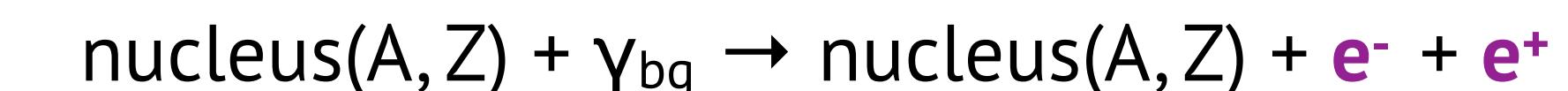
$$s = m^2 + 2E\varepsilon(1 - \beta \cos \theta)$$

$$s = (m_p + m_\pi)^2 \simeq m^2 + 2E_p\varepsilon_{\text{CMB}}$$

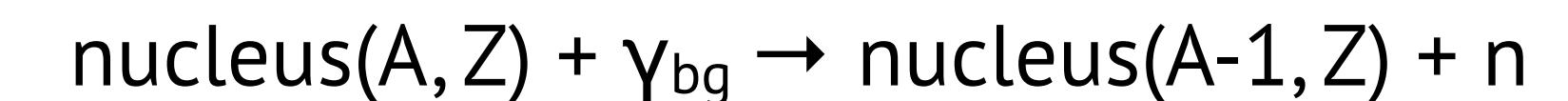
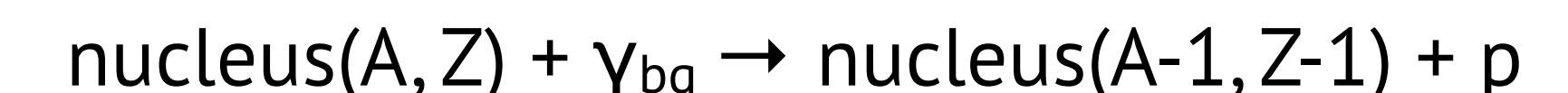
photoproduction of mesons



Bethe-Heitler pair production

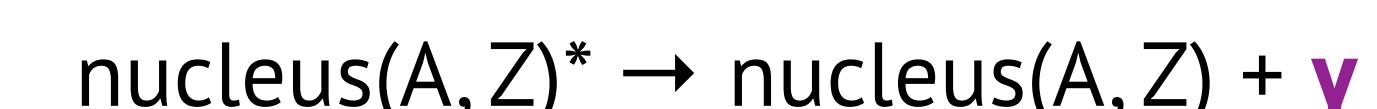


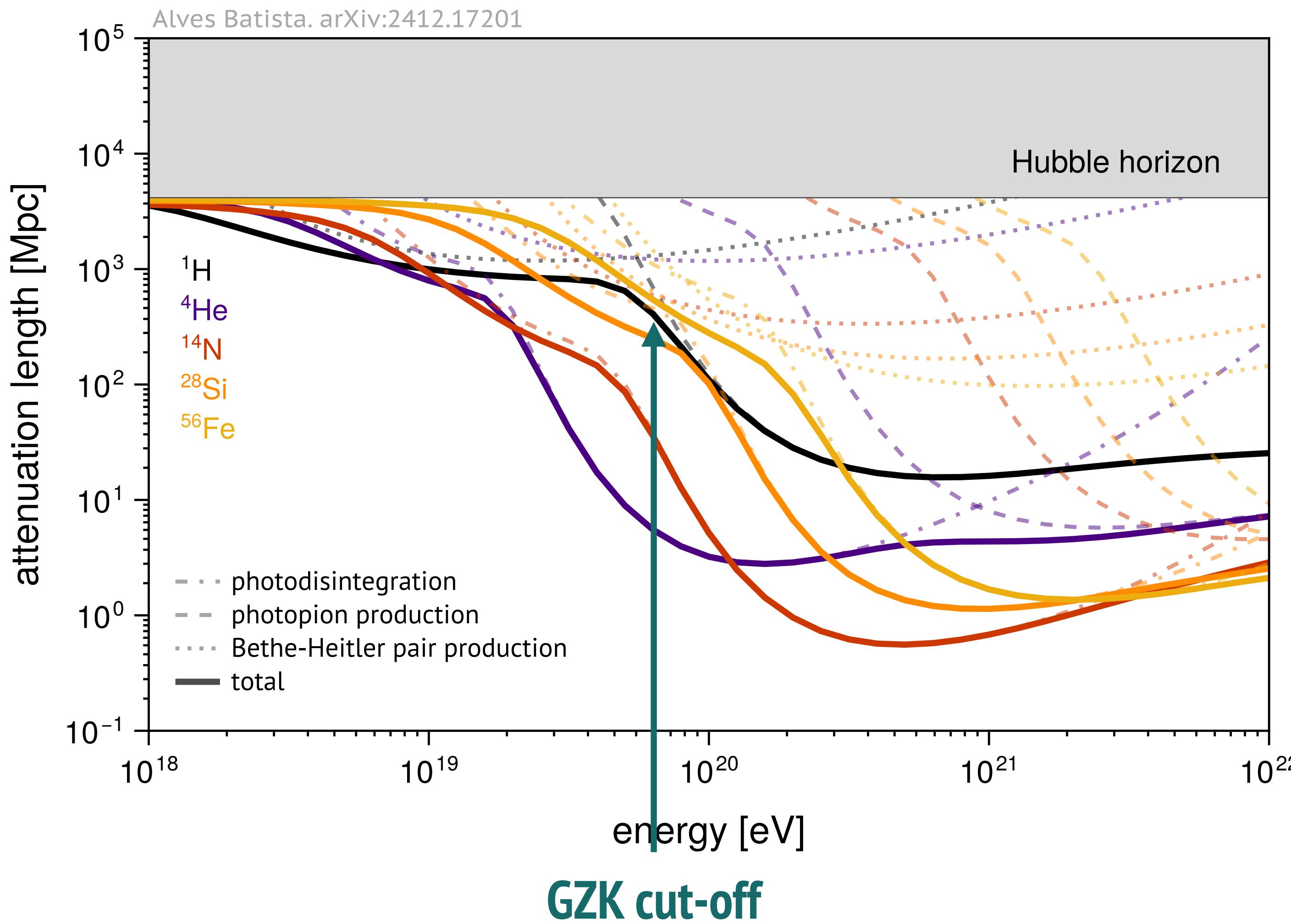
photodisintegration



...

nuclear decays



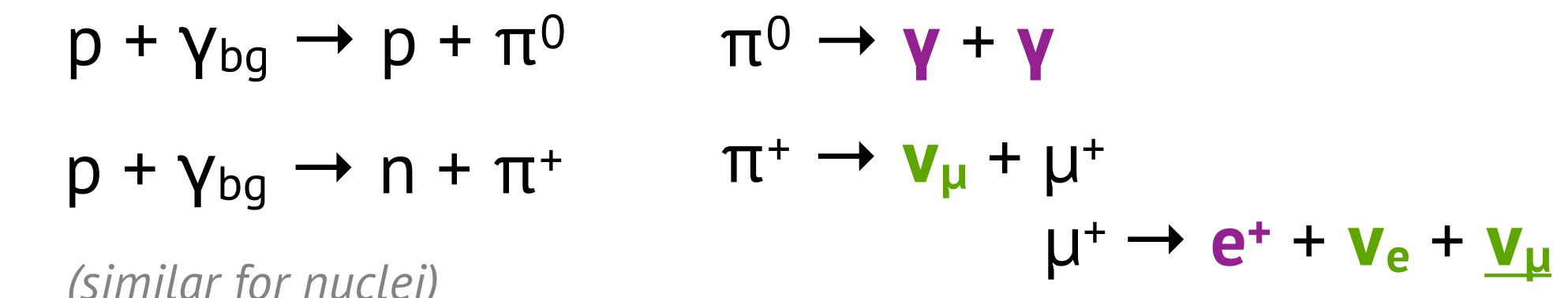


$$s = m^2 + 2E\varepsilon(1 - \beta \cos \theta)$$

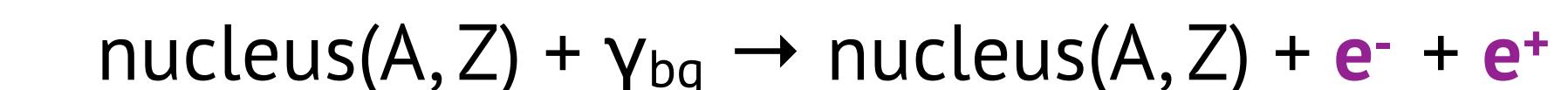
$$s = (m_p + m_\pi)^2 \simeq m^2 + 2E_p\varepsilon_{\text{CMB}}$$

$$E_{\text{GZK}} \simeq 6 \text{ EeV} \equiv 6 \times 10^{19} \text{ eV}$$

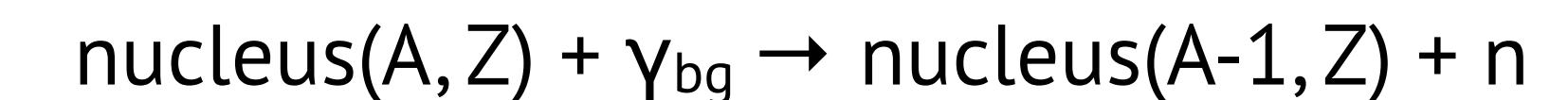
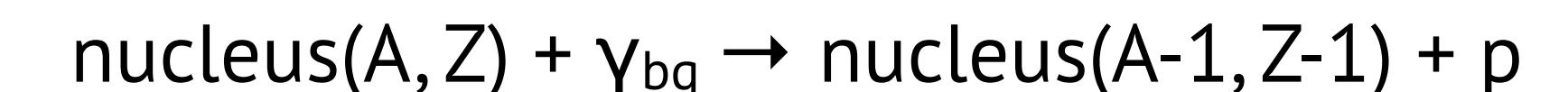
photoproduction of mesons



Bethe-Heitler pair production

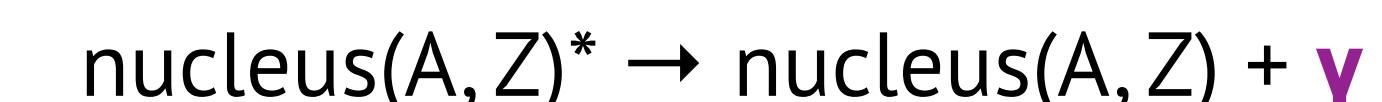


photodisintegration



...

nuclear decays



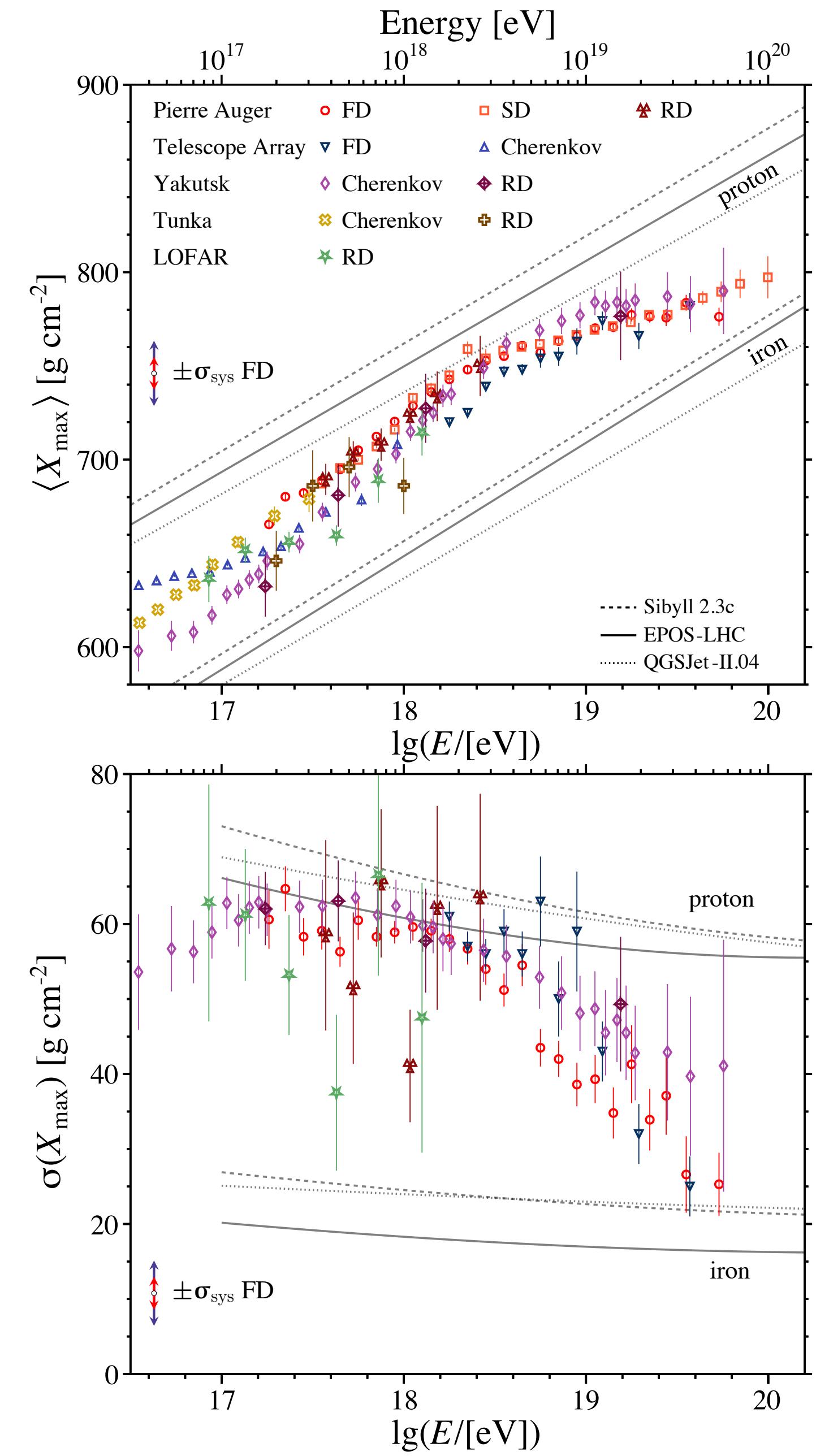
- ▶ **problem:** effects in the hadronic sector also affects the showers

- ▶ **problem:** effects in the hadronic sector also affects the showers
- ▶ what we measure is X_{\max}

self-consistent constraints in hadronic sector

Coleman et al. Astroparticle Physics 149 (2023) 102819. arXiv:2205.05845

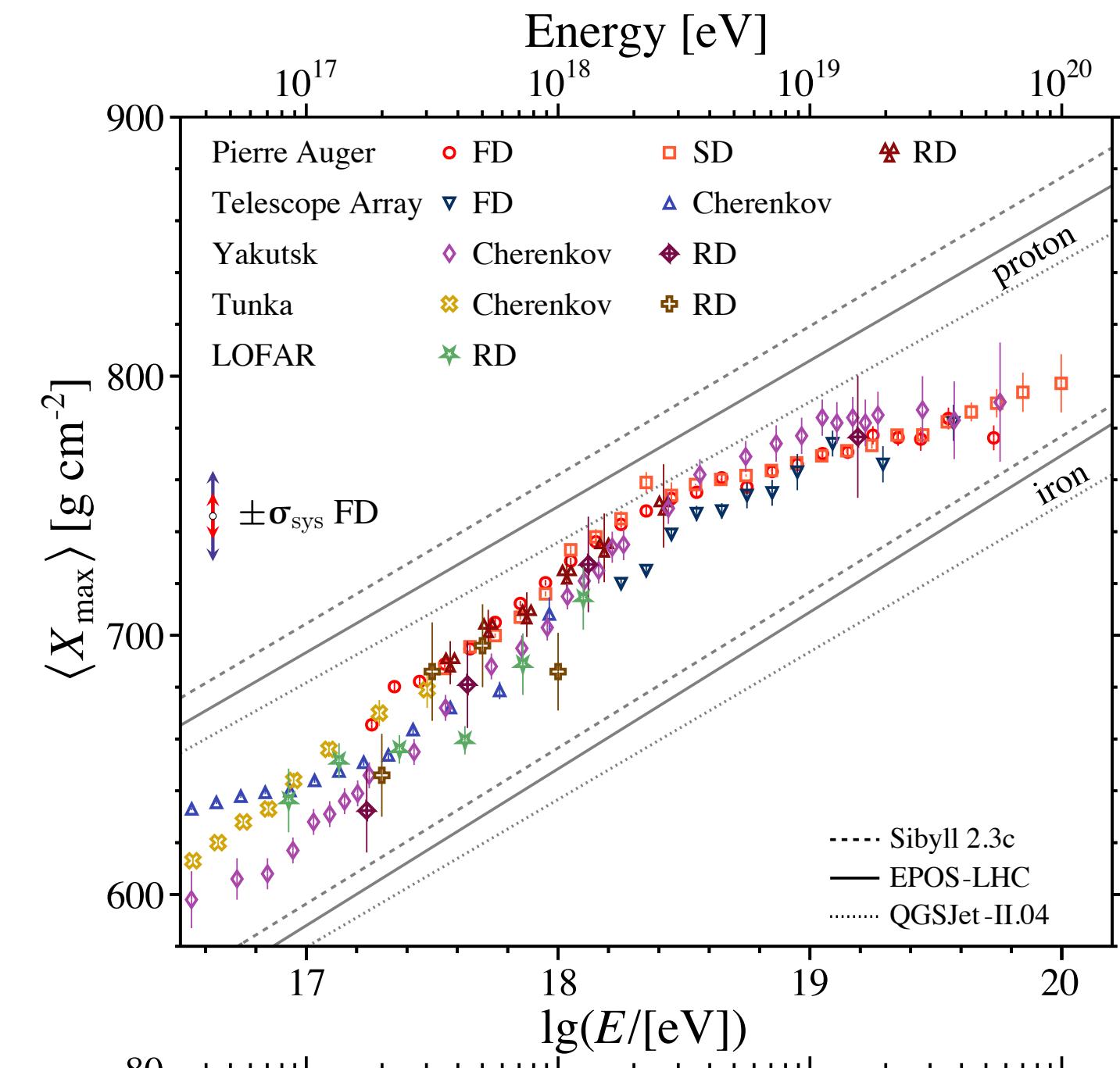
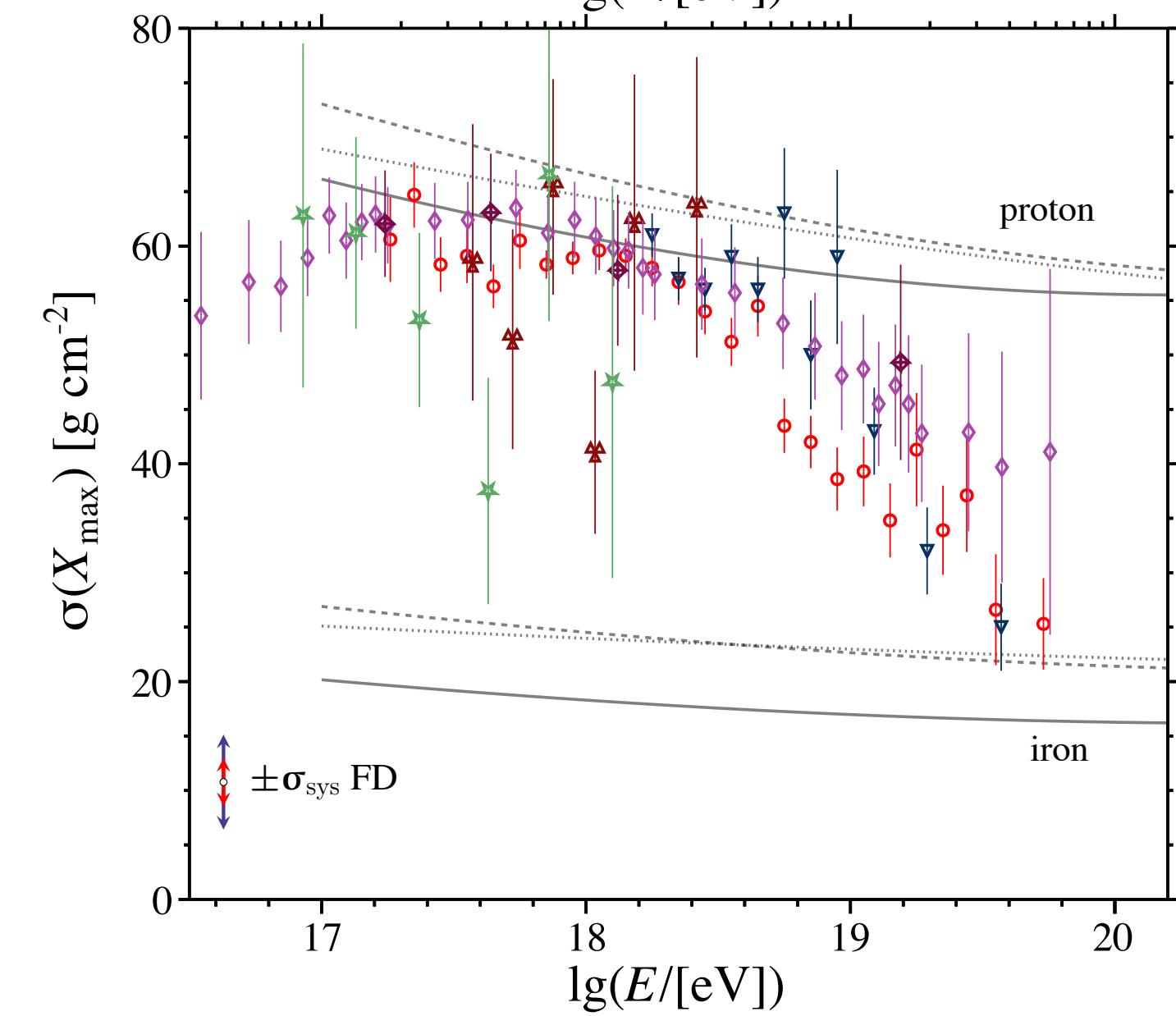
- ▶ **problem:** effects in the hadronic sector also affects the showers
- ▶ what we measure is X_{\max}



self-consistent constraints in hadronic sector

Coleman et al. Astroparticle Physics 149 (2023) 102819. arXiv:2205.05845

- ▶ **problem:** effects in the hadronic sector also affects the showers
- ▶ what we measure is X_{\max}
- ▶ **how to tackle that?** LIV-CORSIKA working group



gamma rays

the usual approach to gamma-ray propagation

the usual approach to gamma-ray propagation

flux

attenuation

$$\Phi_o(E_o; z_s) = \Phi_s(E_{o,s}) \exp [-\tau(E_o, z_s)]$$

the usual approach to gamma-ray propagation

flux

attenuation

$$\Phi_o(E_o; z_s) = \Phi_s(E_{o,s}) \exp [-\tau(E_o, z_s)]$$

optical
depth

$$\tau(E_o, z_s) = \int_0^{z_s} dz \lambda^{-1} \left(\frac{E_{o,s}}{1+z}, z \right) \frac{d\ell}{dz}$$

the usual approach to gamma-ray propagation

flux

attenuation

$$\Phi_o(E_o; z_s) = \Phi_s(E_{o,s}) \exp [-\tau(E_o, z_s)]$$

how good is this
approximation?

optical
depth

$$\tau(E_o, z_s) = \int_0^{z_s} dz \lambda^{-1} \left(\frac{E_{o,s}}{1+z}, z \right) \frac{d\ell}{dz}$$

the usual approach to gamma-ray propagation

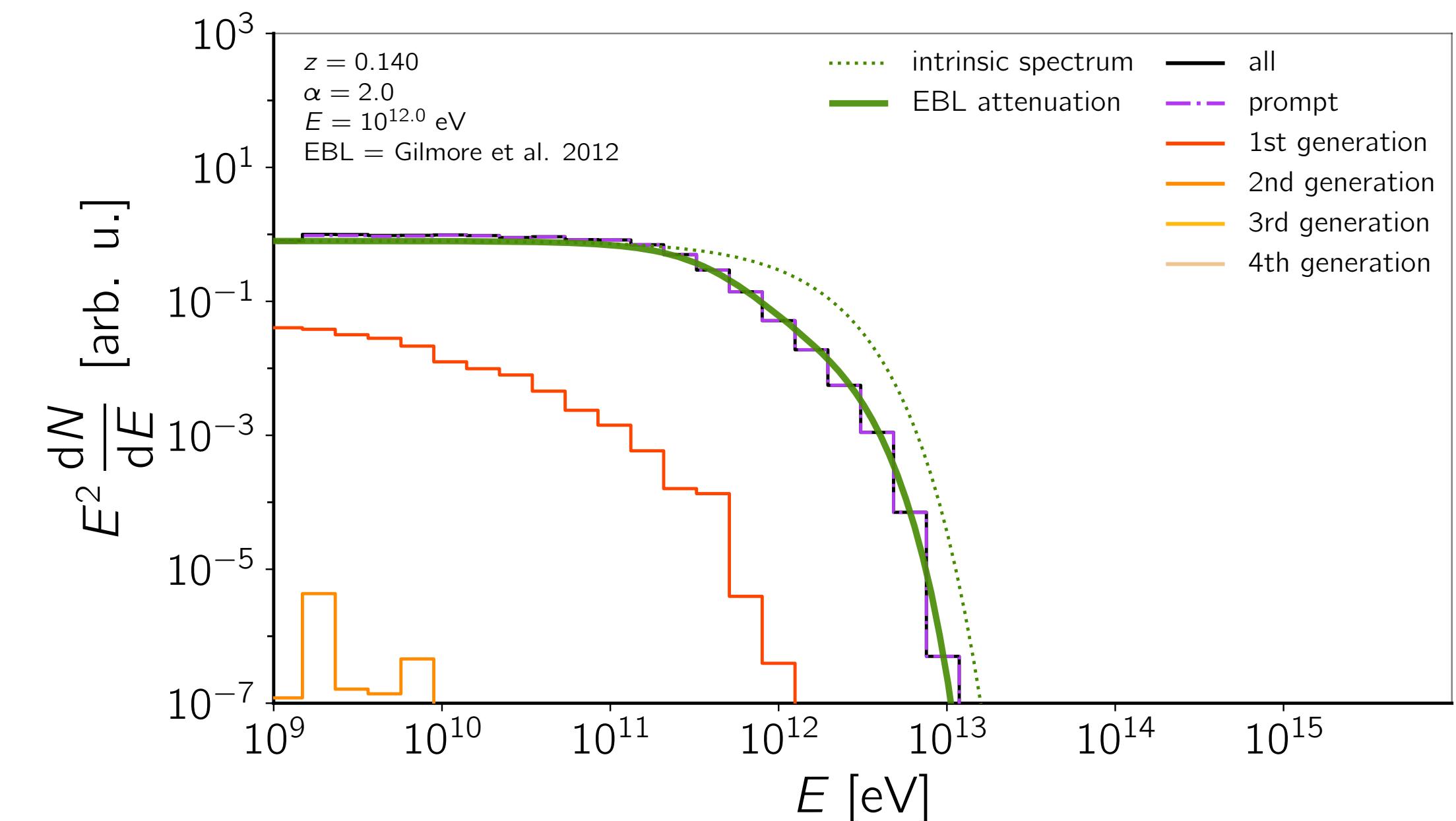
flux
attenuation

$$\Phi_o(E_o; z_s) = \Phi_s(E_{o,s}) \exp [-\tau(E_o, z_s)]$$

how good is this
approximation?

