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Fundamental physics with high-energy cosmic neutrinos

Numerous new v physics effects grow as ~x, - E" - L
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Fundamental physics with high-energy cosmic neutrinos

E.g.,

n =-1: neutrino decay

n =0: CPT-odd Lorentz violation

n =+1: CPT-even Lorentz violation

Numerous new v physics effects grow as ~x, - E" - L }

If BSM eftects are comparable in size to SM effects, then we can probe
ENT"( L\
n~ 1071 [ —— | PevV'™"
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Orders-of-magnitude improvement




The multi-messenger connection: a simple picture
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The multi-messenger connection: a simple picture
(orp+p)
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Redshift g | z=0

Note: v sources can be steady-state or transient
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Vv propagation
inside the Earth

v detection
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Main high-energy
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Standard expectation:
Power-law energy spectrum

Standard expectation:
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Main high-energy
v observables

Standard expectation:
v and v from transients arrive
simultaneously

Standard expectation:
Equal number of v,, v, V.
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> New in 2025

The three existing
large neutrino
telescopes are

independently
probing the diffuse

flux of TeV—LeV
cosmic V!

Thanks to
Aswathi Balagopal
for providing the
butterflies!
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Standard expectation:
Isotropy (for diffuse flux)




Arrival directions (7.5 yr)

No significant excess in the neutrino sky map:

+75°
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Post-trial

p-value: 0.092
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TS = —2AIn(L) IceCube, PRD 2021



Standard expectation:
Equal number of v,, v, V.



Astrophysical sources Earth
| Up to a few Gpc |

| |
E.g.,

Oscillations change the number
-------------------*
of v of each flavor, N, N, N,
Different production mechanisms yield different flavor ratios:
(ﬁe,s, f 1,57 ﬂs) = (N ¢,Sr N 11,57 N 7,9 )/ Niot

Flavor ratios at Earth (a =e, , 7):

foz,@ — Z PVB%VO( fﬁ,S

B=e,u,T



Astrophysical sources Earth
| Up to a few Gpc |
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Different production mechanisms yield different flavor ratios:
(fe,S/ fp,S/ f‘T,S) = (NE,SI NH,S/ NT,S )/Ntot

Flavor ratios at Earth, () e
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One likely TeV-PeV v production scenario:
p+y —-mt—ut+v, followedby utr—et+v.+v,

Full 7t decay chain
(1/3:2/3:0)s

Note: v and v are (so far) indistinguishable

in neutrino telescopes
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One likely TeV-PeV v production scenario:
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One likely TeV-PeV v production scenario:
p+y —-mt—ut+v, followedby utr—et+v.+v,

sy Full 1t decay chain
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Muon damped
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Neutron decay
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Fraction of v, in neutrino telescopes
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Measuring flavor composition 2015-2025
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Measuring flavor composition 2015-2025
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Measuring flavor composition 2015-2025
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Measuring flavor composition 2015-2025

71 2015: IC combined fit 0.0
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Measuring flavor composition 2015-2025
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Measuring flavor composition 2015-2025
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Measuring flavor composition 2015-2025
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Standard expectation:
v and v from transients arrive
simultaneously




DESY



Blazar TXS 0506"‘056 IceCube, Science 2018

1C40 1C59 1C79 IC86a IC86b 1C86¢
5 L . .
» =1 TceCube-170922A iF 4o
47 Gaussian Analysis .
Q; 3 Box-shaped Analysis ol NP
R :
S 94
| - 20
19 -—_,_/—J_ - 1o
R e Y =V SN N—
2009 2010 2011 2012 2013 2014 2015 2016 2017
After re-analysis (2101.09836), .
Sigr{iﬁc‘;nce droppe()j 2014-2015: 1345 v flare, no X-ray flare 2017: one 290-TeV v + X-ray flare
ffom p=7x105 to p=8x10° 3.50 significance of correlation (post-trial) 1.40 significance of correlation

=

Combined (pre-trial): 4.10

' DESY
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Standard expectation: Standard expectation:

Power-law energy spectrum Qéd‘»“““\ Isotropy (for diffuse flux)
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(Acts at detection)

Standard expectation:
v and v from transients arrive

simultaneously

Standard expectation:
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Standard expectation:

« Standard expectation:
Power-law energy spectrum ec,’&(‘)

Isotropy (for diffuse flux)

R
2
& I
Qc}io // / //[A(cts dlring I;zfrdpagation)
4 )

Reviews:
Ahlers, Helbing, De los Heros, EPJC 2018
Argiielles, MB, Kheirandish, Palomares-Ruiz, Salvado, Vincent, ICRC 2019 [1907.08690]
Ackermann, Ahlers, Anchordoqui, MB, et al., Astro2020 Decadal Survey [1903.04333]
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Standard expectation:
v and v from transients arrive
simultaneously

Standard expectation:
Equal number of v,, v, V.