optical
depth

$$\tau(E_o, z_s) = \int_0^{z_s} dz \lambda^{-1} \left(\frac{E_{o,s}}{1+z}, z \right) \frac{d\ell}{dz}$$



simulations performed with **CRPropa**

Alves Batista et al. JCAP 05 (2016) 038. arXiv:1603.07142

Alves Batista et al. JCAP 09 (2022) 035. arXiv:2208.00107

the usual approach to gamma-ray propagation

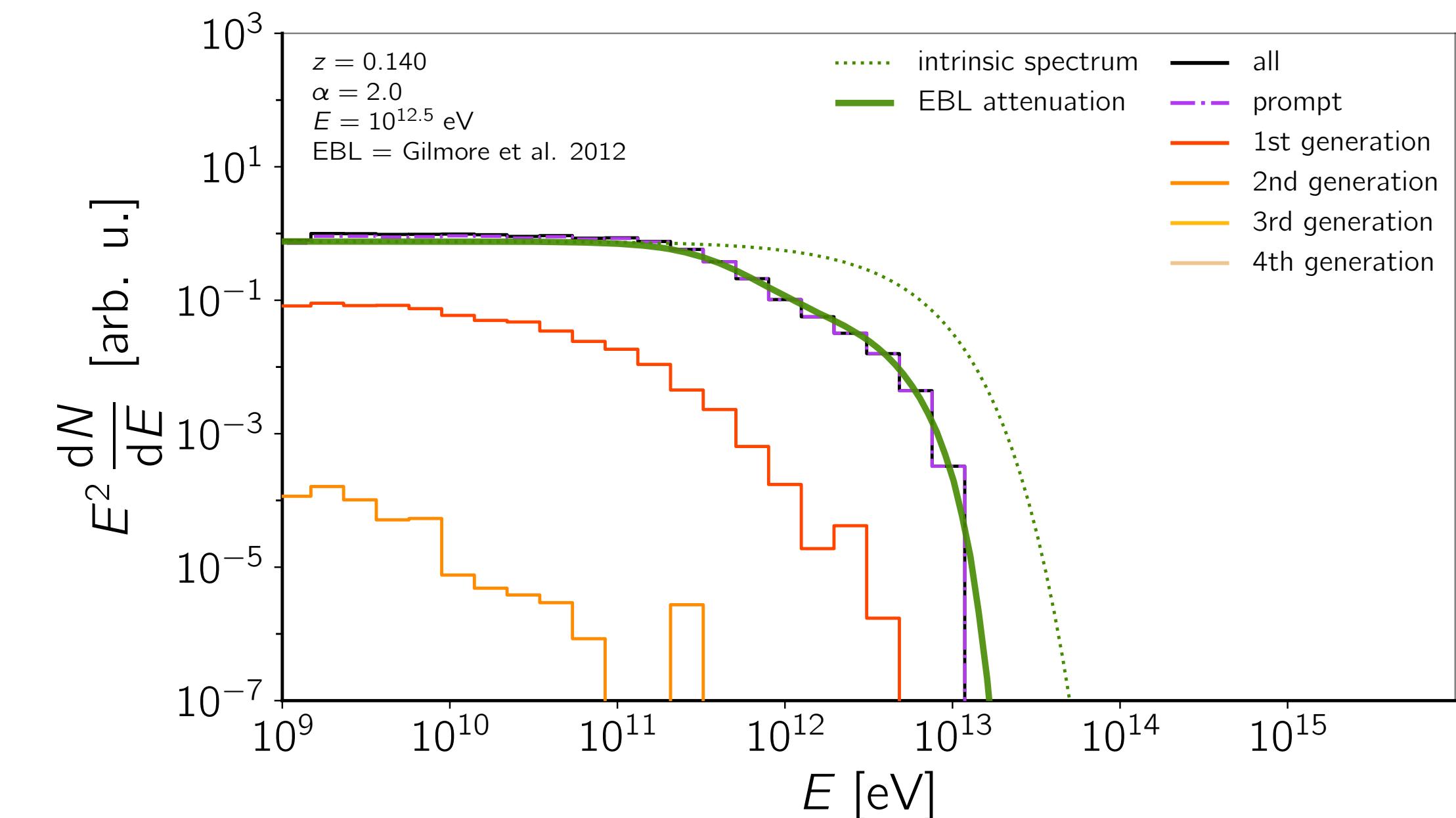
flux
attenuation

$$\Phi_o(E_o; z_s) = \Phi_s(E_{o,s}) \exp [-\tau(E_o, z_s)]$$

how good is this
approximation?

optical
depth

$$\tau(E_o, z_s) = \int_0^{z_s} dz \lambda^{-1} \left(\frac{E_{o,s}}{1+z}, z \right) \frac{d\ell}{dz}$$



simulations performed with **CRPropa**

Alves Batista et al. JCAP 05 (2016) 038. arXiv:1603.07142

Alves Batista et al. JCAP 09 (2022) 035. arXiv:2208.00107

the usual approach to gamma-ray propagation

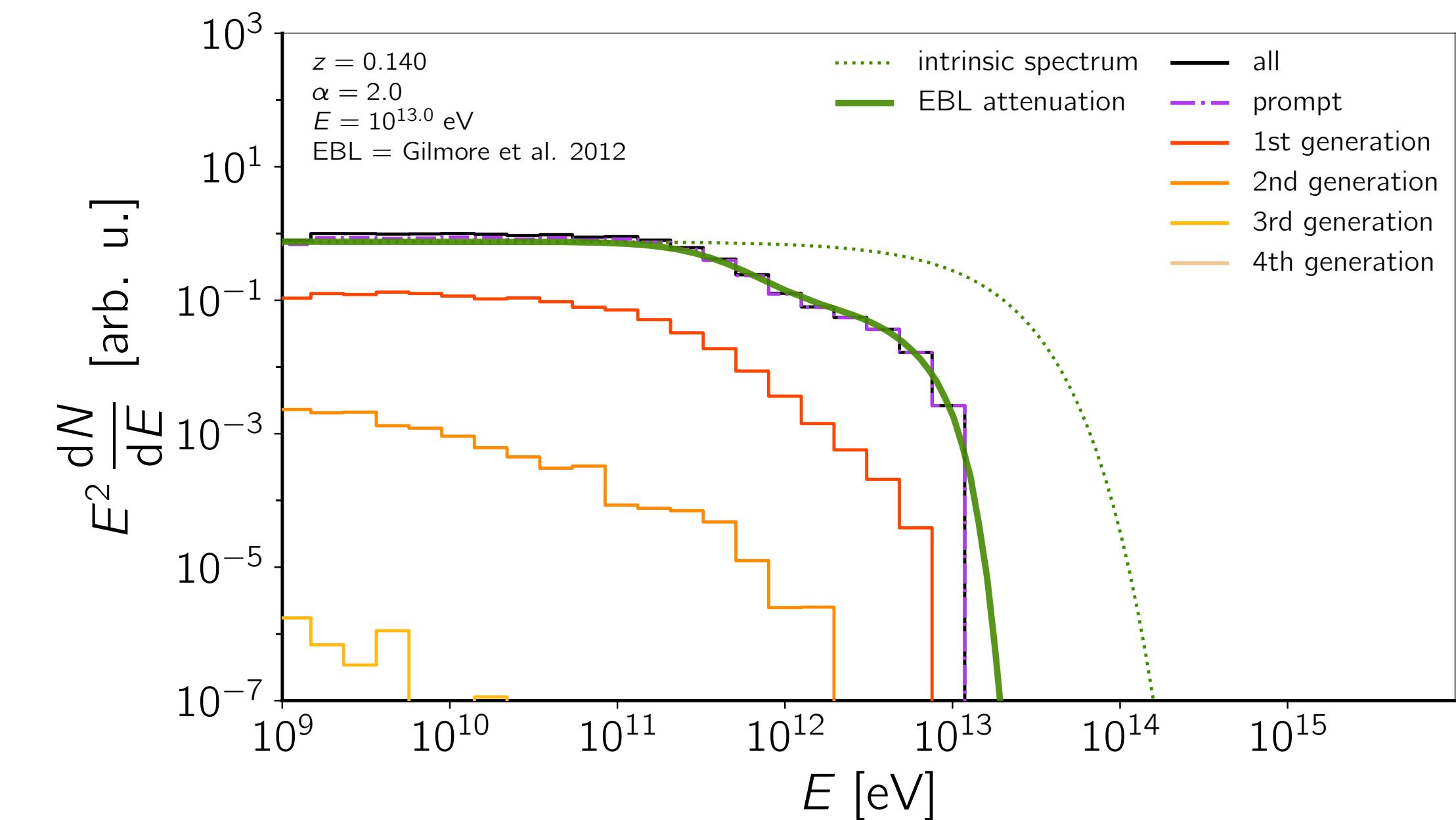
flux
attenuation

$$\Phi_o(E_o; z_s) = \Phi_s(E_{o,s}) \exp [-\tau(E_o, z_s)]$$

how good is this
approximation?

optical
depth

$$\tau(E_o, z_s) = \int_0^{z_s} dz \lambda^{-1} \left(\frac{E_{o,s}}{1+z}, z \right) \frac{d\ell}{dz}$$



simulations performed with **CRPropa**

Alves Batista et al. JCAP 05 (2016) 038. arXiv:1603.07142

Alves Batista et al. JCAP 09 (2022) 035. arXiv:2208.00107

the usual approach to gamma-ray propagation

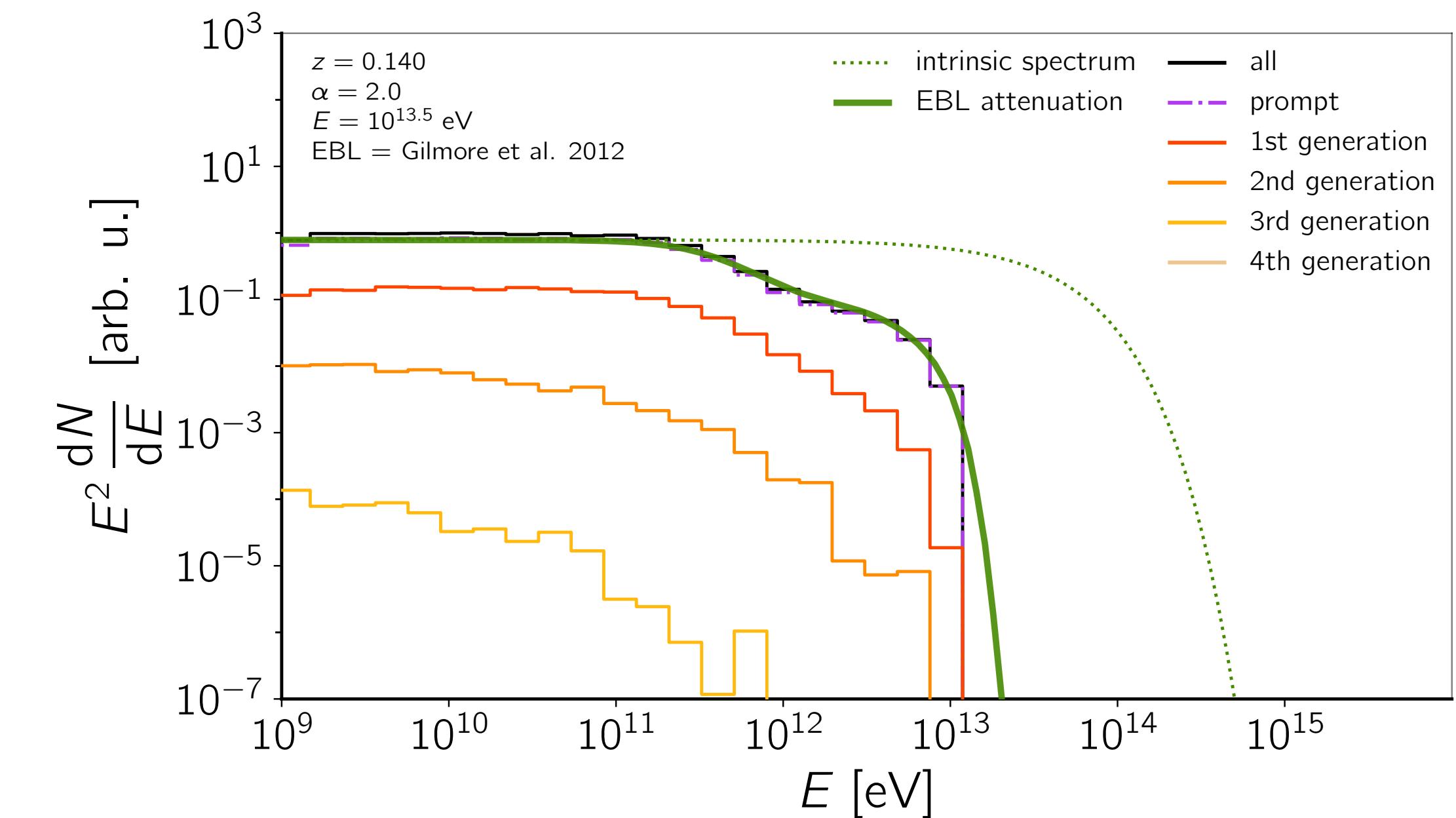
flux
attenuation

$$\Phi_o(E_o; z_s) = \Phi_s(E_{o,s}) \exp [-\tau(E_o, z_s)]$$

how good is this
approximation?

optical
depth

$$\tau(E_o, z_s) = \int_0^{z_s} dz \lambda^{-1} \left(\frac{E_{o,s}}{1+z}, z \right) \frac{d\ell}{dz}$$



simulations performed with **CRPropa**

Alves Batista et al. JCAP 05 (2016) 038. arXiv:1603.07142

Alves Batista et al. JCAP 09 (2022) 035. arXiv:2208.00107

the usual approach to gamma-ray propagation

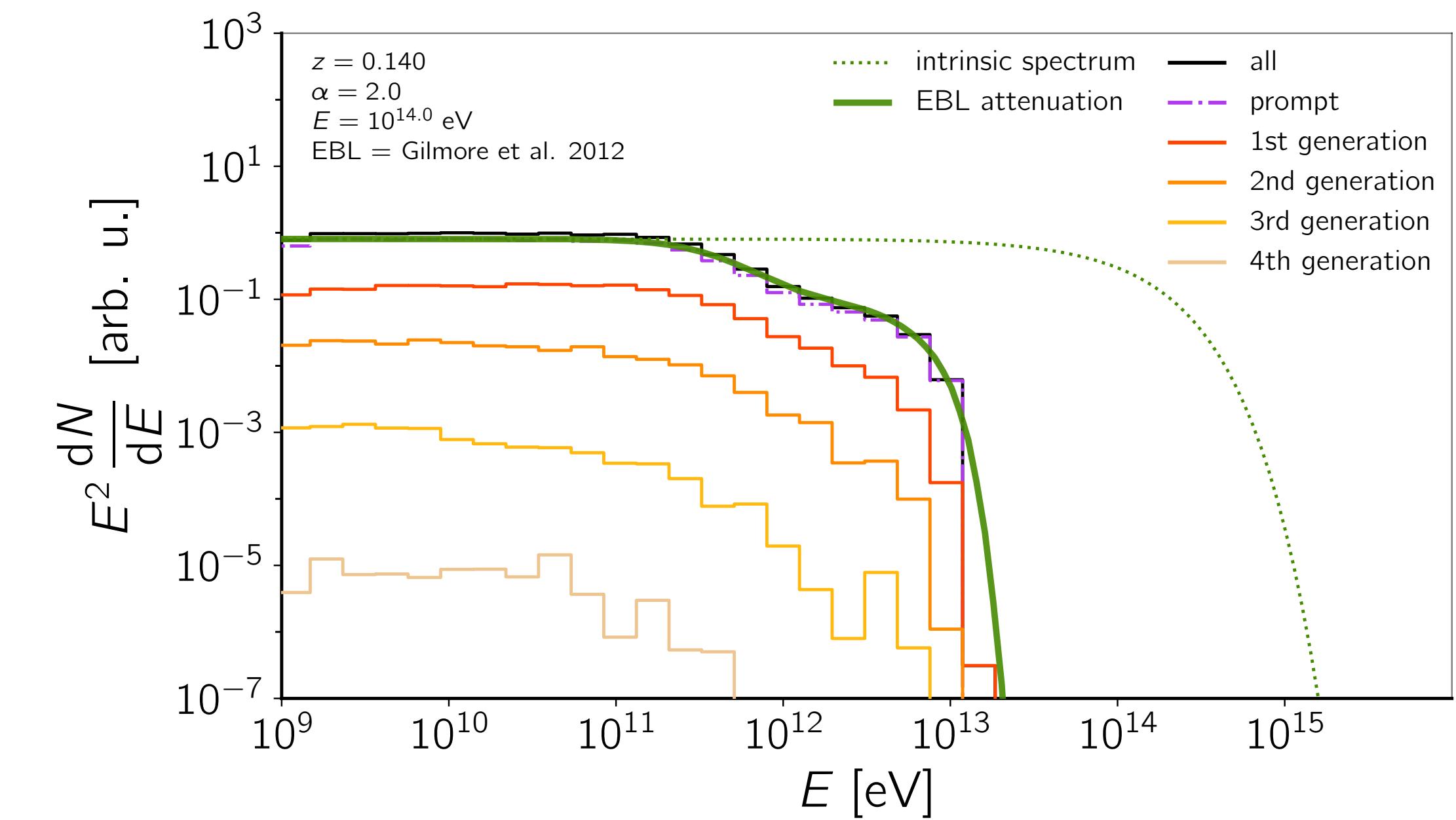
flux
attenuation

$$\Phi_o(E_o; z_s) = \Phi_s(E_{o,s}) \exp [-\tau(E_o, z_s)]$$

how good is this
approximation?

optical
depth

$$\tau(E_o, z_s) = \int_0^{z_s} dz \lambda^{-1} \left(\frac{E_{o,s}}{1+z}, z \right) \frac{d\ell}{dz}$$



simulations performed with **CRPropa**

Alves Batista et al. JCAP 05 (2016) 038. arXiv:1603.07142

Alves Batista et al. JCAP 09 (2022) 035. arXiv:2208.00107

the usual approach to gamma-ray propagation

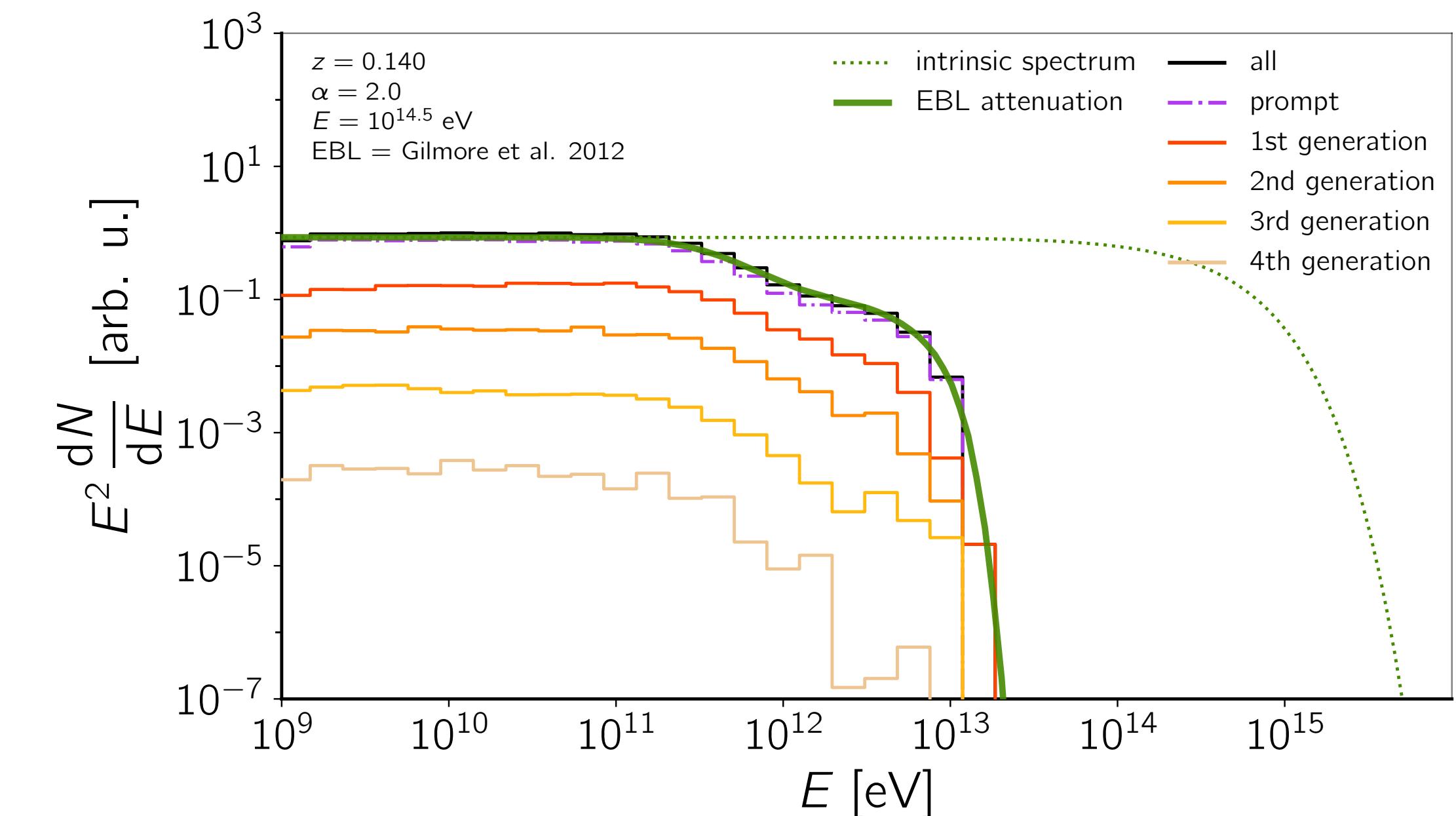
flux
attenuation

$$\Phi_o(E_o; z_s) = \Phi_s(E_{o,s}) \exp [-\tau(E_o, z_s)]$$

how good is this
approximation?

optical
depth

$$\tau(E_o, z_s) = \int_0^{z_s} dz \lambda^{-1} \left(\frac{E_{o,s}}{1+z}, z \right) \frac{d\ell}{dz}$$



simulations performed with **CRPropa**

Alves Batista et al. JCAP 05 (2016) 038. arXiv:1603.07142

Alves Batista et al. JCAP 09 (2022) 035. arXiv:2208.00107

the usual approach to gamma-ray propagation

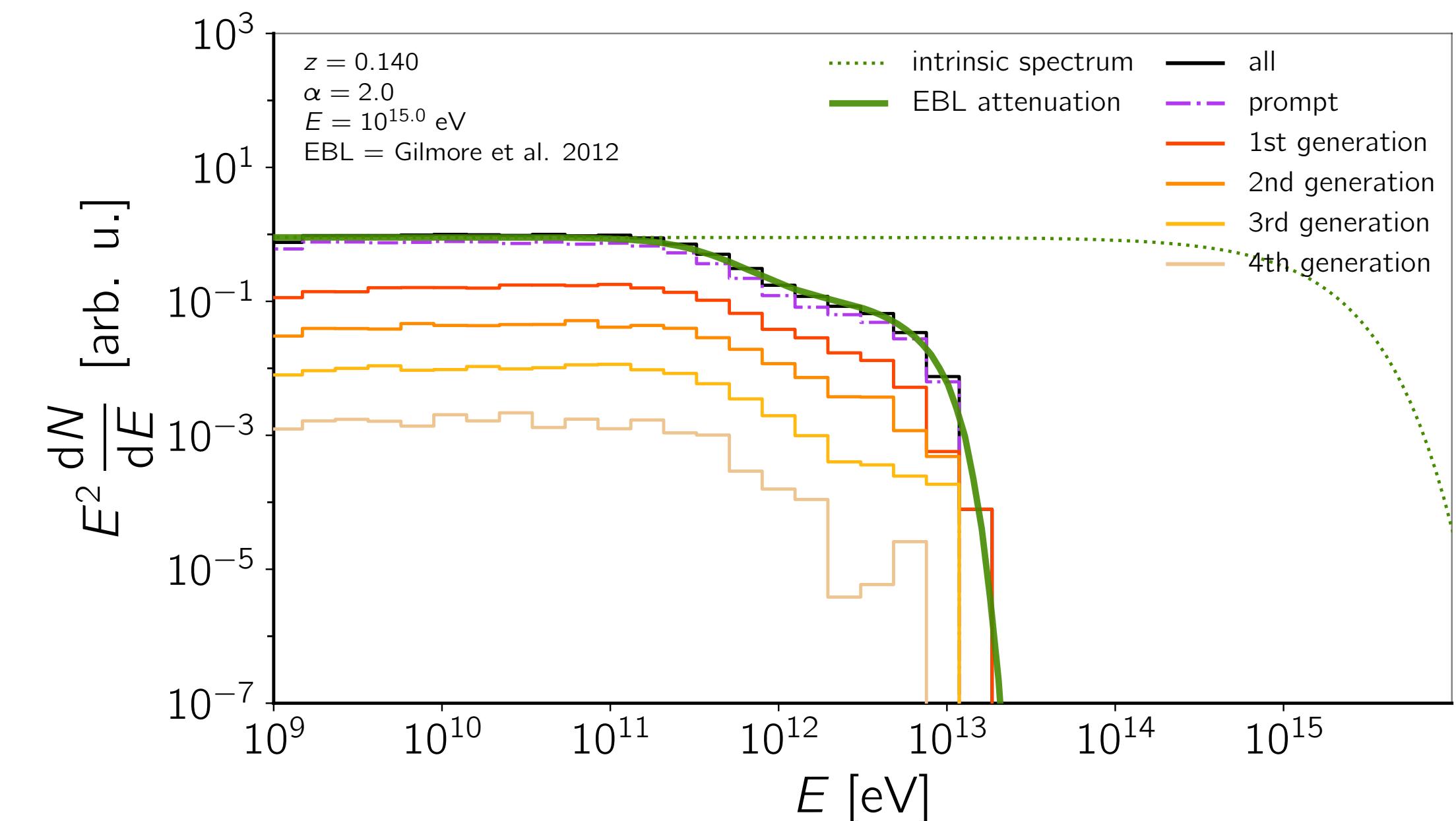
flux
attenuation

$$\Phi_o(E_o; z_s) = \Phi_s(E_{o,s}) \exp [-\tau(E_o, z_s)]$$

how good is this
approximation?

optical
depth

$$\tau(E_o, z_s) = \int_0^{z_s} dz \lambda^{-1} \left(\frac{E_{o,s}}{1+z}, z \right) \frac{d\ell}{dz}$$



simulations performed with **CRPropa**

Alves Batista et al. JCAP 05 (2016) 038. arXiv:1603.07142

Alves Batista et al. JCAP 09 (2022) 035. arXiv:2208.00107

the usual approach to gamma-ray propagation

flux
attenuation

$$\Phi_o(E_o; z_s) = \Phi_s(E_{o,s}) \exp [-\tau(E_o, z_s)]$$

how good is this
approximation?