More: PoS ICRC2019 (1907.08690)
Argiielles, MB, Kheirandish, Palomares-Ruiz, Salvado, Vincent
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Evidence for BSM
Evidence for SM

If B< 1:5M is favored

If B> 1: BSM is favored
If B ~1: No preference

Bayes factor =
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Evidence for SM

Likelihood Prior
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LLorentz-invariance
violation in flavor



IceCube Collab., Nat. Phys. 2022 -

4 )

Flavor-dependent
interactions
between neutrinos
and a fundamental
Lorentz-violating tensor

\_ J




Standard oscillations:
1

Hgq =
td 2K

UE’MNSdiag(Oa Am%l, Amgl)UPMNS

Lorentz-violating interactions (Standard Model Extension):

Kostelecky, Mewes, PRD 2004

E n
Hnevv — Z (A_) UJL(On,la On,Qa On,B)Un

n>0 n

U, has the same shape as Upwns,
but its entries are a priori undetermined

Total Hamiltonian:
Htot — Hstd + Hnevv



The flavor-transition probabilities are calculated as before,

3
Pap = Z |(Utot)ozi|2|(Utot)5i|2 ;

i=1 I/“

Depends on standard & new parameters

but now the lepton mixing matrix, U, is the one that diagonalizes Hi.




Forn=0
(similar for n=1)

IceCube flavor
measurement
(mock contour)

00 02 04 06 08 1.0

a@

Argiielles, Katori, Salvado, PRL 2015 e

See also Ahlers, MB, Mu, PRD 2018; Rasmusen et al., PRD 2017; MB, Beacom, Winter PRL 2015;
MB, Gago, Pefia-Garay JCAP 2010; Bazo, MB, Gago, Miranda I[JMPA 2009; + many others




IceCube Collab., Nat. Phys. 2022
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Direction-dependent
LIV in flavor



Flavor anisotropy in the high-energy neutrino sky

Diffuse flux of

g N Does the high-energy sky shine equally brightly
" A In neutrinos of all flavors?

y
4
y
i >

Energy- and direction-
dependent attenuation
inside the Earth

Undo attenuation and detector effects to infer flavor skymaps

Y Vi v

Telalovic, MB, J[CAP 2025




Flavor anisotropy in the high-energy neutrino sky

Does the high-energy sky shine equally brightly
In neutrinos of all flavors?

From the angular distribution of detected
events in neutrino telescopes
(HESE cascades, tracks, double cascades) ...

Undo attenuation and detector effects to infer flavor skymaps

Y Vi v

Telalovic, MB, J[CAP 2025




Flavor anisotropy in the high-energy neutrino sky

Diffuse flux of

high-cnergy j D ) _ ; ;
Rl @ oes the high energy sky shine equally brightly
Y A In neutrinos of all flavors?

From the angular distribution of detected
events in neutrino telescopes
(HESE cascades, tracks, double cascades) ...

Double cascades
(Mostly from v;)

Undo attenuation and detector effects to infer flavor skymaps

@ @ @ o We infer the directional dependence of
i : : the diffuse fluxes of v, v, v,

Telalovic, MB, JCAP 2025




Flavor anisotropy in the high-energy neutrino sky

Diffuse flux of

ey , Does the high-enerqy sky shine equally brightl
ey & s 3V Y e
i A In neutrinos of all flavors?

From the angular distribution of detected
events in neutrino telescopes
(HESE cascades, tracks, double cascades) ...