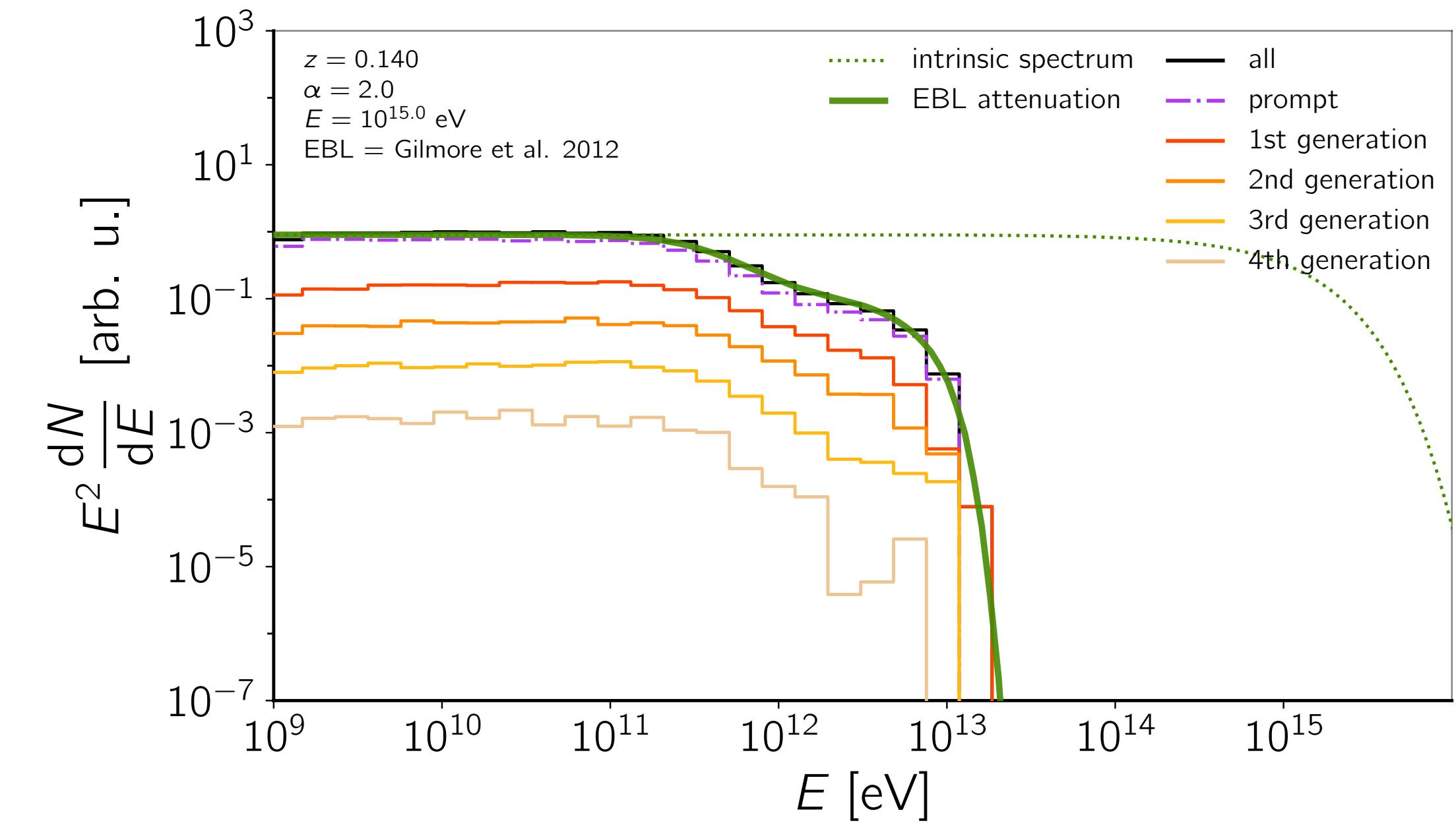
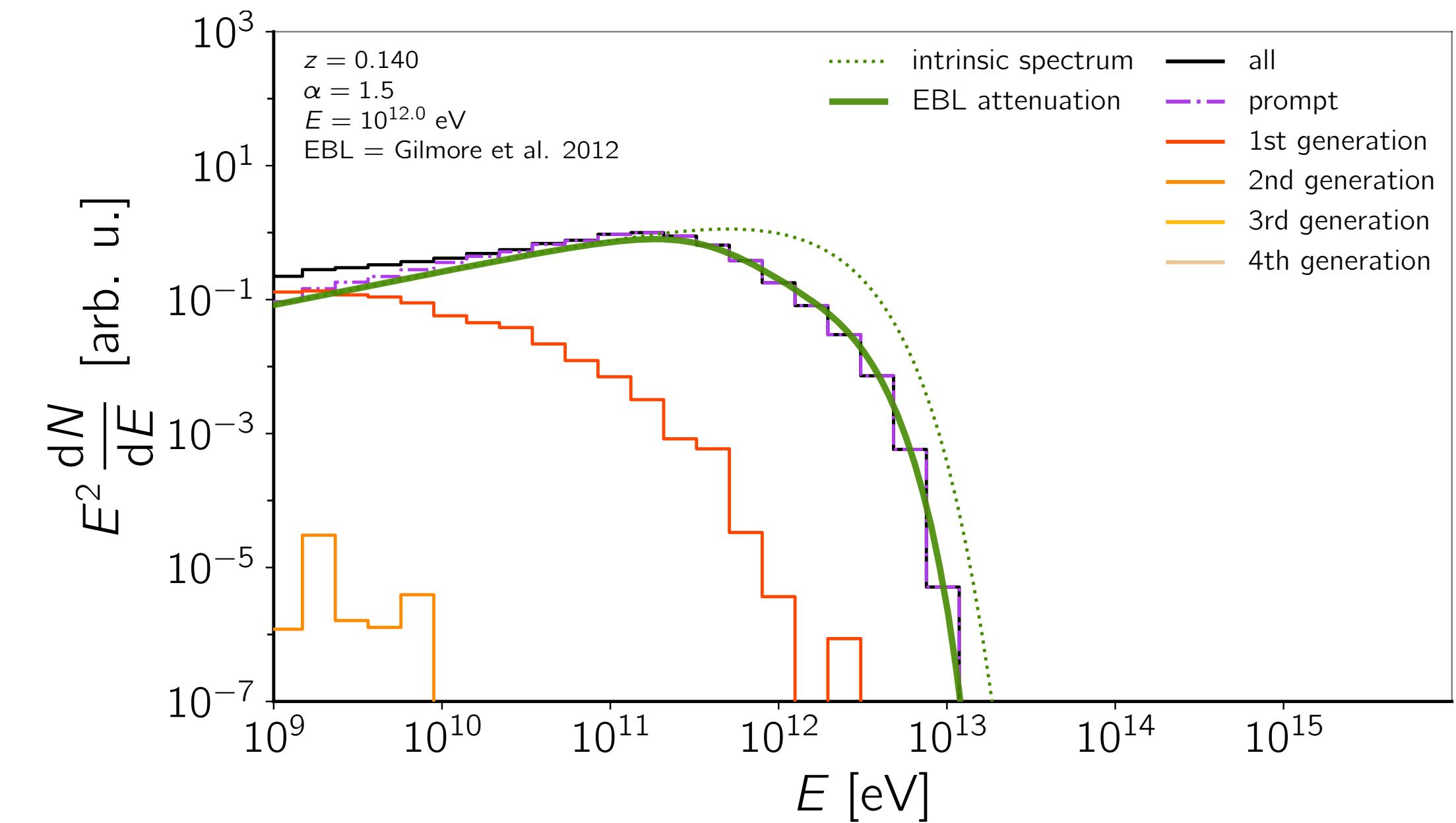
optical
depth

$$\tau(E_o, z_s) = \int_0^{z_s} dz \lambda^{-1} \left(\frac{E_{o,s}}{1+z}, z \right) \frac{d\ell}{dz}$$

simulations performed with **CRPropa**

Alves Batista et al. JCAP 05 (2016) 038. arXiv:1603.07142

Alves Batista et al. JCAP 09 (2022) 035. arXiv:2208.00107



the usual approach to gamma-ray propagation

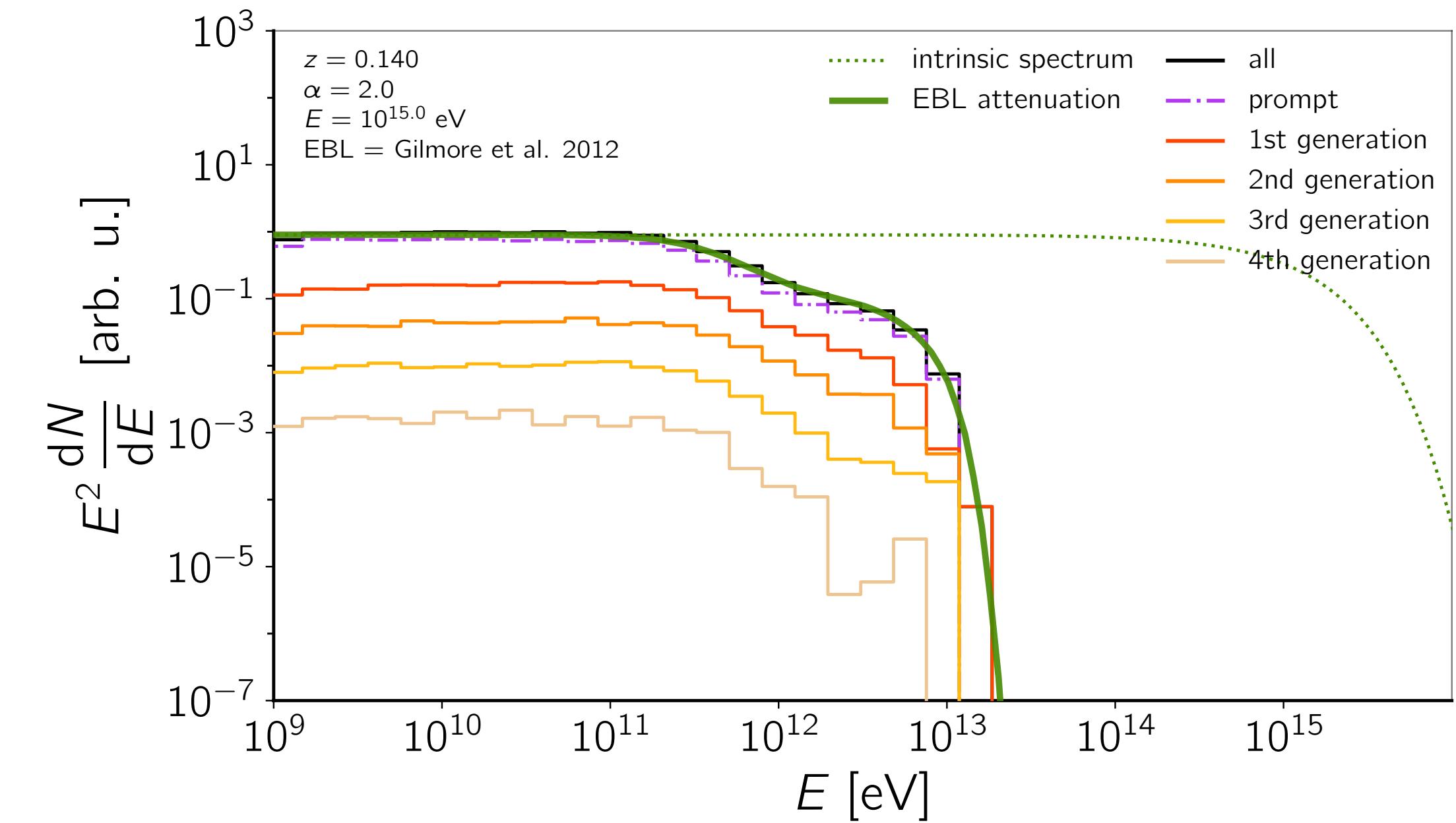
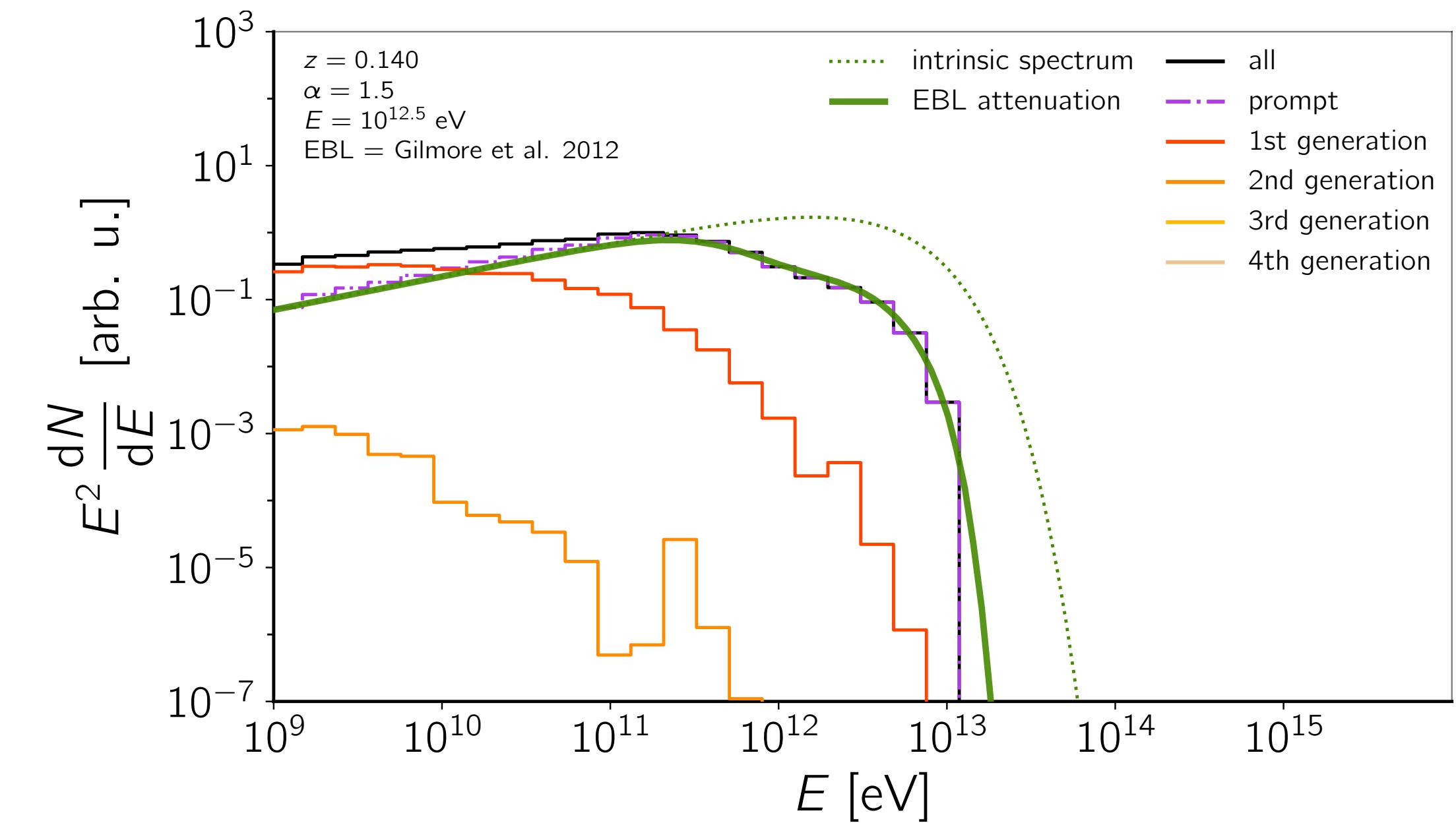
flux
attenuation

$$\Phi_o(E_o; z_s) = \Phi_s(E_{o,s}) \exp [-\tau(E_o, z_s)]$$

how good is this
approximation?

optical
depth

$$\tau(E_o, z_s) = \int_0^{z_s} dz \lambda^{-1} \left(\frac{E_{o,s}}{1+z}, z \right) \frac{d\ell}{dz}$$



simulations performed with **CRPropa**

Alves Batista et al. JCAP 05 (2016) 038. arXiv:1603.07142

Alves Batista et al. JCAP 09 (2022) 035. arXiv:2208.00107

the usual approach to gamma-ray propagation

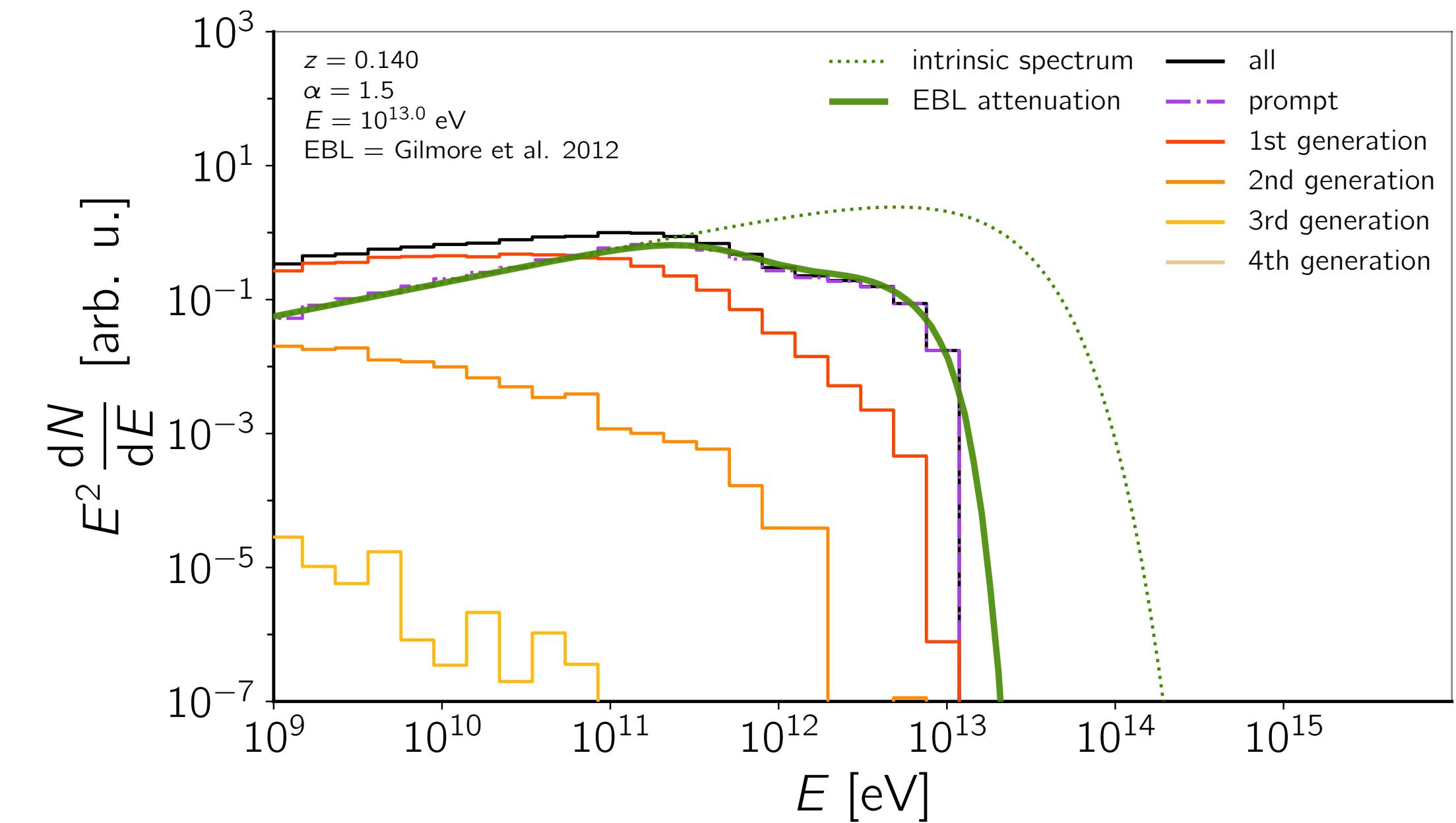
flux
attenuation

$$\Phi_o(E_o; z_s) = \Phi_s(E_{o,s}) \exp [-\tau(E_o, z_s)]$$

how good is this
approximation?

optical
depth

$$\tau(E_o, z_s) = \int_0^{z_s} dz \lambda^{-1} \left(\frac{E_{o,s}}{1+z}, z \right) \frac{d\ell}{dz}$$



simulations performed with **CRPropa**

Alves Batista et al. JCAP 05 (2016) 038. arXiv:1603.07142

Alves Batista et al. JCAP 09 (2022) 035. arXiv:2208.00107

the usual approach to gamma-ray propagation

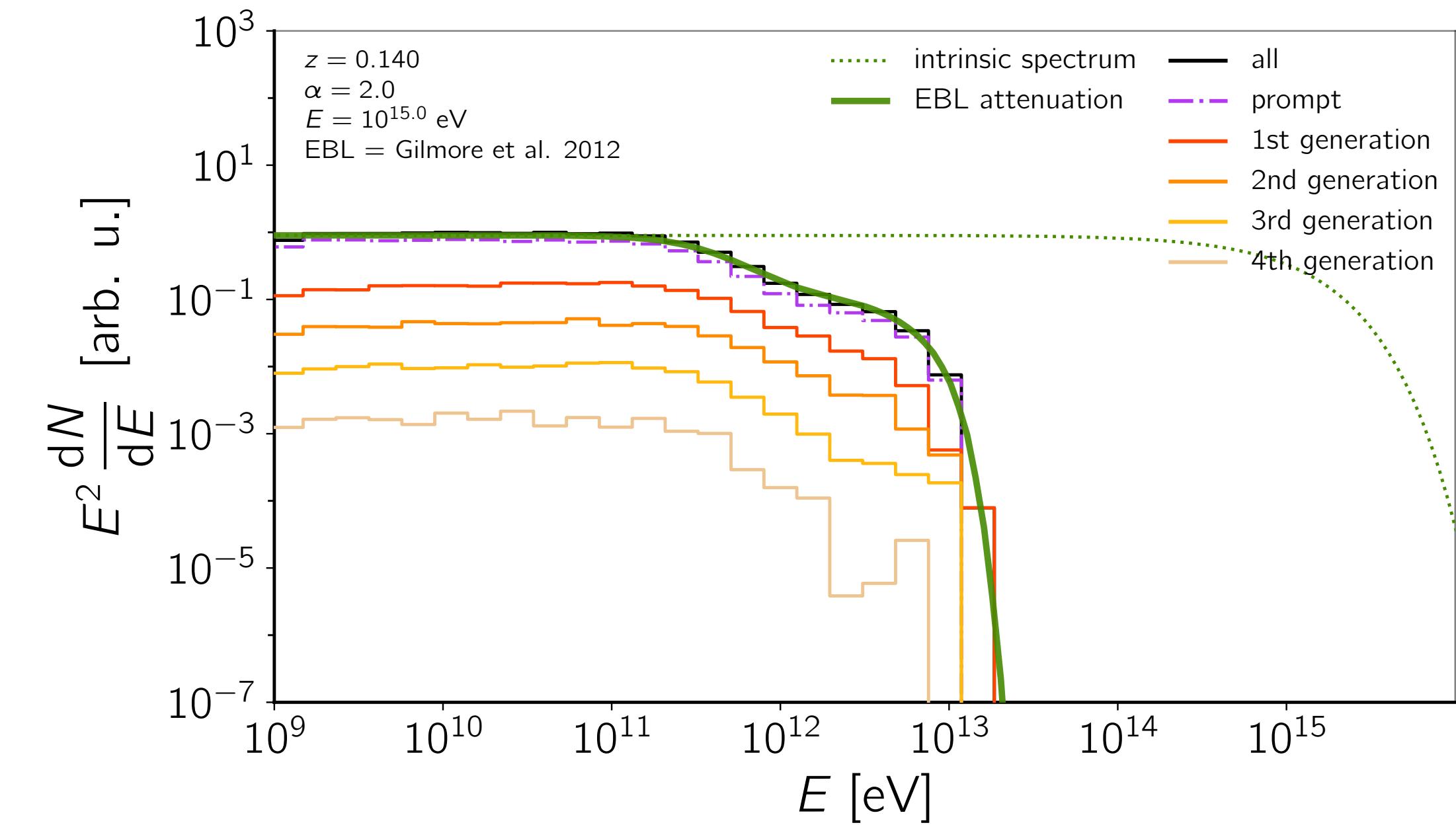
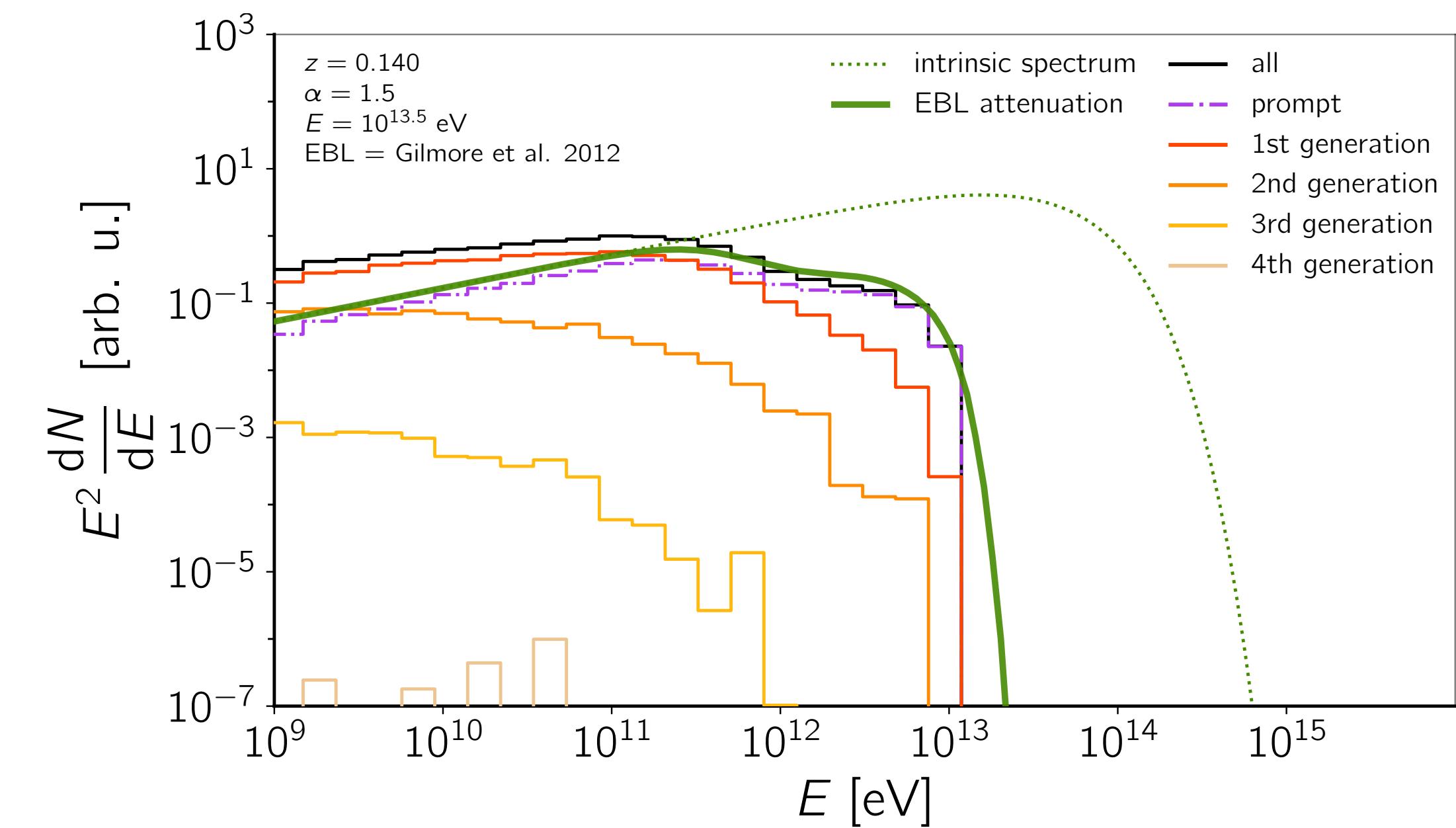
flux
attenuation

$$\Phi_o(E_o; z_s) = \Phi_s(E_{o,s}) \exp [-\tau(E_o, z_s)]$$

how good is this
approximation?

optical
depth

$$\tau(E_o, z_s) = \int_0^{z_s} dz \lambda^{-1} \left(\frac{E_{o,s}}{1+z}, z \right) \frac{d\ell}{dz}$$



simulations performed with **CRPropa**

Alves Batista et al. JCAP 05 (2016) 038. arXiv:1603.07142

Alves Batista et al. JCAP 09 (2022) 035. arXiv:2208.00107

the usual approach to gamma-ray propagation

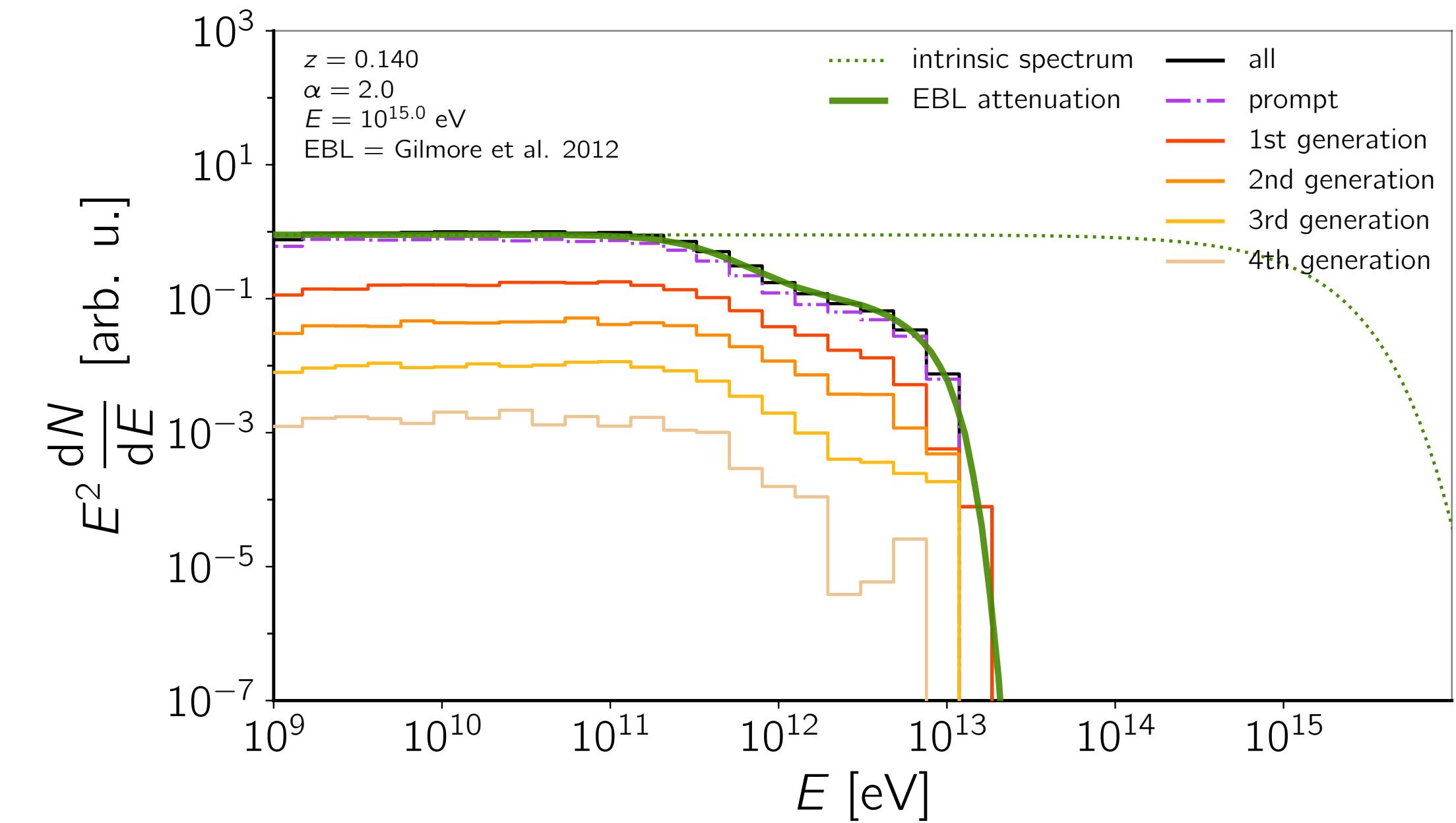
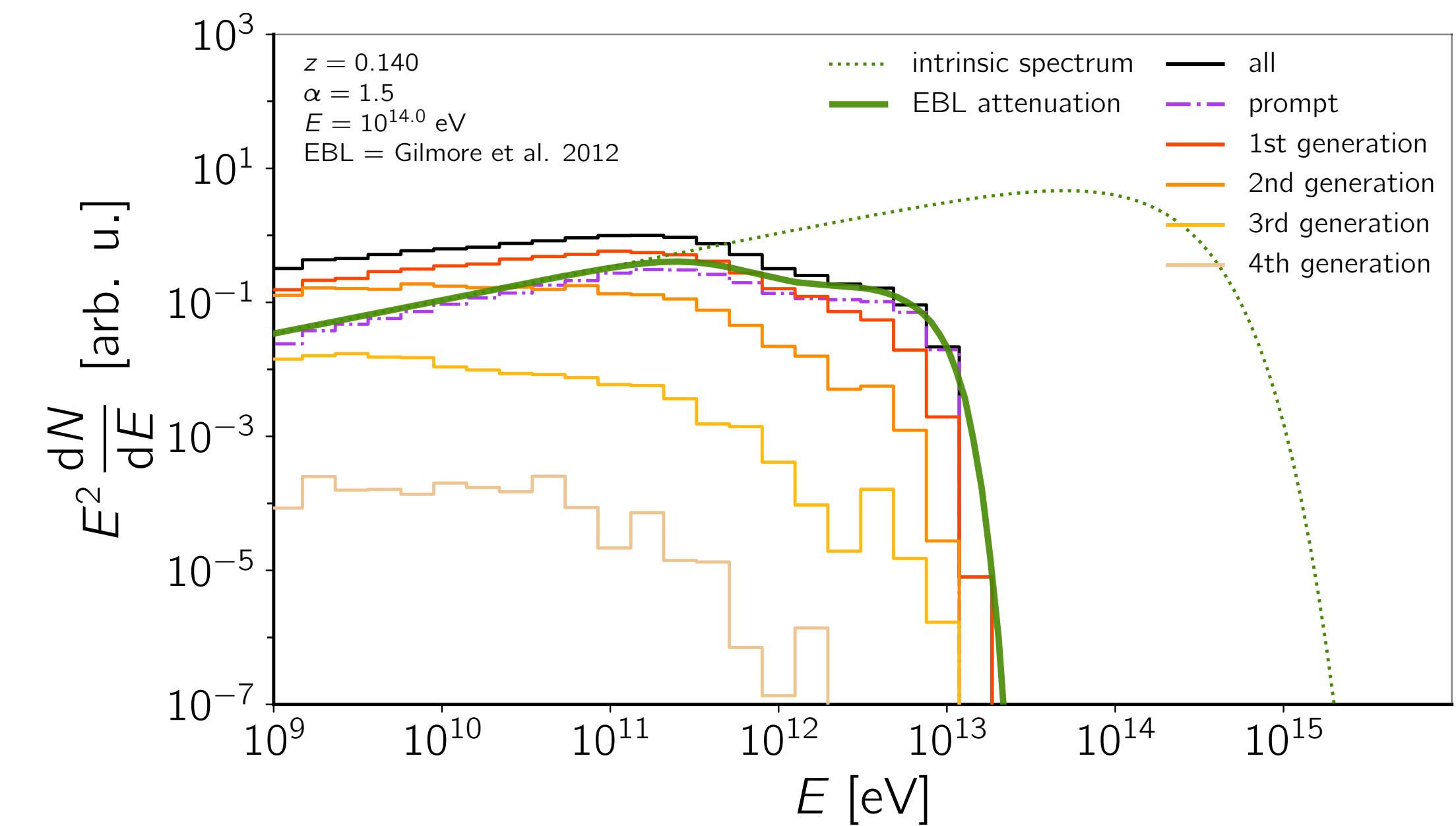
flux
attenuation

$$\Phi_o(E_o; z_s) = \Phi_s(E_{o,s}) \exp [-\tau(E_o, z_s)]$$

how good is this
approximation?

optical
depth

$$\tau(E_o, z_s) = \int_0^{z_s} dz \lambda^{-1} \left(\frac{E_{o,s}}{1+z}, z \right) \frac{d\ell}{dz}$$



simulations performed with **CRPropa**

Alves Batista et al. JCAP 05 (2016) 038. arXiv:1603.07142

Alves Batista et al. JCAP 09 (2022) 035. arXiv:2208.00107

the usual approach to gamma-ray propagation

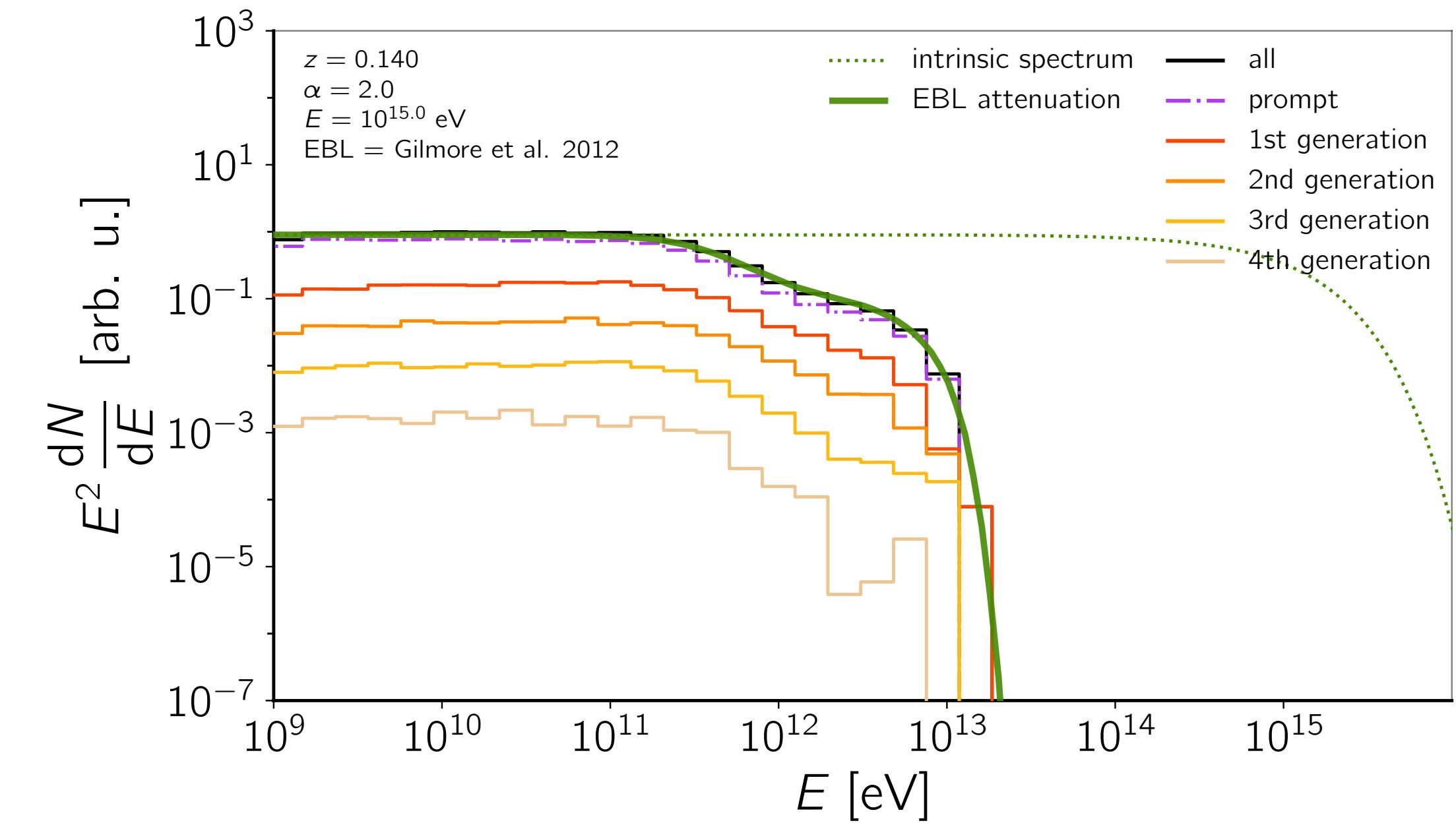
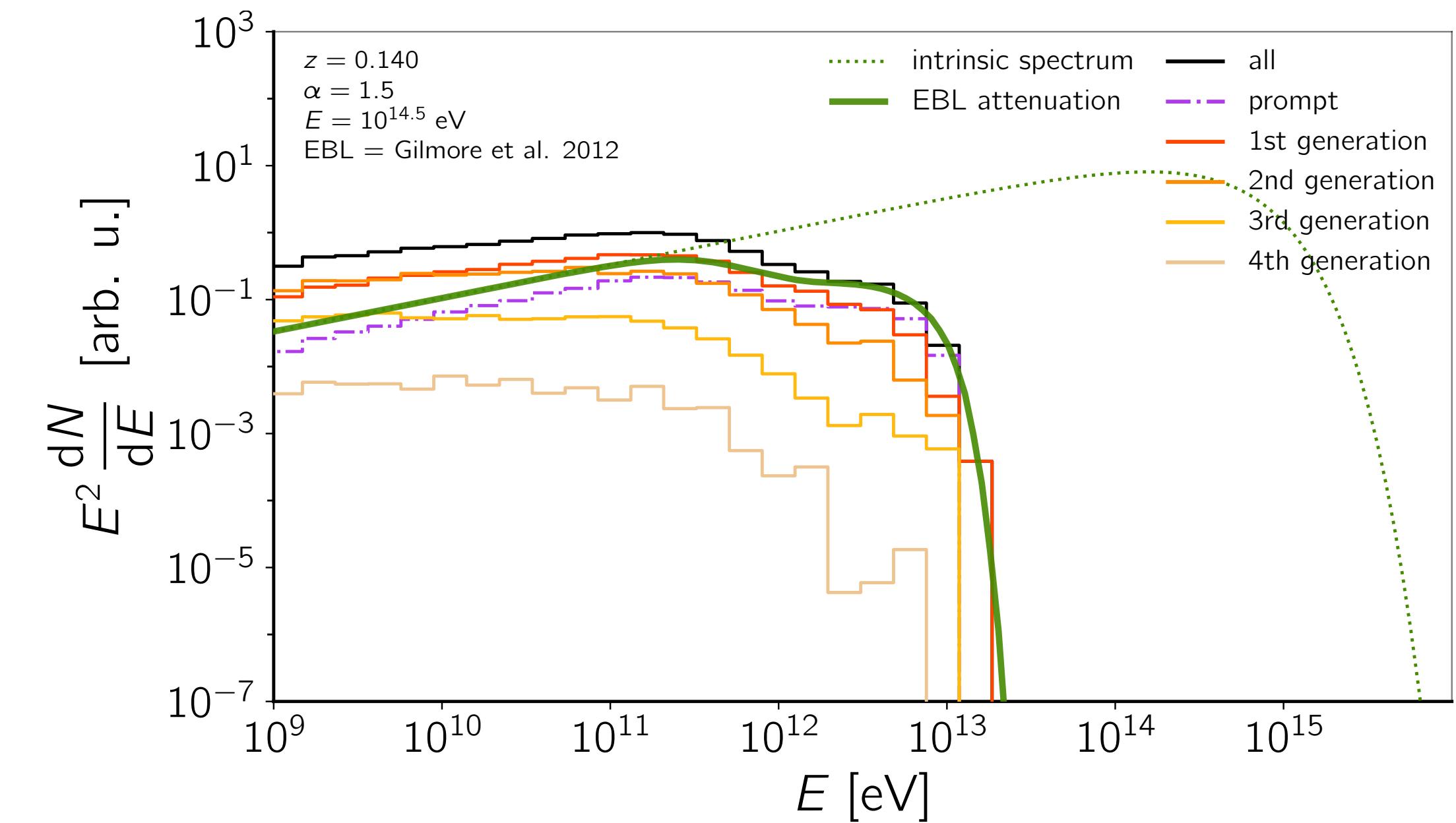
flux
attenuation

$$\Phi_o(E_o; z_s) = \Phi_s(E_{o,s}) \exp [-\tau(E_o, z_s)]$$

how good is this
approximation?