How? Undo detection effects
(use public IceCube
HESE Monte Carlo)

leeee!
Double cascades
(Mostly from v;) v

Undo attenuation and detector effects to infer flavor skymaps

@ @ @ ... we infer the directional dependence of
— :
[ : : the diffuse fluxes of v, v, v,

Telalovic, MB, JCAP 2025
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Directional high-energy astrophysical neutrino flavor compositioﬁ: IceCube HESE (7.5yr)

-, -
[ T ———

Real, public data



Directional high-energy astrophysical neutrino flavor composition: IceCube HESE (7.5 yr)
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Directional high-energy astrophysical neutrino flavor composition: IceCube HESE (7.5 yr)
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in present-day IceCube data
(Bayes factor is ~1)

We place the first constraints on
the flavor neutrino angular power

k spectrum a la CMB

/ There is no sign of flavor anisotropy \

ork led By

/

Bernanda
Telalovic



z=0
Sky at Earth

High-energy neutrinos,

h
: 110 Eart
duced at different redshﬁts, trave
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Telalovic, MB, 2503.15468 (/HEP, to appear)




Anisotropic Lorentz-invariance violation makes the flavor sky anisotropic:

Htot - Vac + ZH](JCIQ/ — Vac + Ed ’ Z Z }/E (d))?nﬁl
=0 m=—/¢

Neutrino oscillation probablhty becomes direction-dependent

Telalovic, MB, JCAP2025



Anisotropic Lorentz-invariance violation makes the flavor sky anisotropic:

Htot - Vac + ZH]ECIQ/ — Vac + Ed ’ Z Z }/E (d))?ﬂé
=0 m=—¢

Neutrino oscillation probablhty becomes direction-dependent

foo fus_

Equatorial
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Telalovic, MB, /JCAP2025



Anisotropic Lorentz-invariance violation makes the flavor sky anisotropic:

Hyor = vac+Z H{7\ = Hyae + B ?’Z Z Y™ () (alg)om
=0 m=—4¢

Neutrino oscillation probablhty becomes direction-dependent

ﬁ, ® f#r@

fT,@ / '

Equatorial ¥ mean

:_ :_ ANoLIV ﬂ—

0.00 0.30 1.00

For dimension-5
’ CPT-odd LIV coefficient
Upper limits from accelerator v (MINOS): <10%-10"° GeV~!

Telalovic, MB, /JCAP2025



Anisotropic Lorentz-invariance violation makes the flavor sky anisotropic:

Htot - Vac + ZH]ECIQ/ — Vac + Ed ’ Z Z }/E (d))?ﬂé
=0 m=—¢

Neutrino oscillation probablhty becomes direction-dependent

ﬁ, ® f#r@

fT,@ / '

Equatorial ¥ mean

:_ :_ ANoLIV ﬂ—

0.00 0.30 1.00

For dimension-5
’ CPT-odd LIV coefficient
Upper limits from accelerator v (MINOS): <10%-10"° GeV~!

Upper limits from 7.5-year HESE: <107 GeV™

Telalovic, MB, /JCAP2025



Lorentz-violating high-energy neutrino flavor anisotropy (IceCube HESE 7.5 years)

1 0—32 1 0—30 1 0727

LIV coefficient, | (aﬁ'ﬁ)‘i’g | [GeV]  Measured flavor ratios at Earth:  Benchmark flavor composition at the sources:
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Lorentz-violating high-energy neutrino flavor anisotropy (IceCube HESE 7.5 years)

. 3 .
LIV coefficient, | (aiff))ig | [GeV]  Measured flavor ratios at Earth:  Benchmark flavor composition at the sources:
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Distavored at 95% C.L. from flavor isotropy (this work, using IceCube 7.5-year HESE)
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Quantum-gravity
decoherence



It is re-radiated with its
wave function collapse
or its phase perturbed
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== Unperturbed —=—' Averaged oscillations _—

1:1 flavors

Flavor
selection
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The density matrix p of the neutrino system evolves as

Standard unitary time evolution x ( Non-unitary unitary time evolution

D[P] ( pv P )bu
p = —ilH, p] — Dlp]

Gell-Mann
matrices




The density matrix p of the neutrino system evolves as
Non-unitary unitary time evolution

Standard unitary time evolution x (
Dlp] = (D p”) "

p = —ilH, p] — D[p]
.. Gell-Mann
(" Phase perturbation: A £ matrices
Dphase — diag(O,F,F,O,F,F,F,F,O) ;
N

(L > 1/T": incoherent sum of mass eigenstates)

< State selection:
Dgtate = diag(0, T, T, T, ", ", ', T, T')

(L > 1/T: democratization of mass eigenstates
or flavors) Y,
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The density matrix p of the neutrino system evolves as
Non-unitary unitary time evolution

Standard unitary time evolution x (
Dlp] = (D p”) "

p = —ilH, p] — D[p]
.. Gell-Mann
(" Phase perturbation: A £ matrices
Dphase — diag(O,F,F,O,F,F,F,F,O) ;
N

(L > 1/T": incoherent sum of mass eigenstates)