optical
depth

$$\tau(E_o, z_s) = \int_0^{z_s} dz \lambda^{-1} \left(\frac{E_{o,s}}{1+z}, z \right) \frac{d\ell}{dz}$$



simulations performed with **CRPropa**

Alves Batista et al. JCAP 05 (2016) 038. arXiv:1603.07142

Alves Batista et al. JCAP 09 (2022) 035. arXiv:2208.00107

the usual approach to gamma-ray propagation

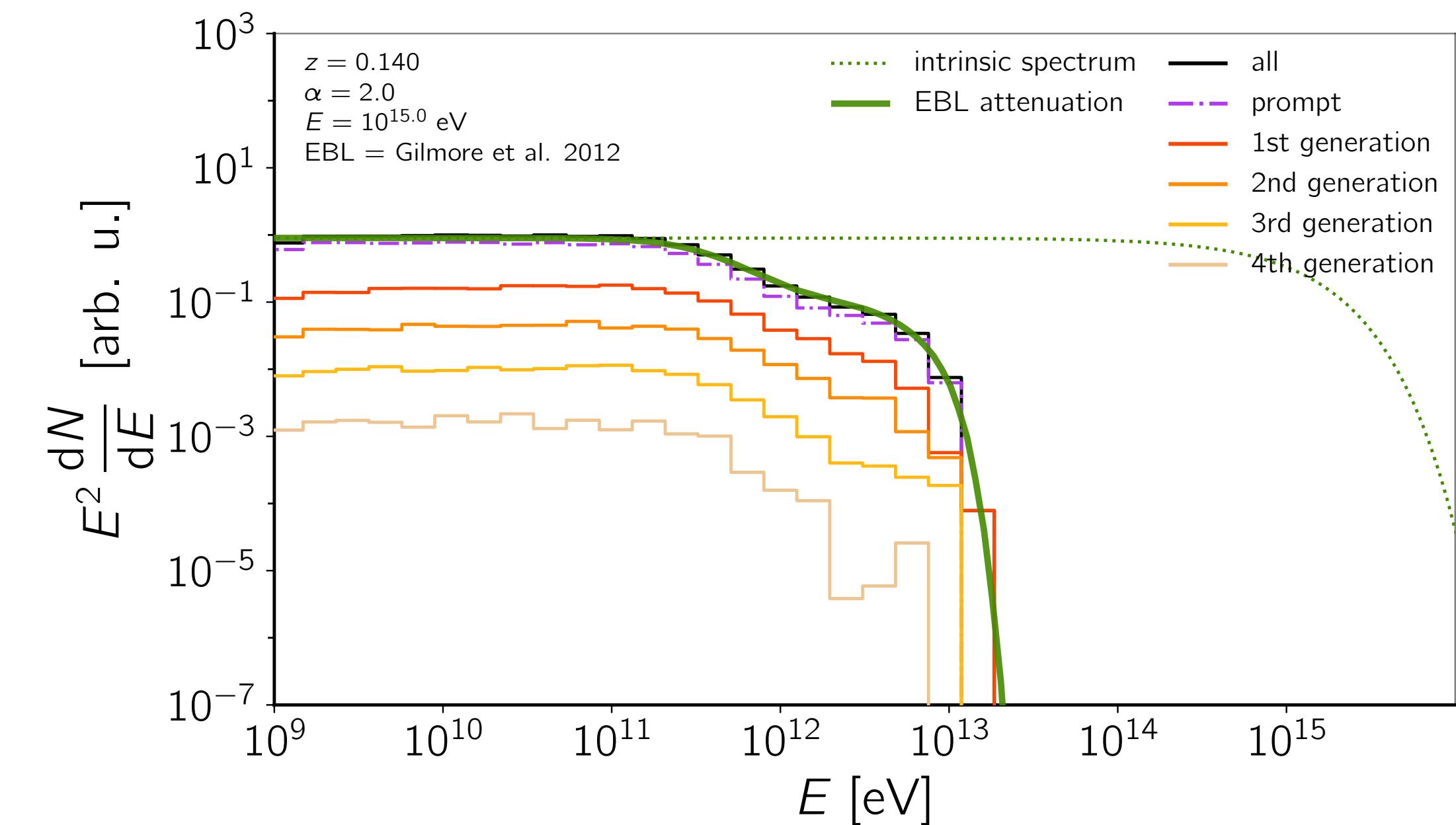
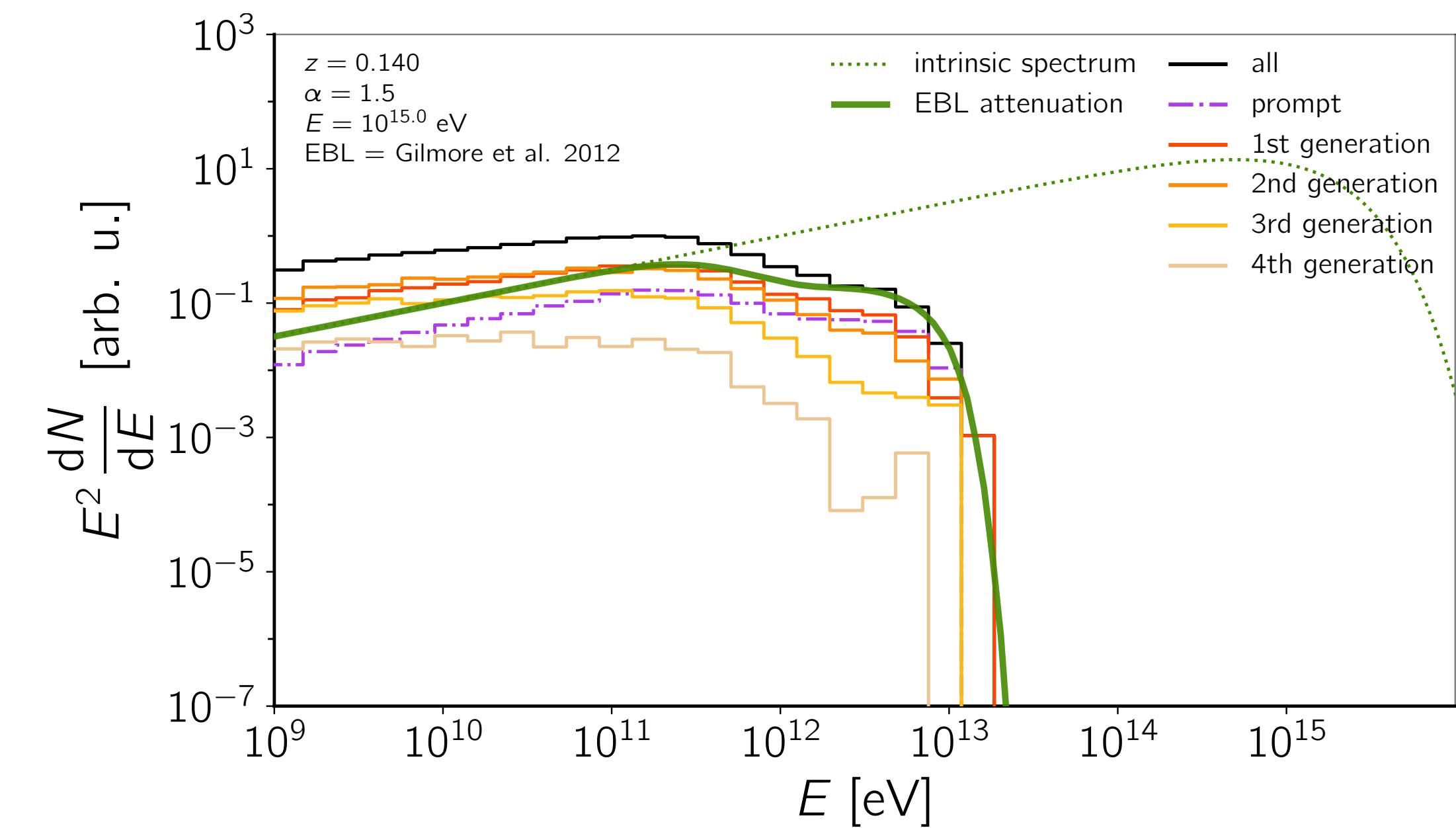
flux
attenuation

$$\Phi_o(E_o; z_s) = \Phi_s(E_{o,s}) \exp [-\tau(E_o, z_s)]$$

how good is this
approximation?

optical
depth

$$\tau(E_o, z_s) = \int_0^{z_s} dz \lambda^{-1} \left(\frac{E_{o,s}}{1+z}, z \right) \frac{d\ell}{dz}$$



simulations performed with **CRPropa**

Alves Batista et al. JCAP 05 (2016) 038. arXiv:1603.07142

Alves Batista et al. JCAP 09 (2022) 035. arXiv:2208.00107

the usual approach to gamma-ray propagation

flux
attenuation

$$\Phi_o(E_o; z_s) = \Phi_s(E_{o,s}) \exp [-\tau(E_o, z_s)]$$

how good is this
approximation?

optical
depth

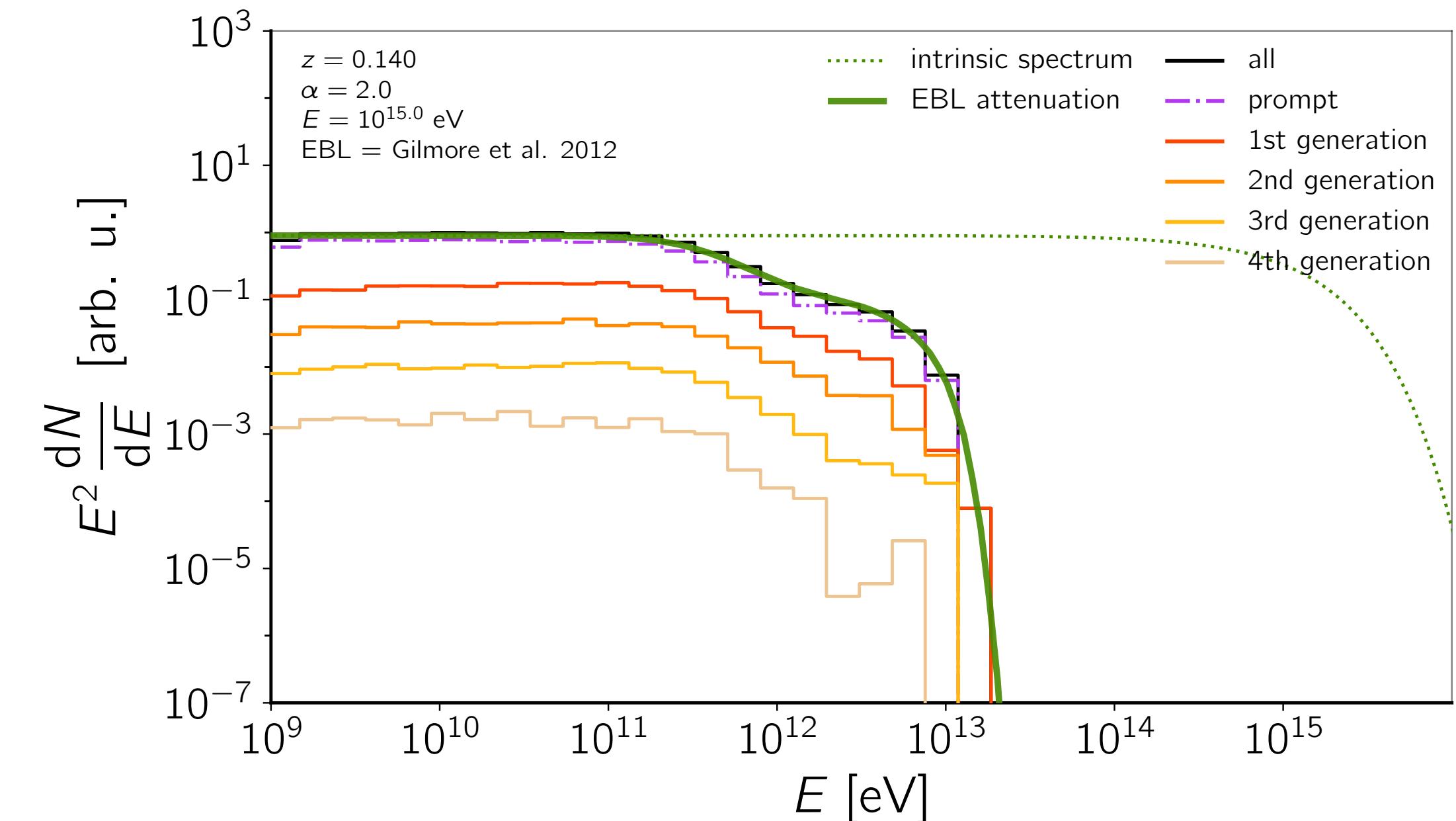
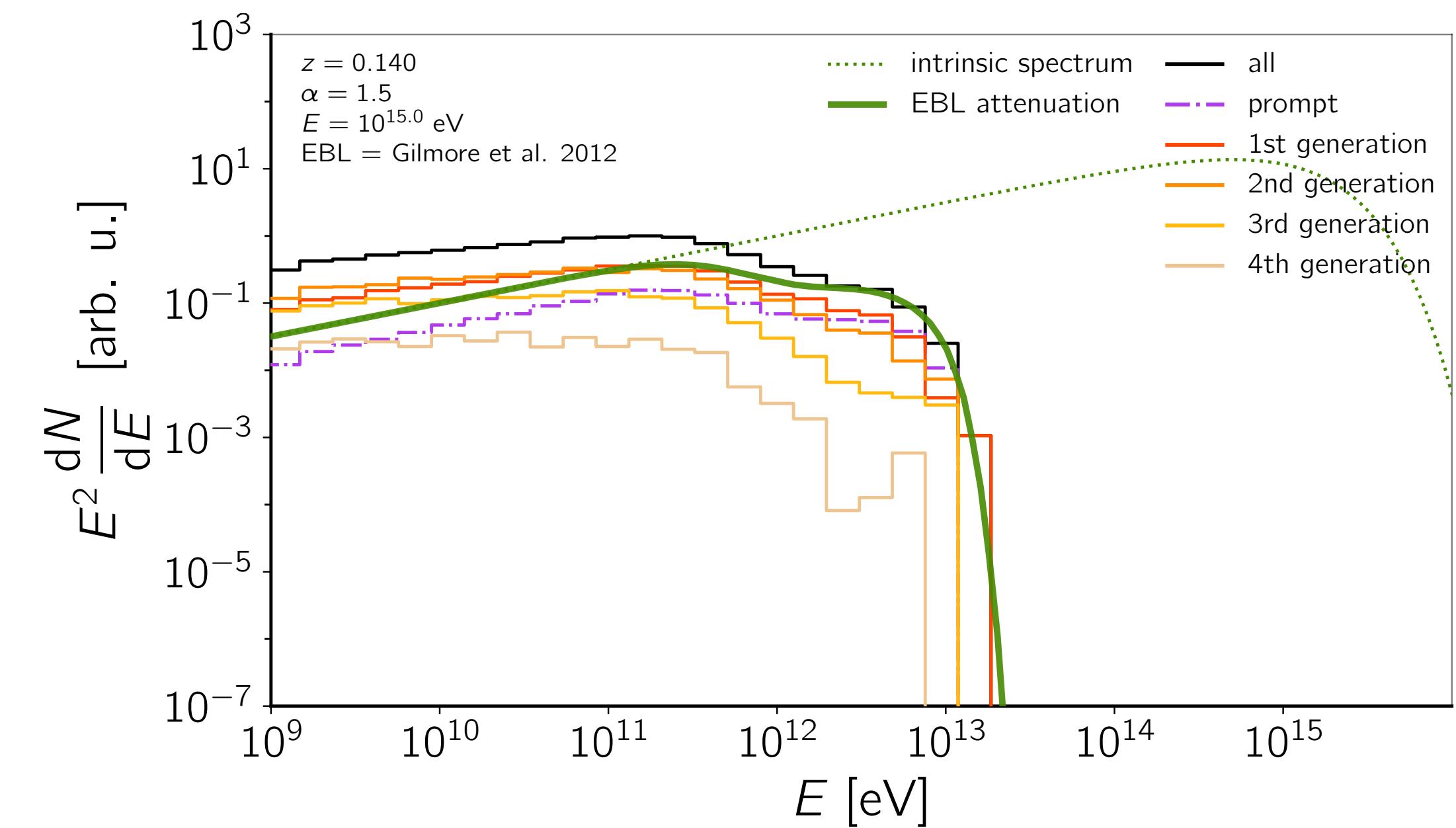
$$\tau(E_o, z_s) = \int_0^{z_s} dz \lambda^{-1} \left(\frac{E_{o,s}}{1+z}, z \right) \frac{d\ell}{dz}$$

- ▶ other processes can be important
 - ◆ inverse Compton in this case
- ▶ it is always better to perform full simulations
 - ◆ *but not faster* 😕

simulations performed with **CRPropa**

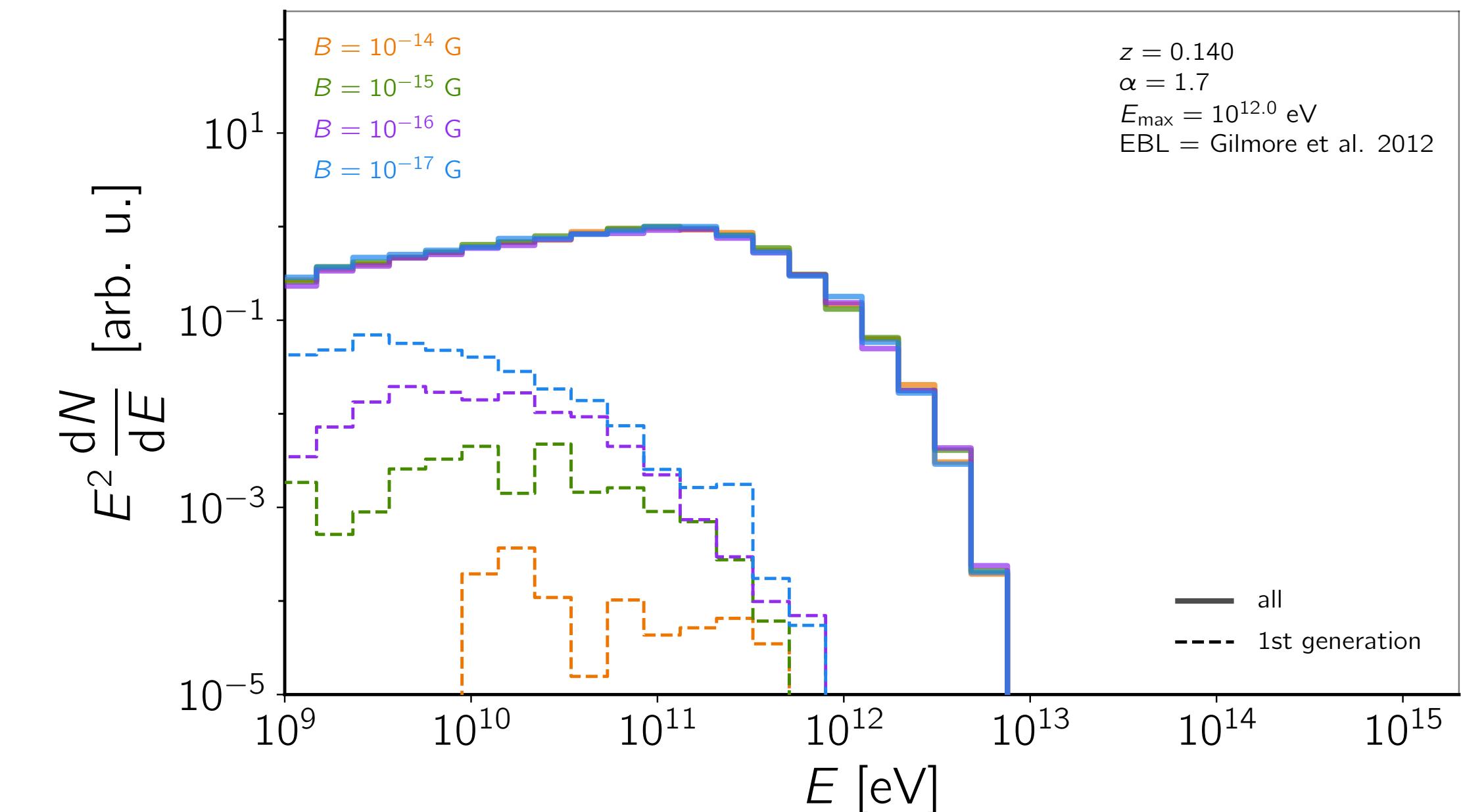
Alves Batista et al. JCAP 05 (2016) 038. arXiv:1603.07142

Alves Batista et al. JCAP 09 (2022) 035. arXiv:2208.00107

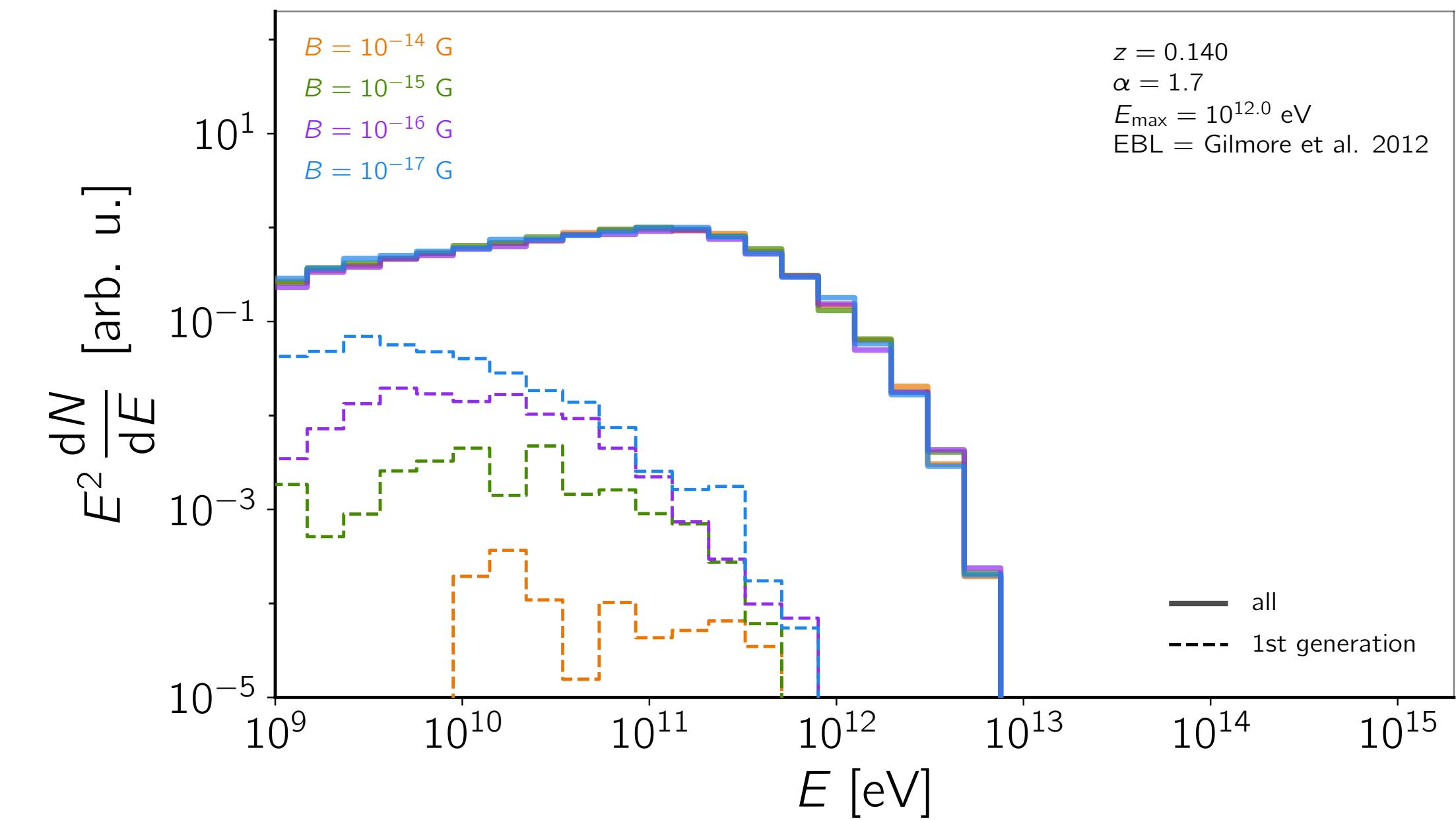
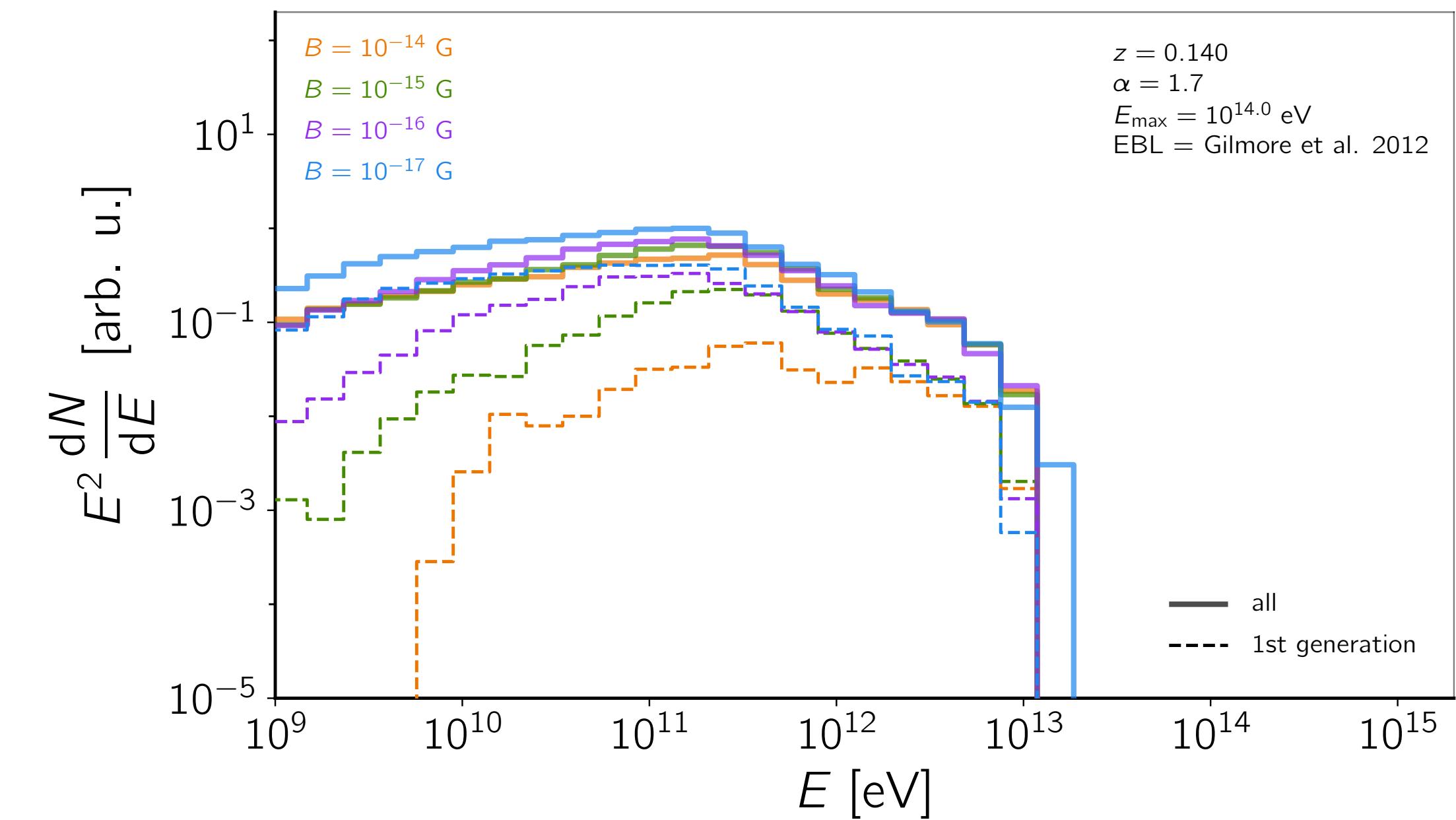


the usual approach to gamma-ray propagation

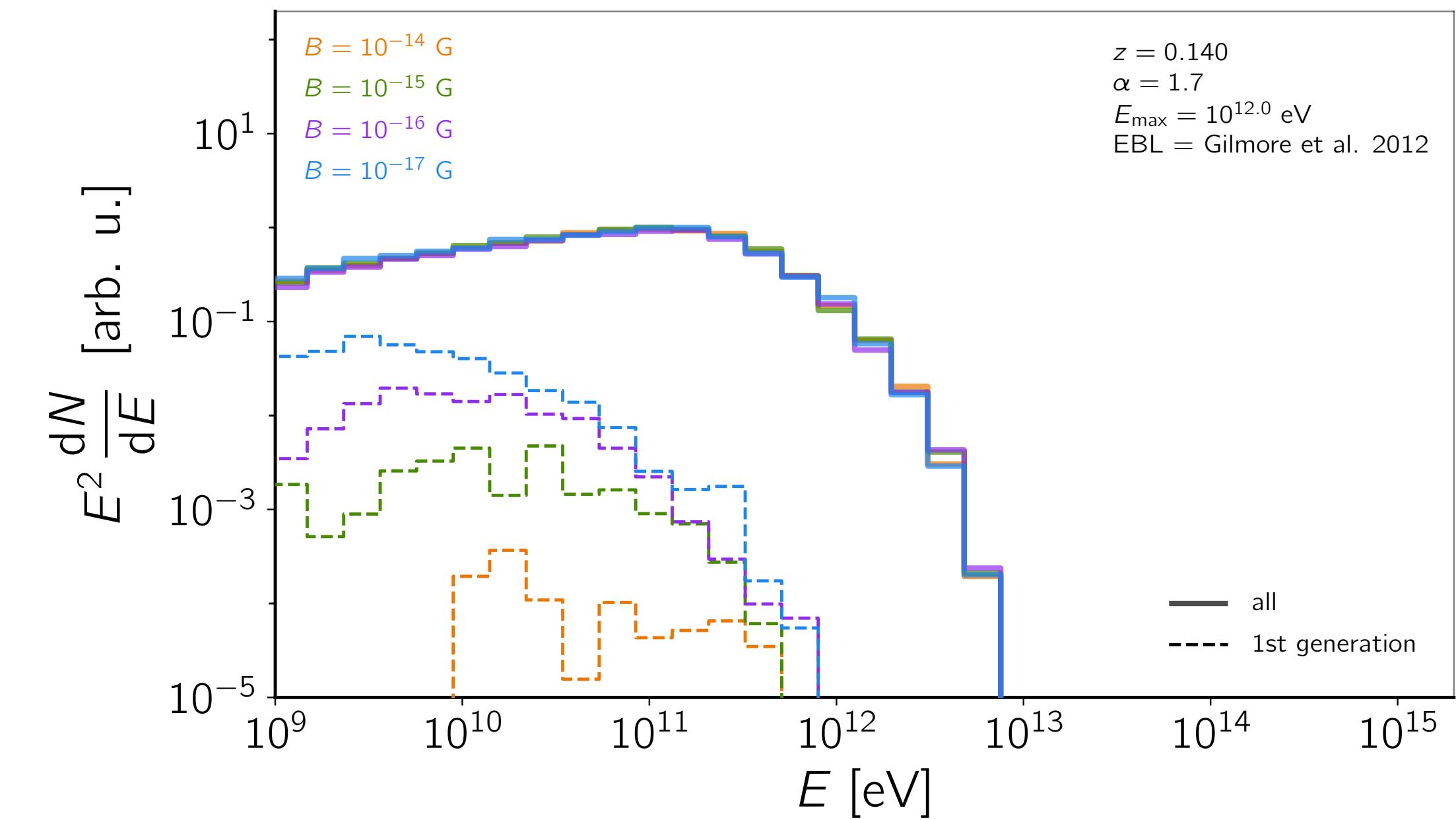
the usual approach to gamma-ray propagation