I'(E,) =T (—)
Ly < State selection:
Dgtate = diag(0, T, T, T, ", ", ', T, T')

(L > 1/T: democratization of mass eigenstates
\_ or flavors) Y,




Use ~300k IceCube atmospheric v, with 0.5-10 TeV

107144 X
Strongest constraints to date

L,
I'E,)) =1 —
(E,) =T 7

Mo (Eo =1GeV) [eV]
]
9
S
@
>

26 Phase Perturbation
10 i #% T2K (2020)

A SuperKamiokande (2000) ’
@ This Work

10—14 ]

Mo (Eo =1GeV) [eV]
=
9
S
-

26 State Selection
1074°

#8 72K (2020) \
MINOS (2020)
@ This Work

0 1 2 3
IceCube Collab., Nature Phys. 2024 Energy Power n




Use ~300k IceCube atmospheric v, with 0.5-10 TeV

Strongest constraints to date

1.0

@ 7 decay: (1:2:0)g
09 @ p-damped: (0:1:0)g
A n decay: (1:0:0)g

How about using astrophysical TeV—PeV v?

State selection yields vervgv,e = 1:1:1

Problem: this matches the standard expectation -
All regions at 68% C.L. or C.R.

Phase perturbation yields something different 00 01 02 03 04 05 06 07 08 09 10
Could be worth exploring Fraction of ve, fo e




LIV from a
high-energy v flare
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New physics from high-energy neutrino flares

EIC A et WENl [ orentz-invariance violation may change

v source

= the neutrino speed relative to light speed:
o
e 8 n
& & B 1 ([ FE,
" NG v(E,) = |1— nx =1- Av(E,)
Detected v flare '

M,: LIV energy scale (unknown)

—
o
—
2
=
=
Z

From the time profile of a neutrino flare
we can bound the value of M,

without an electromagnetic counterpart and
without knowing the original time profile

Not to scale MB, Ellis, Konoplich, Sakharov, PRD 2025



New physics from high-energy neutrino flares

MB, Ellis, Konoplich, Sakharov, PRD 2025
I I T

I I

LIV makes the v flare time-distribution...

0.30 Neutrino propagation R i
_ Modifiedby T » More uniform
Lorentz-invariance violation 7 Y
--- Standard { | More uniform » Less peaky (lower kurtosis)
0.25 ! (higher regularity) —
.' : » More asymmetric (negative skewness)
! Less peaky
! (low“er kurtosis)
0.20r- ’:' \ 7

For a detected neutrino with E, in a flare:

0.15- tobs(Fy) = bs(EL) (1 + 2zere) + Tn(2sre) B

Detection time  Intrinsic lag Effect

0.10r of a at Earth in the source of LIV

1
More asymmetric
(higher’skewness)
/

-l We find the value of t, that restores
e irregularity, peakiness, and asymmetry to
time-distribution of the flare

Uniform distribution

Number of neutrinos detected in a flare (normalized)

| | | |
5.0 s 10.0 12.5 15.0
Neutrino arrival time [a.u.]

o

o
=)
o
N_
U1



New physics from high-energy neutrino flares

I L L L. . L .., L L L L B NN L B B IO
10H IceCube muon track events 70 'S* A
L from TXS 0506+056 L .
[ -
.| MMM Associated to 2014 /2015 flare : USG IceCube through g01ng
ey (box time profile) 60 g { muons associated to the
i g 2015/2015 flare of TXS 0506+056
8 = .
¥ :
< [ g
= 7T/ L= : . .
8 Vv = » Higher weight if closer to the source
2 f
£ of §
g 9; » Account for uncertainty in linking
50 2  muon energy (measured) to
. §  neutrino energy (inferred)
af 2
L H
i =5
L Q
ab Z | |
i \ | " | MB, Ellis, Konoplich, Sakharov, PRD 2025

73 74 75 76 77 78 79 80 8l
Right ascension [deg] -
49



New physics from high-energy neutrino flares

Limits on Lorentz-invariance violation during TeV-PeV neutrino propagation

Blazars Blazars Tidal disruption events
(using only v) ? (tentative, using v + ) “ (tentative, using v + )

¢ New limits from the TXS 0506+056

TXS 0506+056: This work This work

multiple v s legeith | i A A 2014/2015 flare using only neutrinos
TXS 0506+056: _ _|

1C170922A / % / 1 \

TXS 0506+056:
GVD21041+8CA %%%
PKS B1424-418: % 1

HESE-35 1Y 7% -
GB6 J1040+0617:
rioon 222 % o o .
PKS 0735+178: 177 7 1 1 _ Limits from the coincident emission of
IC211208A