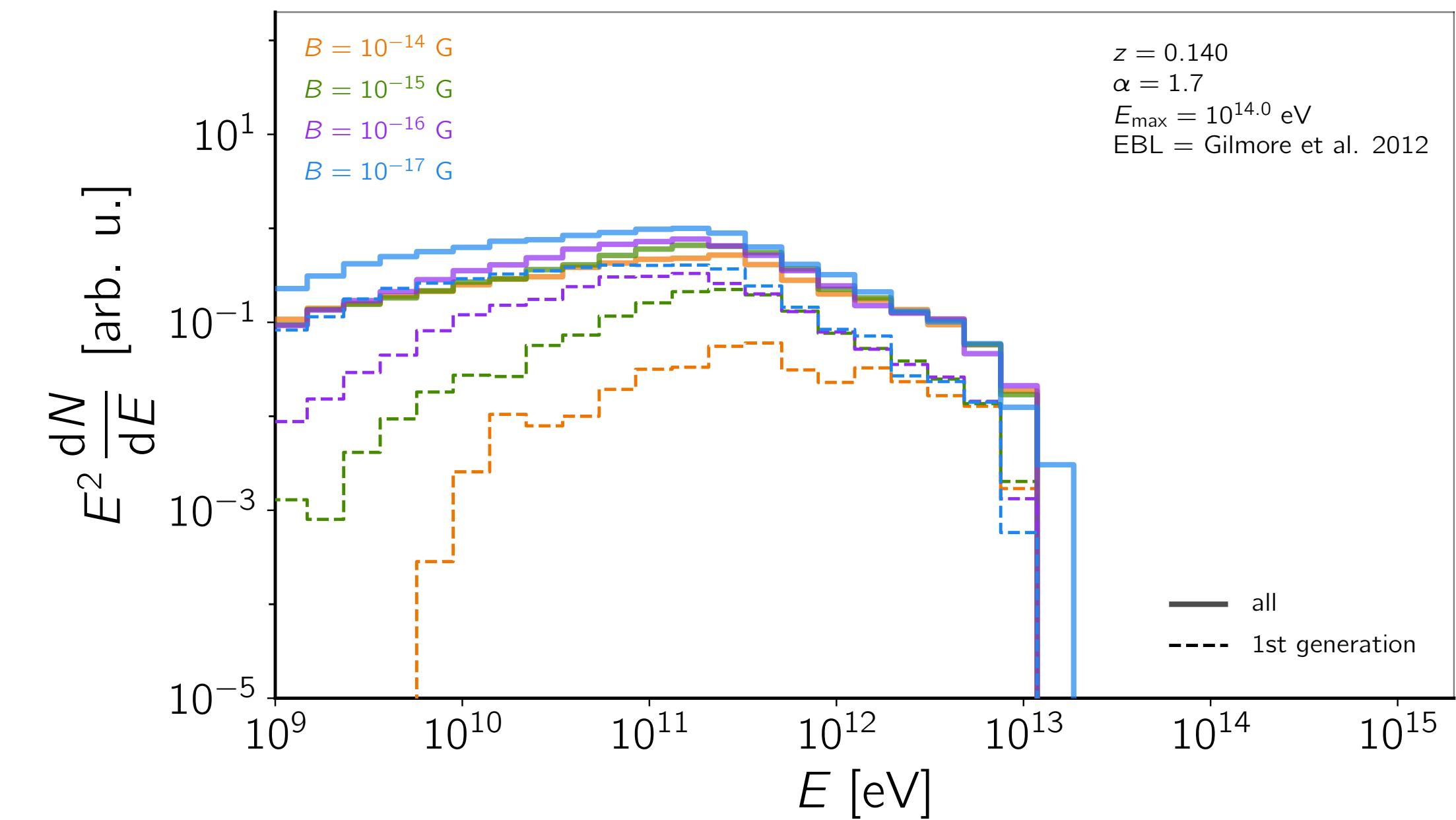
the usual approach to gamma-ray propagation



the usual approach to gamma-ray propagation



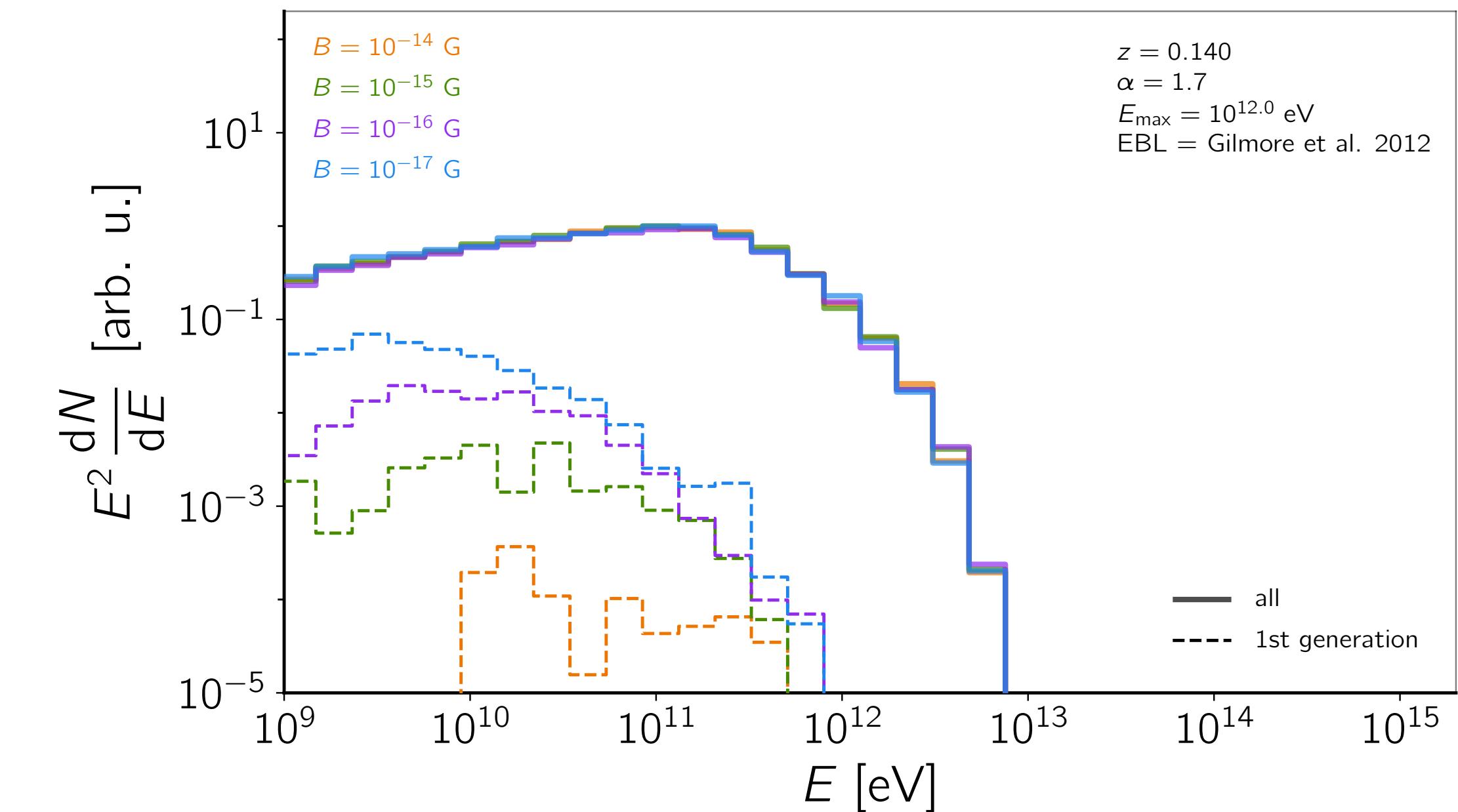
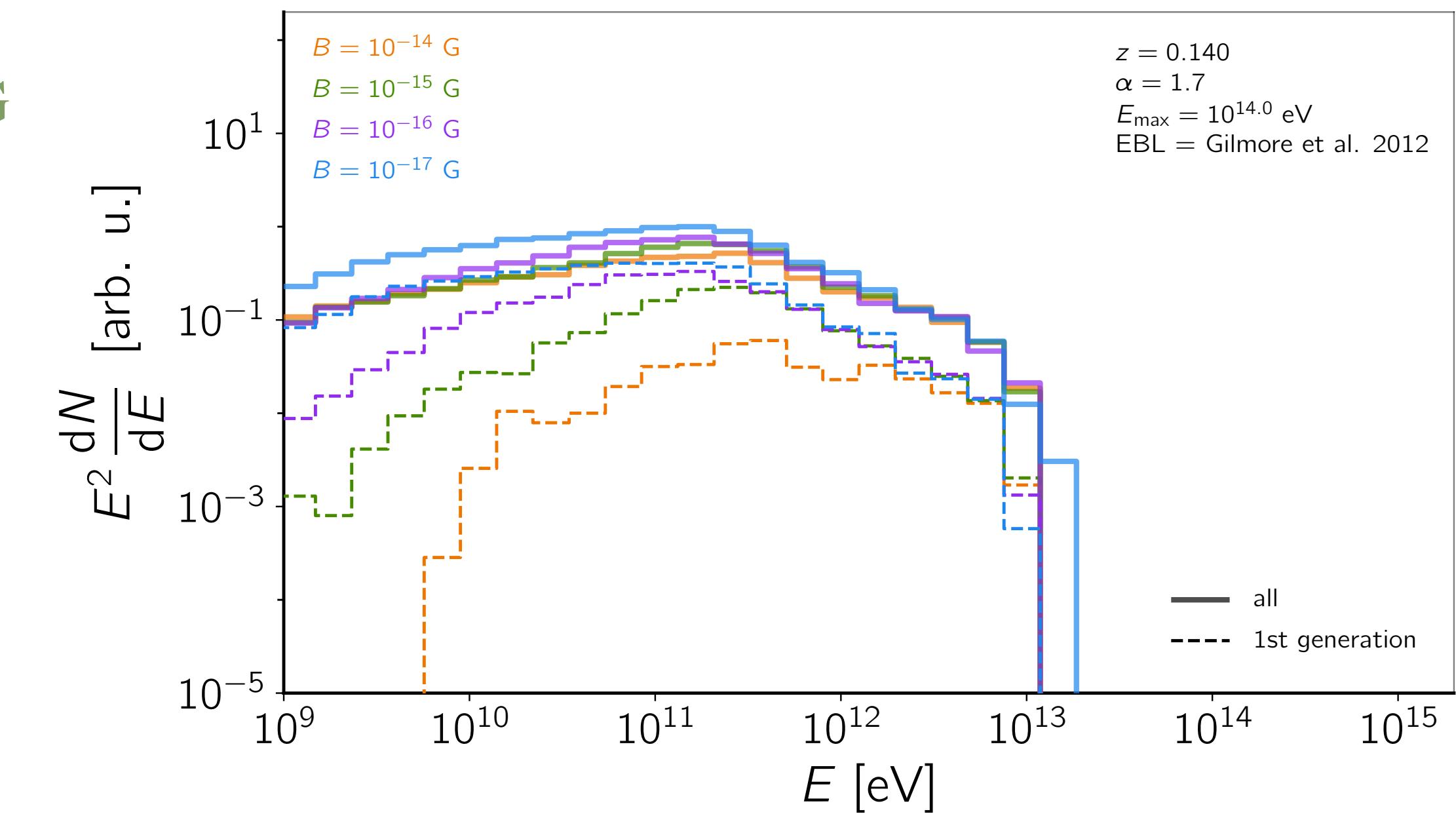
$$\Delta t_{\text{obs}} = \Delta t_{\text{QG}} + \mathfrak{T} + \Delta t_B + \dots$$



the usual approach to gamma-ray propagation

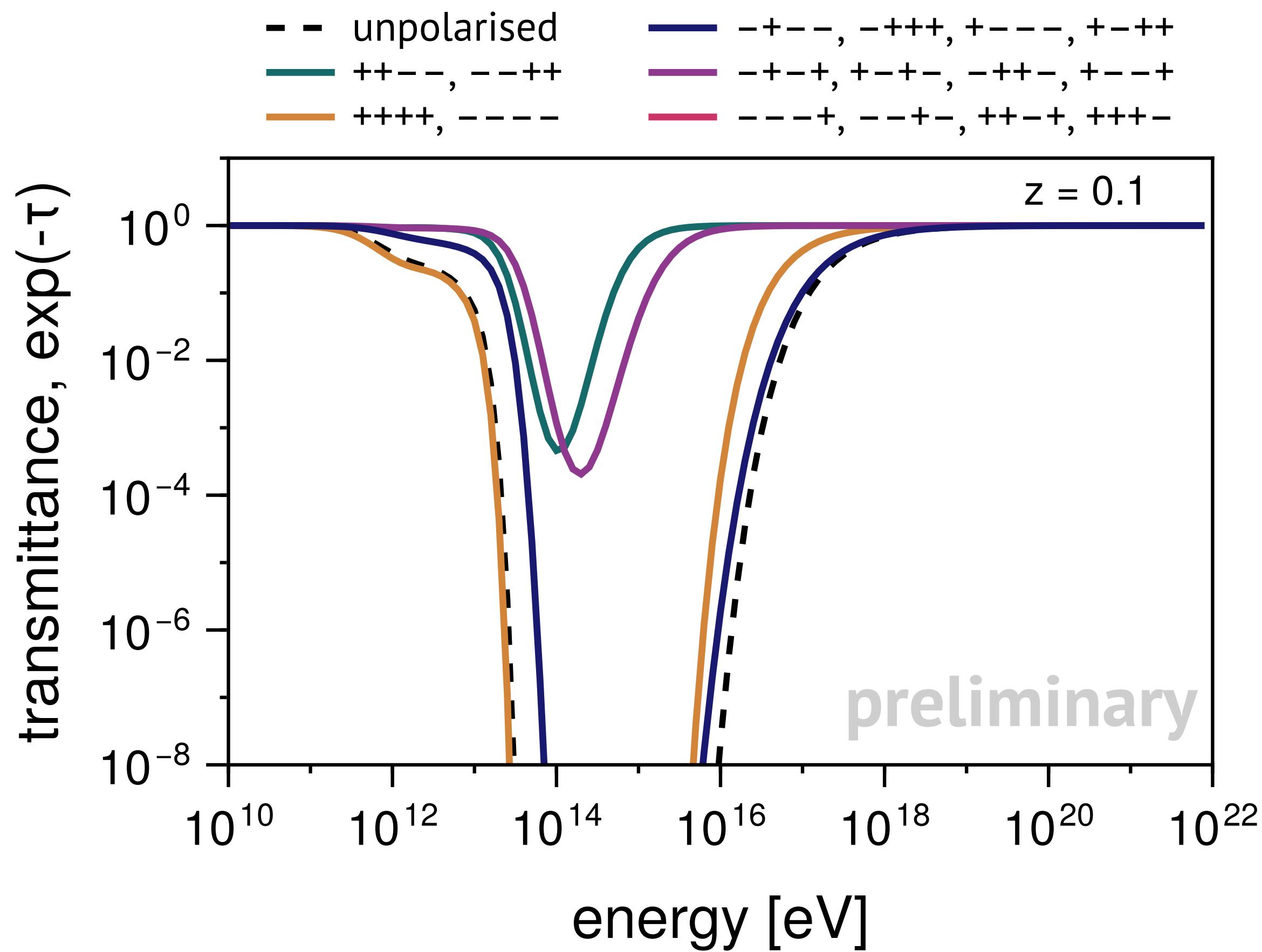
$$\Delta t_{\text{obs}} = \Delta t_{\text{QG}} + \Sigma + \Delta t_B + \dots \rightarrow \Delta t_{\text{src}} + \Delta t_B^? \gg \Delta t_{\text{QG}}$$

difficult to identify QG signatures
with confidence



gamma-ray propagation. polarisation-dependent effects

Alves Batista, Cermeño, Mantoni. In preparation.



complete simulations of gamma-ray propagation with LIV

complete simulations of gamma-ray propagation with LIV

► **complete simulations** including LIV

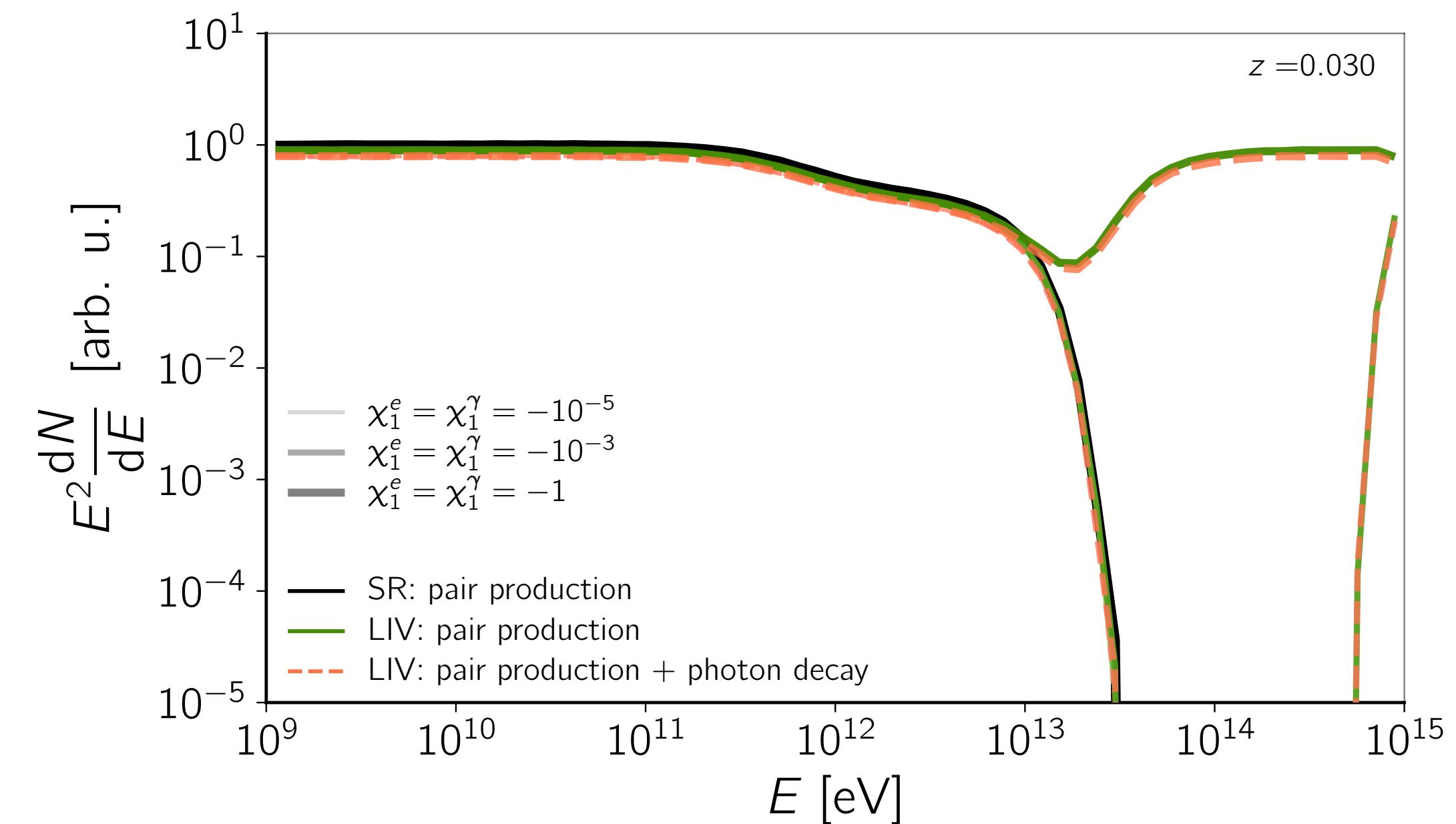
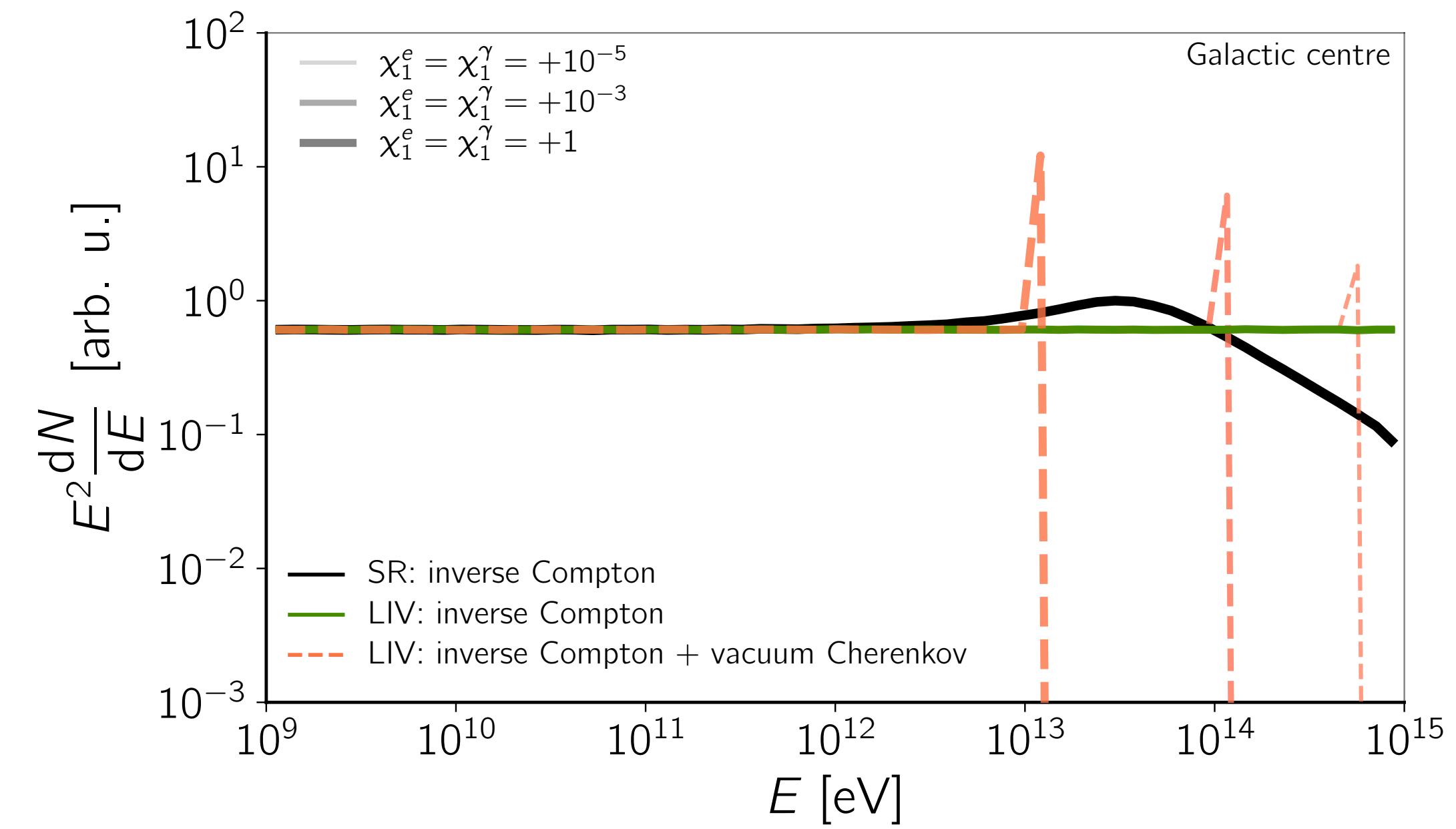
- ◆ modification of pair production
- ◆ including inverse Compton scattering
- ◆ including vacuum Cherenkov
- ◆ including photon decay

complete simulations of gamma-ray propagation with LIV

Saveliev & Alves Batista. Class. Quant. Grav. 41 (2024) 115011. arXiv:2312.10803

► complete simulations including LIV

- ◆ modification of pair production
- ◆ including inverse Compton scattering
- ◆ including vacuum Cherenkov
- ◆ including photon decay