PKS 1123+264: 77 i neutrinos and electromagnetic emission
IC120523A ‘ % % . (o RIE
PKS 0625-35: 7 . | ) 1 (generally low or unspecified credibility)

3v IceCube
T |z
1Ca0030A ) D2 -
] |
......... FPSTSTOTSY FYSTSYOTY FYVTTIITY FYVTITITI A PYVPTRTITY PYPYOYOTSY FYPYOYOTS] FYVTOTOTT] FVTOTOTR j MB, Ellis, Konoplich, Sakharov, PRD 2025

13 14 15 16 17 188 9 10 11 12 13
Linear, log,,(M;/GeV) Quadratic, log;,(M,/GeV)

Neutrino LIV energy scale

v/




Tests at ultra-high
energies (> 100 PeV)
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[Lorentz-invariance
violation at UHE



Article
Observation of an ultra-high-energy cosmic
neutrino with KM3NeT

Theinternational journal of science /13

KM3NeT Collab. Nature 638, 376 (2025)

One muon detected with 120?61010 PeV

COSMIC
CAICHER

Deep-seatelescope detects
neutrino with highest
energy ever recorded




Article

Observation of an ultra-high-energy cosmic
neutrino with KM3NeT

Theinternational journal of science /1

KM3NeT Collab. Nature 638, 376 (2025)

One muon detected with 120?61010 PeV

But is it due to a neutrino?
| Yes! Direction points underground,
S o after traveling 150 km through Earth

COSMIC = =~

CATEHER .. Inferred neutrino energy: 220{, PeV

Deep-seatelescope detects
neutrino with highest
energy ever recorded




Article

Observation of an ultra-high-energy cosmic
neutrino with KM3NeT

KM3NeT Collab. Nature 638, 376 (2025)

One muon detected with 120?61010 PeV

But is it due to a neutrino?
| - Yes! Direction points underground,
S o after traveling 150 km through Earth

COSMIC
CATCHER

Deep-seatelescope detects
neutrino with highest
energy ever recorded

y: 22007 PeV




Fundamental physics with high-energy cosmic neutrinos

Numerous new v physics effects grow as ~x, - E" - L

If BSM eftects are comparable in size to SM effects, then we can probe

EN"/ L\
n~ 1071 [ —— | PevV'™"
a (PeV) (Gpc) ¢

——_———
- = _—

—-— ~~

With 1-PeV v: x; ~ 10 PeV-! ’\’ With 100-PeV v: k2 ~ 10°! PeV-!
— T ’———(__fv— - g

Orders-of-magnitude improvement

~




Fundamental physics with high-energy cosmic neutrinos

E.g.,

n =-1: neutrino decay

n =0: CPT-odd Lorentz violation

n =+1: CPT-even Lorentz violation

Numerous new v physics effects grow as ~x, - E" - L }

If BSM effects are comparable in size to SM effects, then we can probe

EN"/ L\
n~ 1074 ] Pev'™"
a (PeV) (Gpc) ¢

With 1-PeV v: x, ~ 10 PeV™! ’\’ With 100-PeV v: x; ~ 10°! PeV!
S~/ S~ o -_—__/1 - -

Orders-of-magnitude improvement




Lorentz-invariance violation — from superluminal speeds

KM3NeT Collab., Commun. Phys. 2025
I

—— 220 PeV
T [110, 790] PeV
[72, 2600] PeV

A superluminal v loses energy via
pair production, i.e.,

V—o>VvV+te +e

10~20
Cohen & Glashow, PRL 2011 =
E
Excess over light speed: d=c¢,-1 g 10-2! 4
- 3
Decay length: Laec=c¢y/T « E?d% ] S
JA 10722 4 E;
Decay width ] 2
=l
J I
g :

Demanding that the travel distance
L <10 Lgecsets upper limits on d

1017 1(::19 1[::21 1(::23 1025 1027
propagation lengthscale L (m)

New limit is ~1000 times stronger than
previous one from TXS 0506+056




Lorentz-invariance violation — from a GRB association

GRB emitted neutrinos & photons
simultaneously

Time delay induced by dispersion
of neutrinos on spacetime foam:

Neutrino energy

s

E
At = D(Z)X ~ 14 years

Cosmological
expansion

Energy scale of LIV
(10™-10" GeV)

GRB-v association: 2.40

Latitude [deg]

(p-value of 0.015)

Amelino-Camelia et al., PLB 2025
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Flavor at ultra-high
energies (> 100 PeV)



Manufacturing UHE flavor sensitivity with two detectors

What if future UHE radio-detection
neutrino telescopes cannot see flavor?

Then we combine two of detectors:

Testagrossa, Fiorillo, MB, PRD 2024

0.0
UHE v (> 100 PeV)

IceCube-Gen2 v, +
GRANDS50k v (10 yr)

High v flux
W (1200, + 119v0) 0.2

All regions: 68%, 95% C.L.
/ / / 7 /

00 01 02 03 04 05 06 07 08 09 10
Fraction of v,, fe o
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What if future UHE radio-detection
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Then we combine two of detectors:

indistinct detection of all flavors
by IceCube-Gen2 (radio)
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+

predominant detection of v,
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Manufacturing UHE flavor sensitivity with two detectors

What if future UHE radio-detection
neutrino telescopes cannot see flavor?

Then we combine two of detectors:

indistinct detection of all flavors
by IceCube-Gen2 (radio)

+

predominant detection of v,
by GRAND

sensitivity to the fraction of UHE v,
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Manufacturing UHE flavor sensitivity with two detectors

What if future UHE radio-detection
neutrino telescopes cannot see flavor?

Then we combine two of detectors:

indistinct detection of all flavors
by IceCube-Gen2 (radio)

+

predominant detection of v,
by GRAND

sensitivity to the fraction of UHE v,

Testagrossa, Fiorillo, MB, PRD 2024
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Lorentz-invariance violation at ultra-high energies
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Lorentz-invariance violation at ultra-high energies
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Lorentz-invariance violation at ultra-high energies
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Lorentz-invariance violation at ultra-high energies
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Lorentz-invariance violation at ultra-high energies

(3 o(4 o (5 o(6 o (7

10

[GeV4—1]
S

e}

&

|
—
(>

or Re
Logo(LIV coefficient x E4 %)

—_

S
a1
[==}

(d)
TT

This work:
Disfavored by ultra-high-energy astro. v (> 100 PeV)
(IceCube-Gen2 v,;; + GRAND vy, proj. 10 yr, 90% C.L.)

1 GRANDS50K, high v flux (120 vy + 119 v¢)
Bl GRANDS50K, low v flux (12 vy + 11.9 v7)
1 GRANDI1O0K, high v flux (120 v,y + 24 vx)
EE GRANDI10K, low v flux (12 vy + 2.4 ve)

i

—
CID
D
(=)
|
N
o

LIV coefficient, Re
S

Atm. v (GeV-TeV), éi;dr), é;dT) High-energy astro. v (TeV-PeV)
(IceCube 2017, 90% C.L.) (IceCube 2021, B > 31.6)
[ I I [ I I

3 4 5 6 7 8
Testagrossa, Fiorillo, MB, PRD 2024 Dimension of Lorentz invariance-violation (LIV) operator, d

—

9
x®
[=)

I




IceCube-Gen?2 (radio) alone might measure flavor

0.0

IceCube-Gen2 (radio) - L9 ® 7t decay: (1:2:0)g
UHE v: 108-1010 GeV ' 09 I p-damped: (0:1:0)q
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Perspectives

Look for large effects first
There is no sensitivity to small effects yet

Weigh any new-physics claims by astrophysics + particle uncertainties
L.e., marginalize or profile over all relevant known unknowns

Always perform hypothesis testing
E.g., compute Bayes factors,

Be mindful of experimental limitations when making claims
Account for the detector response, energy resolution, etc.

Do not use overly simplified theory models
Otherwise, we might end up claiming unrealistically good sensitivity



Questions

What signals are unique to quantum-gravity effects?
Might need to look at multiple observables to pinpoint the origin

Extract new physics with individual v sources?

E.g., neutrino lifetime limits from NGC 1068 [Valera, Fiorillo, Esteban, MB, PRD 2024]
LIV bounds from TXS 0506+056 [MB, Ellis, Konoplich, Sakharov, PRD 2025]

Can we be systematic in our searches?

E.g., in an EFT theory, write down all possible couplings, work out predictions
for the energy spectrum, directions, flavor timing, and compare to data




Thanks!
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Flavor dipoles and quadrupoles in the sky? Flavor-dependent

multipole expansion

Isotropic flux
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Flavor dipoles and quadrupoles in the sky? Flavor-dependent

multipole expansion

Isotropic flux
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