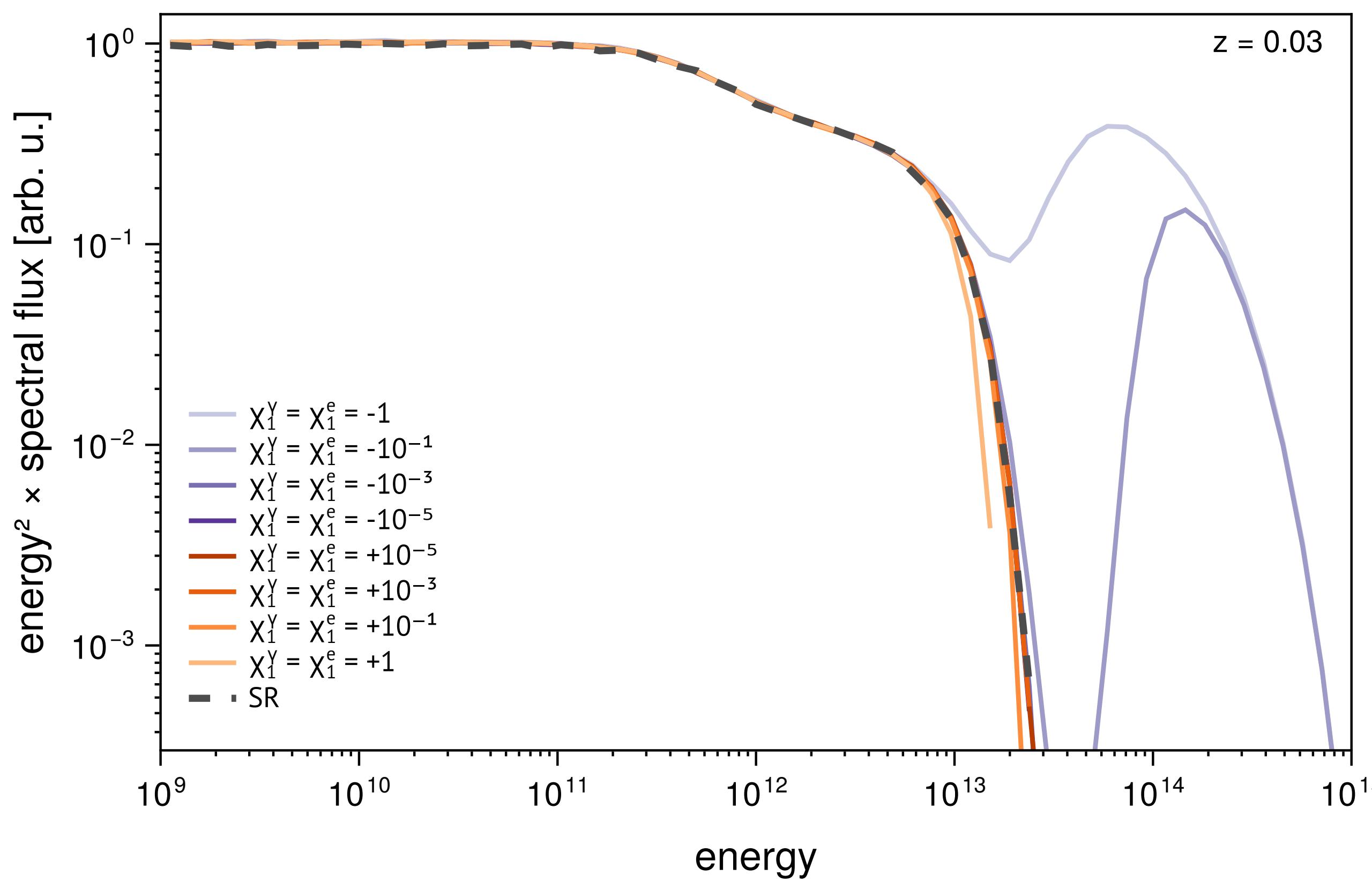
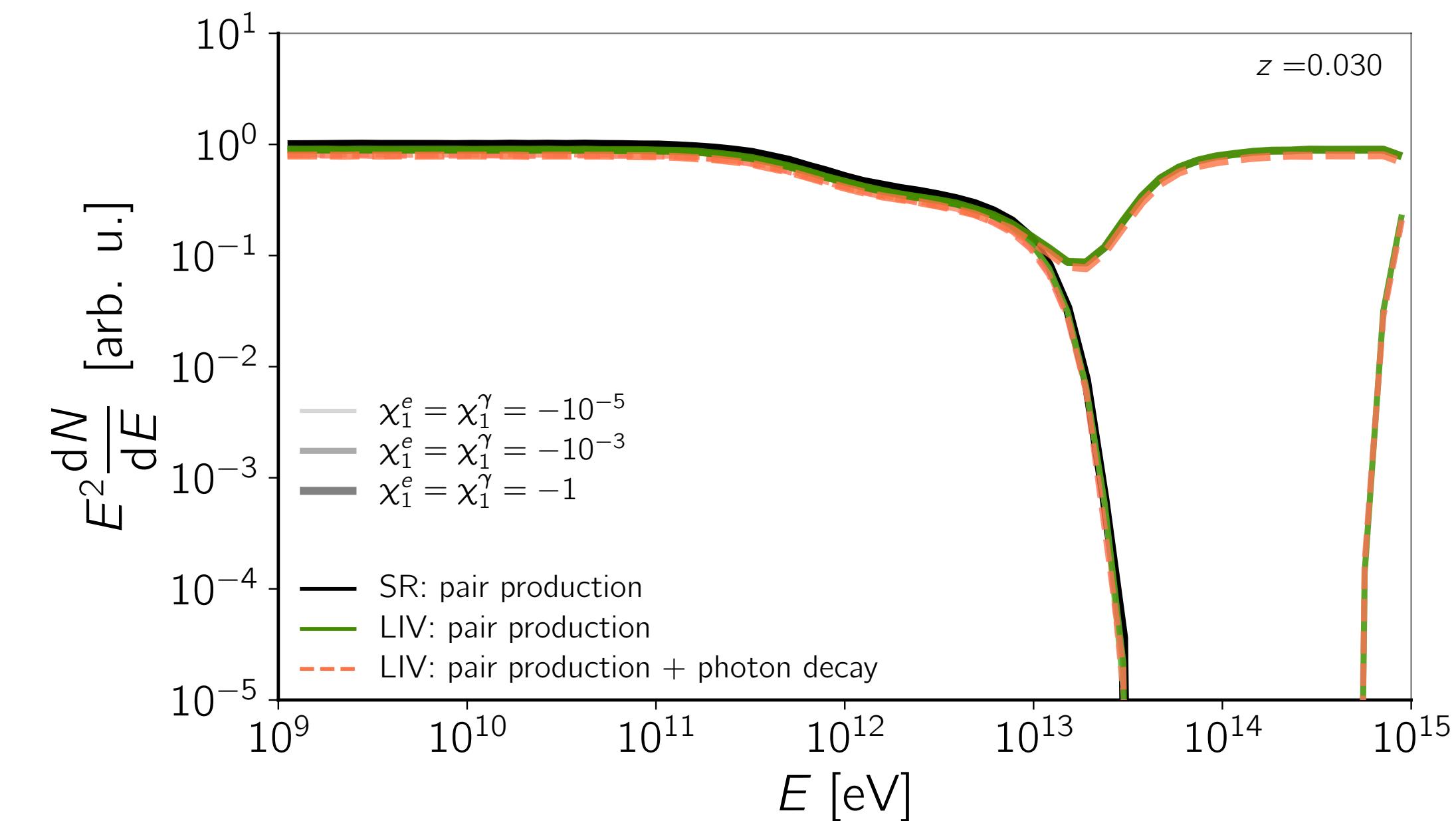
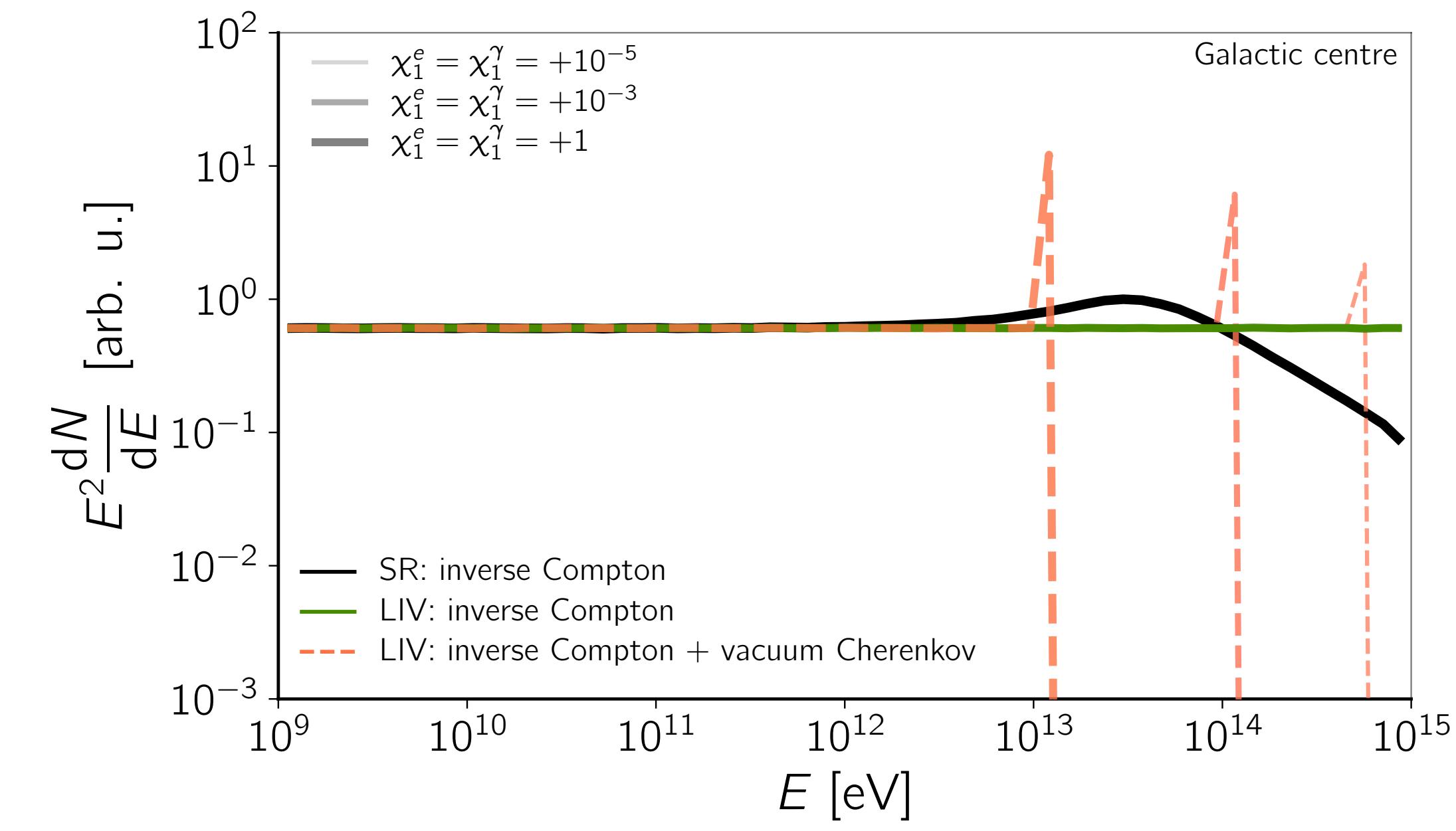


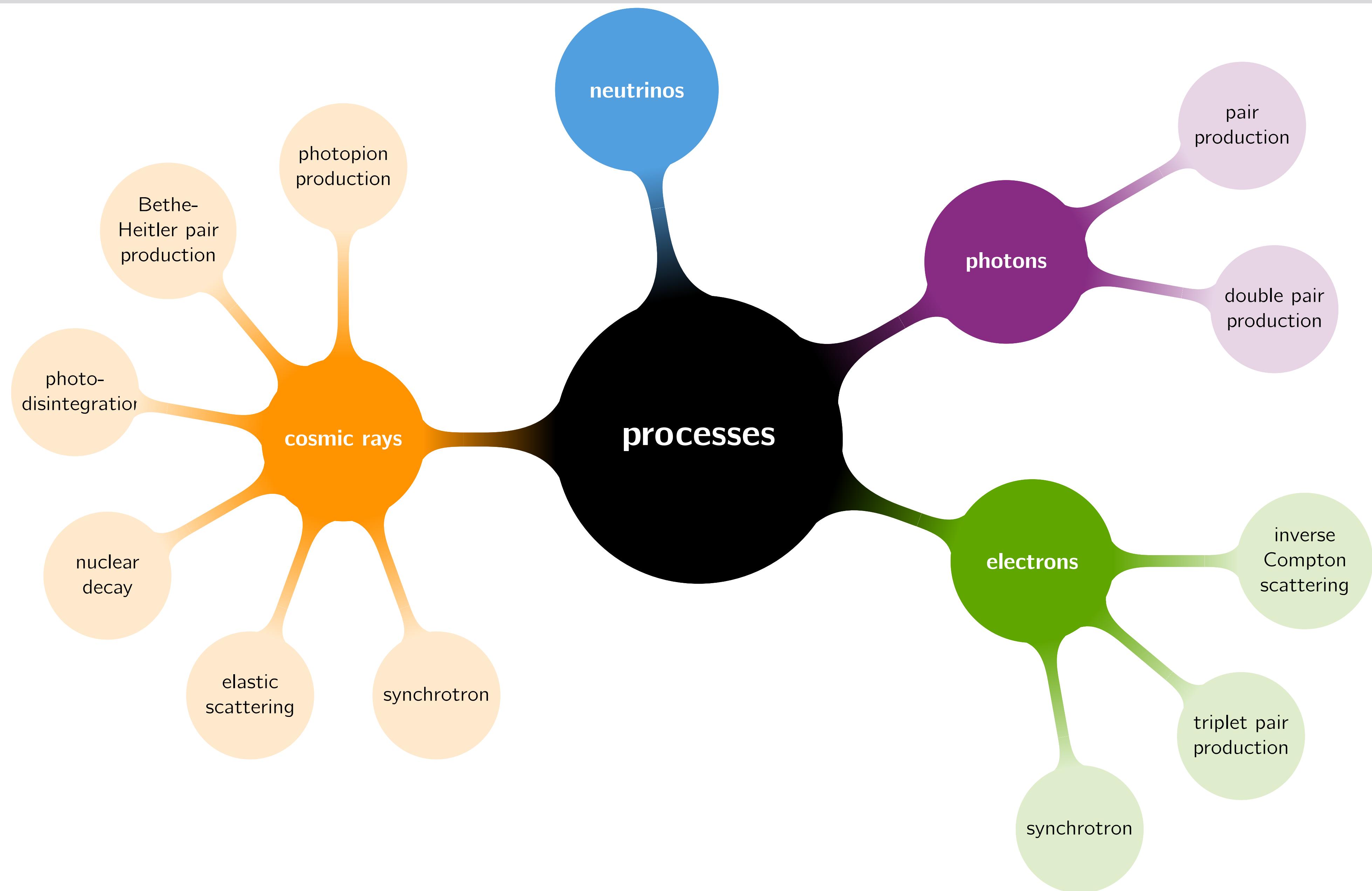
complete simulations of gamma-ray propagation with LIV

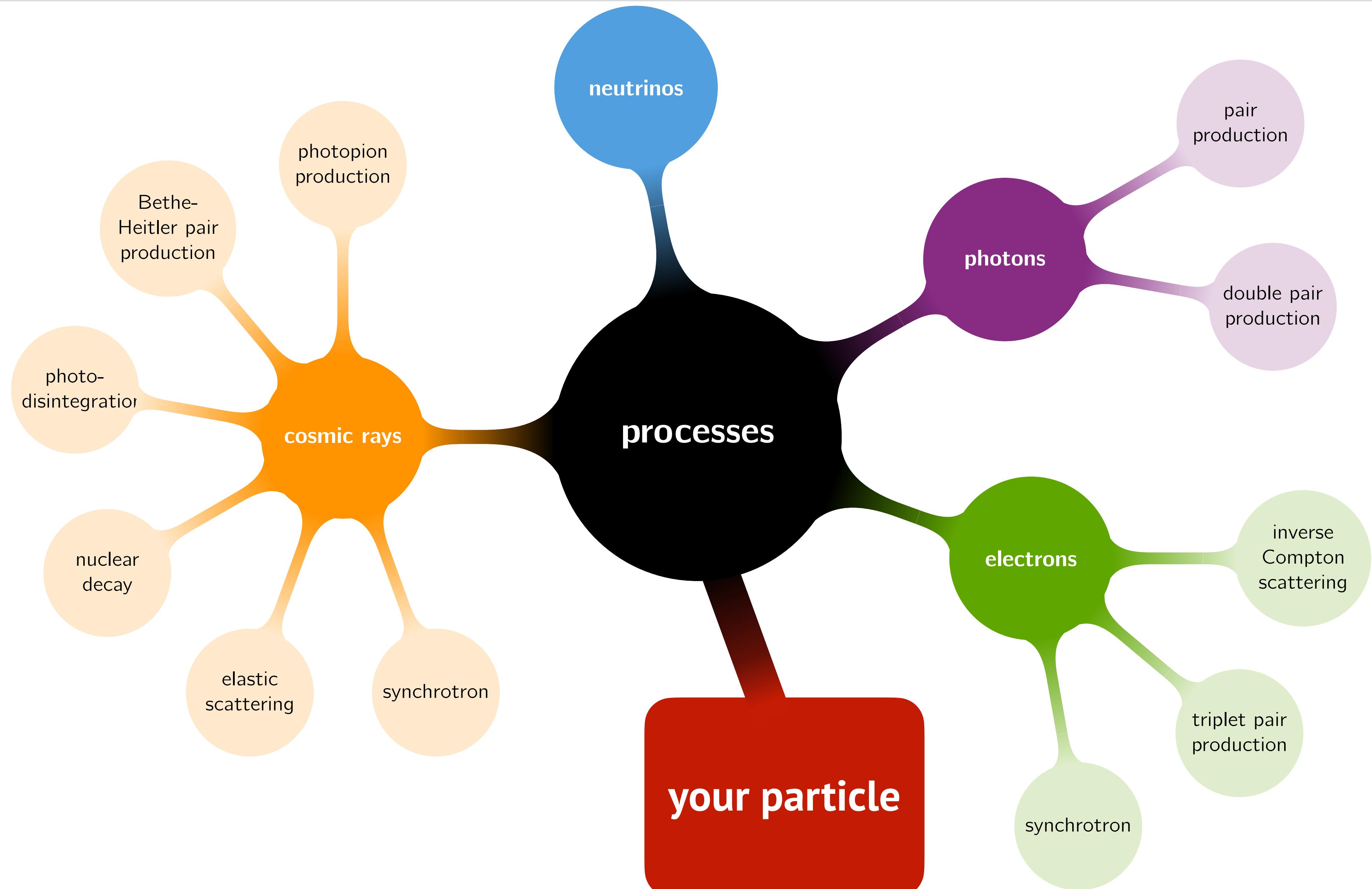
Saveliev & Alves Batista. Class. Quant. Grav. 41 (2024) 115011. arXiv:2312.10803

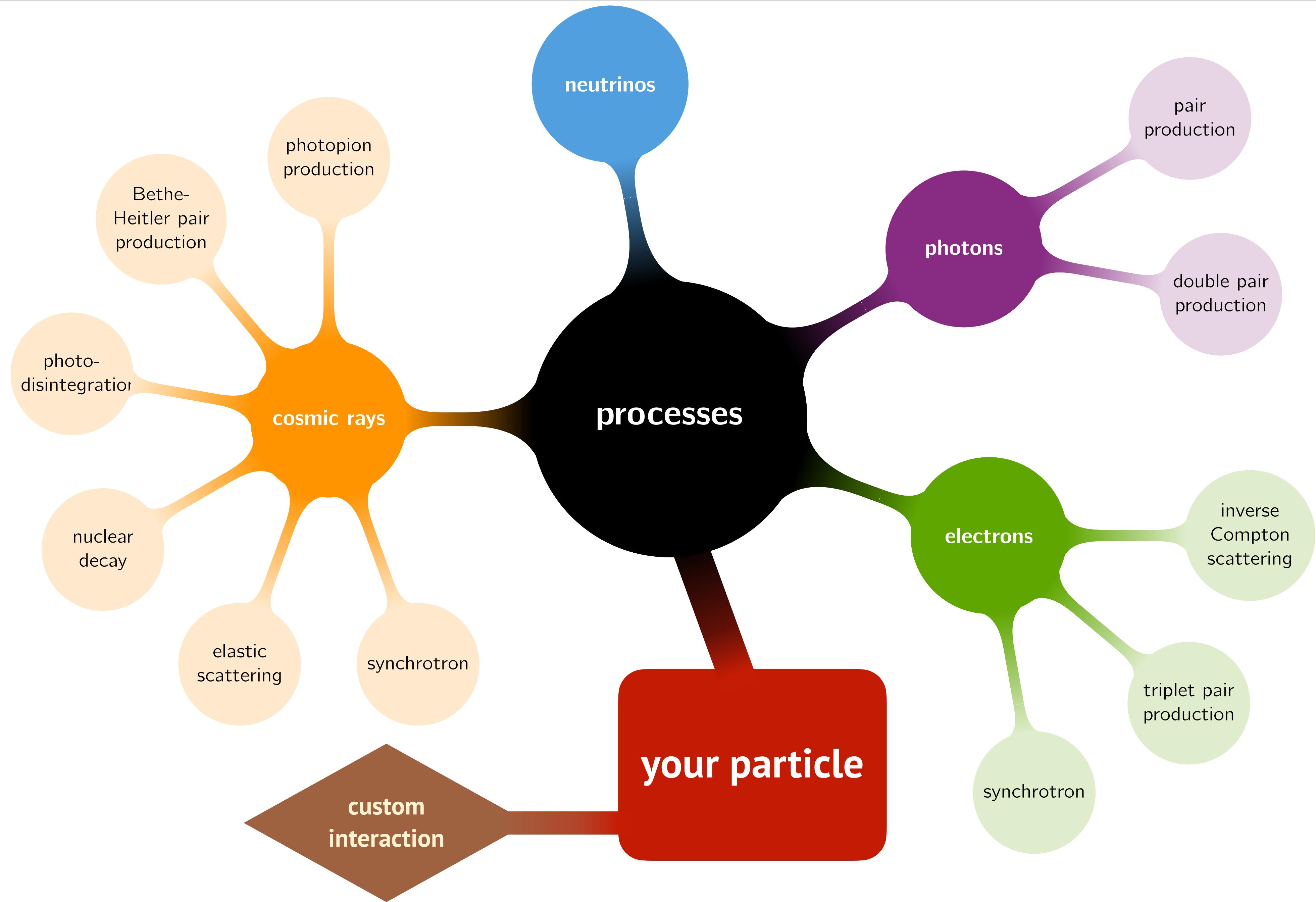
► complete simulations including LIV

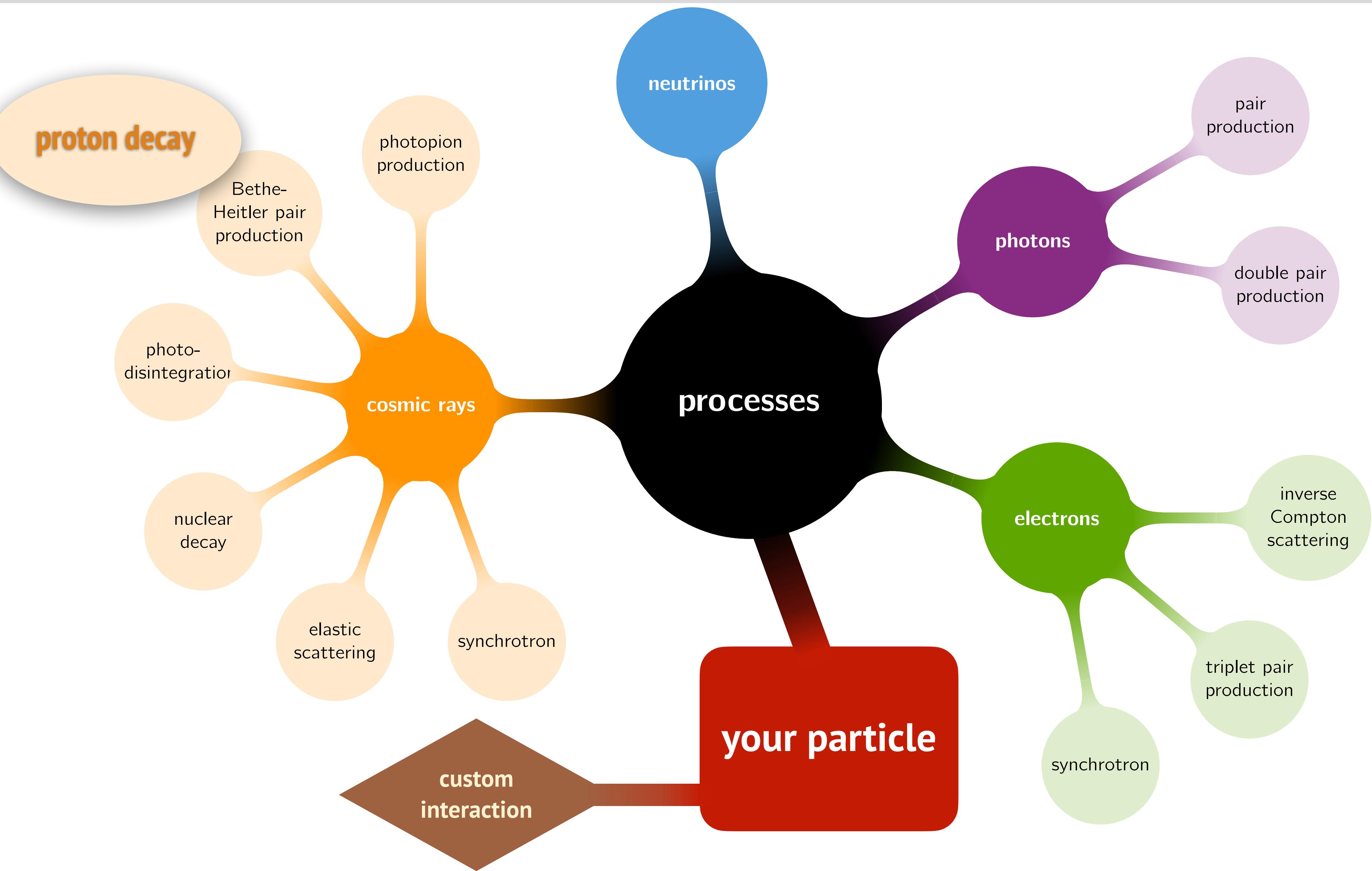
- modification of pair production
- including inverse Compton scattering
- including vacuum Cherenkov
- including photon decay

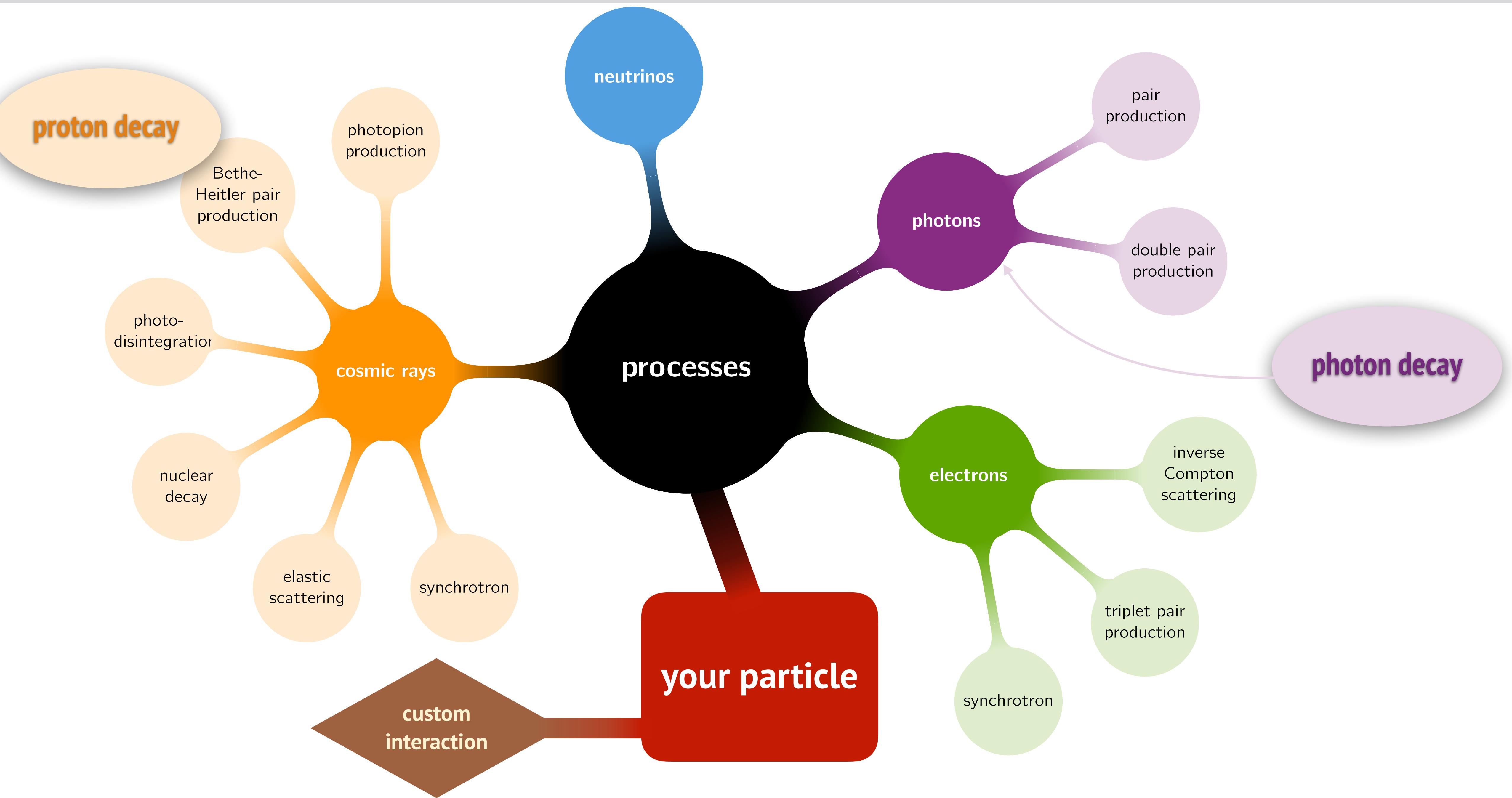


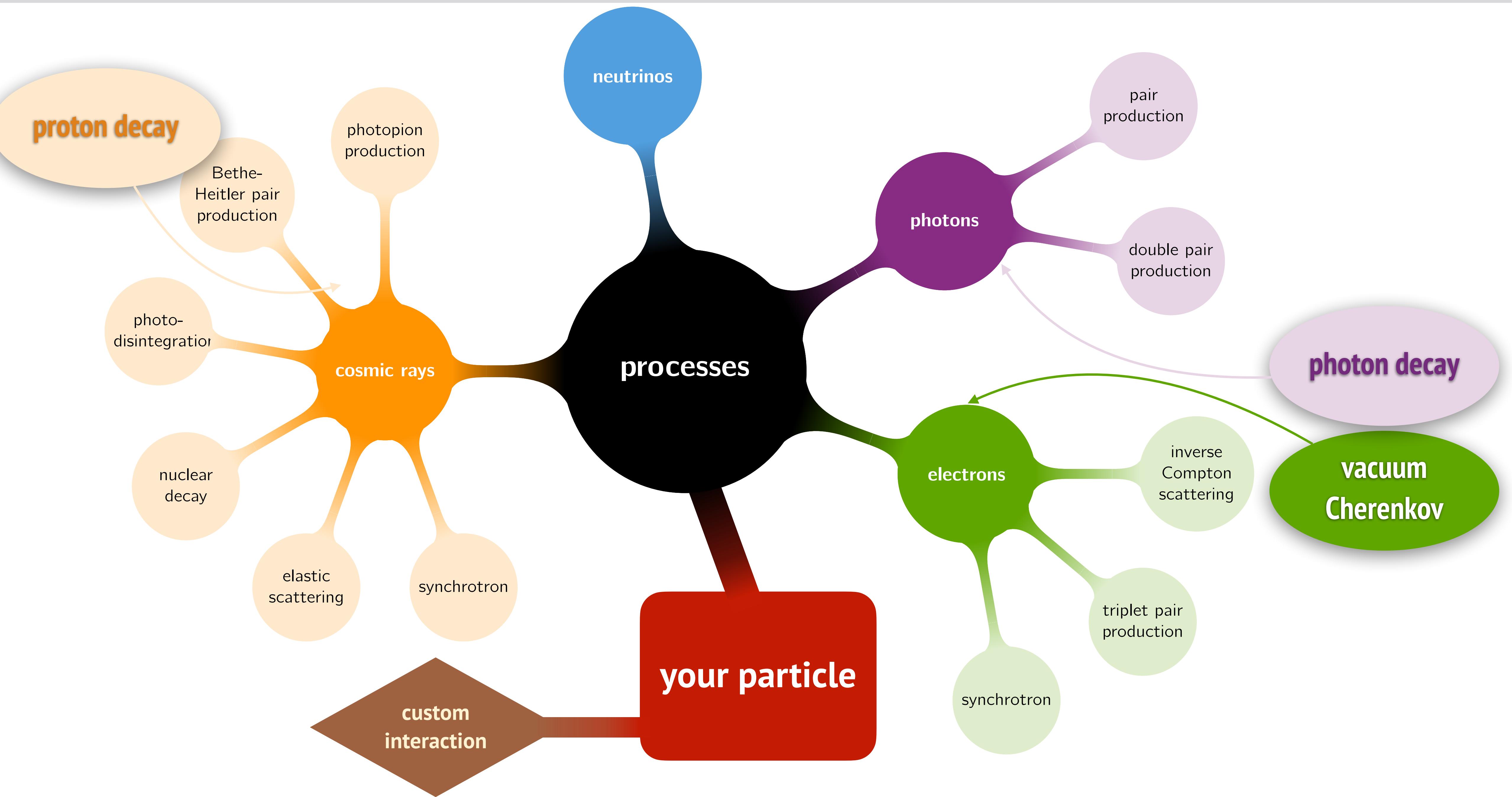












on time lags

$$\Delta t_{\text{obs}}(E_1, E_2) =$$

$$\Delta t_{\text{obs}}(E_1, E_2) = \Delta t_{\text{acc}}(E_1, E_2)$$

acceleration

$$\Delta t_{\text{obs}}(E_1, E_2) = \Delta t_{\text{acc}}(E_1, E_2) + \Delta t_{\text{emi}}(E_1, E_2)$$

acceleration emission

$$\Delta t_{\text{obs}}(E_1, E_2) = \Delta t_{\text{acc}}(E_1, E_2) + \Delta t_{\text{emi}}(E_1, E_2) + \Delta t_G(E_1, E_2)$$

acceleration

emission

gravitational

$$\Delta t_{\text{obs}}(E_1, E_2) = \Delta t_{\text{acc}}(E_1, E_2) + \Delta t_{\text{emi}}(E_1, E_2) + \Delta t_G(E_1, E_2) + \Delta t_B(E_1, E_2)$$

acceleration

emission

gravitational

magnetic

$$\Delta t_{\text{obs}}(E_1, E_2) = \Delta t_{\text{acc}}(E_1, E_2) + \Delta t_{\text{emi}}(E_1, E_2) + \Delta t_G(E_1, E_2) + \Delta t_B(E_1, E_2) + \Delta t_{\text{QG}}(E_1, E_2)$$

acceleration **emission** **gravitational** **magnetic** **QG signal**

$$\Delta t_{\text{obs}}(E_1, E_2) = \Delta t_{\text{acc}}(E_1, E_2) + \Delta t_{\text{emi}}(E_1, E_2) + \Delta t_G(E_1, E_2) + \Delta t_B(E_1, E_2) + \Delta t_{\text{QG}}(E_1, E_2) + \dots$$

acceleration **emission** **gravitational** **magnetic** **QG signal**

$$\Delta t_{\text{obs}}(E_1, E_2) = \Delta t_{\text{acc}}(E_1, E_2) + \Delta t_{\text{emi}}(E_1, E_2) + \Delta t_G(E_1, E_2) + \Delta t_B(E_1, E_2) + \Delta t_{\text{QG}}(E_1, E_2) + \dots$$

acceleration **emission** **gravitational** **magnetic** **QG signal**

$$\Delta t_{\text{obs}}(E_1, E_2) = \Delta t_{\text{acc}}(E_1, E_2) + \Delta t_{\text{emi}}(E_1, E_2) + \Delta t_G(E_1, E_2) + \Delta t_B(E_1, E_2) + \Delta t_{\text{QG}}(E_1, E_2) + \dots$$

acceleration	emission	gravitational	magnetic	QG signal
---------------------	-----------------	----------------------	-----------------	------------------

charged particles

$$\Delta t_B \approx \begin{cases} q^2 c \frac{B^2 L_{\text{src}}^2 L_B}{18 E^2} = 10^6 \left(\frac{q}{e}\right)^2 \left(\frac{B}{10^{-15} \text{ T}}\right)^2 \left(\frac{E}{100 \text{ EeV}}\right)^{-2} \left(\frac{L_{\text{src}}}{100 \text{ Mpc}}\right)^2 \left(\frac{L_B}{1 \text{ Mpc}}\right) \text{ yr} & \text{if } L_{\text{src}} \gg L_B, \\ q^2 c \frac{B^2 L_{\text{src}}^3}{24 E^2} = 4200 \left(\frac{q}{e}\right)^2 \left(\frac{B}{10^{-15} \text{ T}}\right)^2 \left(\frac{E}{100 \text{ EeV}}\right)^{-2} \left(\frac{L_{\text{src}}}{100 \text{ Mpc}}\right)^3 \text{ yr} & \text{if } L_{\text{src}} \ll L_B. \end{cases}$$

$$\Delta t_{\text{obs}}(E_1, E_2) = \Delta t_{\text{acc}}(E_1, E_2) + \Delta t_{\text{emi}}(E_1, E_2) + \Delta t_G(E_1, E_2) + \Delta t_B(E_1, E_2) + \Delta t_{\text{QG}}(E_1, E_2) + \dots$$

acceleration **emission** **gravitational** **magnetic** **QG signal**

$$\Delta t_{\text{obs}}(E_1, E_2) = \Delta t_{\text{acc}}(E_1, E_2) + \Delta t_{\text{emi}}(E_1, E_2) + \Delta t_G(E_1, E_2) + \Delta t_B(E_1, E_2) + \Delta t_{\text{QG}}(E_1, E_2) + \dots$$

acceleration emission gravitational magnetic QG signal

gamma rays (approximation including cascade effects) [Neronov & Semikoz 2009]

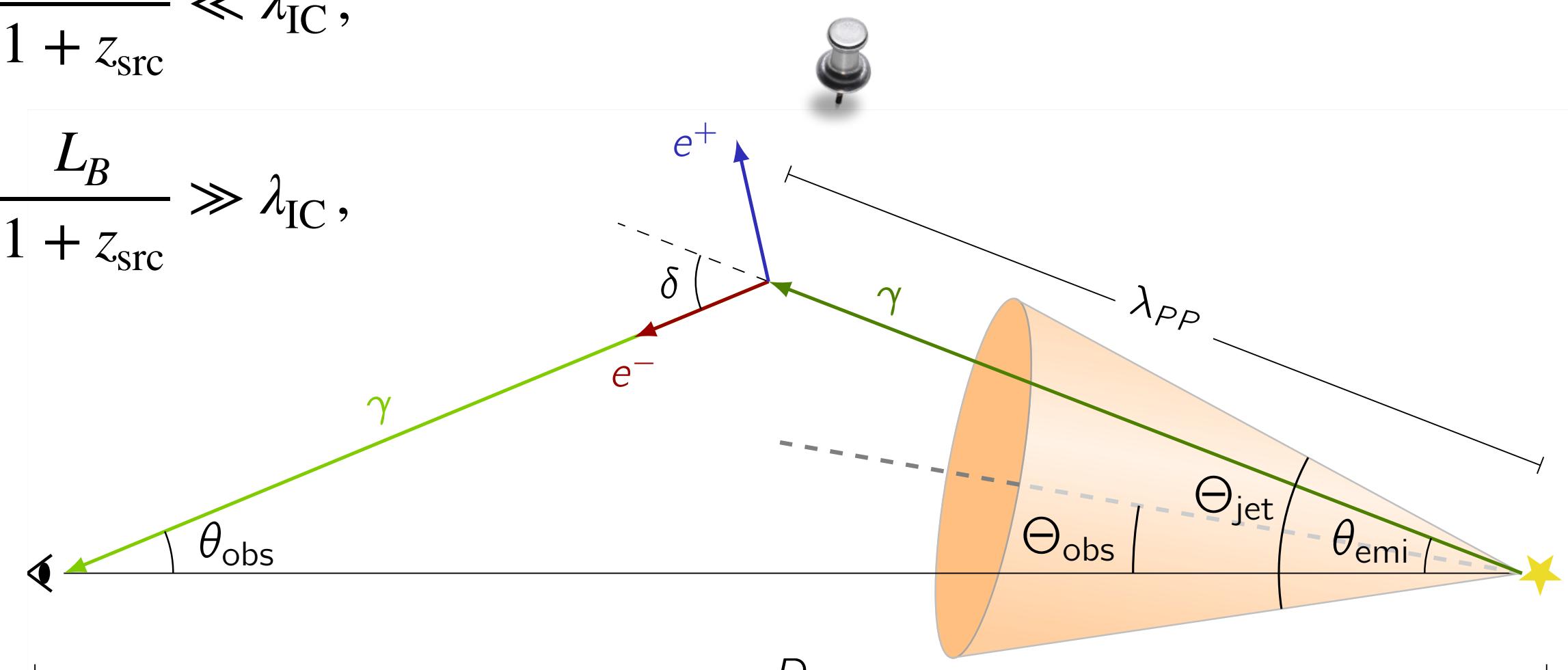
$$\Delta t_B \simeq \begin{cases} 1.0 \times 10^4 \frac{\kappa(1 - \tau_\theta^{-1})}{(1 + z_{\text{src}})^2} \left(\frac{E}{1 \text{ TeV}}\right)^{-2} \left(\frac{B}{10^{-21} \text{ T}}\right)^2 \left(\frac{L_B}{1 \text{ kpc}}\right) \text{ s} & \text{if } \frac{L_B}{1 + z_{\text{src}}} \ll \lambda_{\text{IC}}, \\ 2.2 \times 10^5 \frac{\kappa(1 - \tau_\theta^{-1})}{(1 + z_{\text{src}})^5} \left(\frac{E}{1 \text{ TeV}}\right)^{-\frac{5}{2}} \left(\frac{B}{10^{-21} \text{ T}}\right)^2 \text{ s} & \text{if } \frac{L_B}{1 + z_{\text{src}}} \gg \lambda_{\text{IC}}, \end{cases}$$

$$\Delta t_{\text{obs}}(E_1, E_2) = \Delta t_{\text{acc}}(E_1, E_2) + \Delta t_{\text{emi}}(E_1, E_2) + \Delta t_G(E_1, E_2) + \Delta t_B(E_1, E_2) + \Delta t_{\text{QG}}(E_1, E_2) + \dots$$

acceleration emission gravitational magnetic QG signal

gamma rays (approximation including cascade effects) [Neronov & Semikoz 2009]

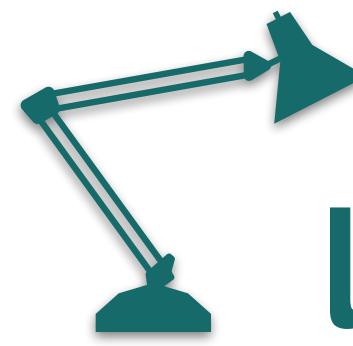
$$\Delta t_B \simeq \begin{cases} 1.0 \times 10^4 \frac{\kappa(1 - \tau_\theta^{-1})}{(1 + z_{\text{src}})^2} \left(\frac{E}{1 \text{ TeV}}\right)^{-2} \left(\frac{B}{10^{-21} \text{ T}}\right)^2 \left(\frac{L_B}{1 \text{ kpc}}\right) \text{ s} & \text{if } \frac{L_B}{1 + z_{\text{src}}} \ll \lambda_{\text{IC}}, \\ 2.2 \times 10^5 \frac{\kappa(1 - \tau_\theta^{-1})}{(1 + z_{\text{src}})^5} \left(\frac{E}{1 \text{ TeV}}\right)^{-\frac{5}{2}} \left(\frac{B}{10^{-21} \text{ T}}\right)^2 \text{ s} & \text{if } \frac{L_B}{1 + z_{\text{src}}} \gg \lambda_{\text{IC}}, \end{cases}$$



Alves Batista & Saveliev. Universe 7 (2021) 223. arXiv:2105.12020

discussion

two approaches: lamp and lighthouse



lamp approach

rigorous focused approach

look at few observables / effects at a time

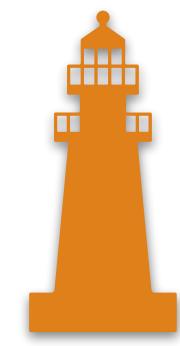
phenomenologically-motivated

excellent for clean signals

empirically adequate

allow for inconsistencies

parsimonious and descriptive



lighthouse approach

complex brute-force approach

exploits correlations → reduces parameter space

phenomenologically- or theoretically-motivated

weaker but sturdier constraints

empirically adequate

imposes internal consistency

complex and more explanatory

some thoughts on model-building

are there QG signatures in the data?

are there QG signatures in the data?

$$p(\theta_{\text{QG}} | D) \propto p(D | \theta_{\text{QG}}) p(\theta_{\text{QG}})$$

are there QG signatures in the data?

$$p(\theta_{\text{QG}} | D) \propto p(D | \theta_{\text{QG}}) p(\theta_{\text{QG}})$$

$$p(D | \theta_{\text{QG}}) = \iiint$$

are there QG signatures in the data?

$$p(\theta_{\text{QG}} | D) \propto p(D | \theta_{\text{QG}}) p(\theta_{\text{QG}})$$

$$p(D | \theta_{\text{QG}}) = \prod p(D | \theta_{\text{QG}})$$

are there QG signatures in the data?

$$p(\theta_{\text{QG}} | D) \propto p(D | \theta_{\text{QG}}) p(\theta_{\text{QG}})$$

$$p(D | \theta_{\text{QG}}) = \prod p(D | \theta_{\text{QG}}, \quad)$$

are there QG signatures in the data?

$$p(\theta_{\text{QG}} | D) \propto p(D | \theta_{\text{QG}}) p(\theta_{\text{QG}})$$

$$p(D | \theta_{\text{QG}}) = \iiint p(D | \theta_{\text{QG}}, \theta_{\text{prop}} \text{ propagation uncertainties}) p(\theta_{\text{prop}}) d\theta_{\text{prop}}$$

are there QG signatures in the data?

$$p(\theta_{\text{QG}} | D) \propto p(D | \theta_{\text{QG}}) p(\theta_{\text{QG}})$$

$$p(D | \theta_{\text{QG}}) = \iiint p(D | \theta_{\text{QG}}, \theta_{\text{prop}}, \text{propagation uncertainties}) p(\theta_{\text{prop}}) d\theta_{\text{prop}}$$

are there QG signatures in the data?

$$p(\theta_{\text{QG}} | D) \propto p(D | \theta_{\text{QG}}) p(\theta_{\text{QG}})$$

$$p(D | \theta_{\text{QG}}) = \iiint p(D | \theta_{\text{QG}}, \theta_{\text{prop}}, \theta_{\text{src}}) p(\theta_{\text{prop}}) p(\theta_{\text{src}}) d\theta_{\text{src}} d\theta_{\text{prop}}$$

propagation uncertainties source uncertainties

are there QG signatures in the data?

$$p(\theta_{\text{QG}} | D) \propto p(D | \theta_{\text{QG}}) p(\theta_{\text{QG}})$$

$$p(D | \theta_{\text{QG}}) = \iiint p(D | \theta_{\text{QG}}, \theta_{\text{prop}}, \theta_{\text{src}}, \quad) \quad p(\theta_{\text{prop}}) \quad p(\theta_{\text{src}}) \quad d\theta_{\text{src}} d\theta_{\text{prop}}$$

propagation
uncertainties source
uncertainties

are there QG signatures in the data?

$$p(\theta_{\text{QG}} | D) \propto p(D | \theta_{\text{QG}}) p(\theta_{\text{QG}})$$

$$p(D | \theta_{\text{QG}}) = \iiint p(D | \theta_{\text{QG}}, \theta_{\text{prop}}, \theta_{\text{src}}, \theta_{\text{inst}}) \ p(\theta_{\text{prop}}) \ p(\theta_{\text{src}}) \ d\theta_{\text{src}} d\theta_{\text{prop}}$$

propagation
uncertainties source
uncertainties

are there QG signatures in the data?

$$p(\theta_{\text{QG}} | D) \propto p(D | \theta_{\text{QG}}) p(\theta_{\text{QG}})$$

$$p(D | \theta_{\text{QG}}) = \iiint p(D | \theta_{\text{QG}}, \theta_{\text{prop}}, \theta_{\text{src}}, \theta_{\text{inst}}) \ p(\theta_{\text{prop}}) \ p(\theta_{\text{src}}) \ p(\theta_{\text{inst}}) \ d\theta_{\text{inst}} d\theta_{\text{src}} d\theta_{\text{prop}}$$

propagation
uncertainties source
uncertainties instrumental
uncertainties

- ▶ **sink terms** affecting propagation are considered
- ▶ rarely new **source terms** are considered on top of standard ones (new processes)
- ▶ results are only as good as the models on which they are based
- ▶ problem with lamp strategy: *dutch book argument*
- ▶ combine **multiple messengers**
- ▶ build models covering **larger parameter space**
 - ◆ dimensional reduction from correlations / couplings
- ▶ epistemic goal: coherence over tightness