Radiative models for rapid blazar flares :
a focus on time delays

7 AL Zech

BridgeQG Workshop
Annecy, February 2026

LUX ) Qoservateire | PG| 3



Modeling approaches for blazar variability
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emission of different blazar types
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emission of different blazar types
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- Disk, Broad Line Region,
dust torus emit weakly

- leptonic models : y-rays
due to Synchrotron Self
Compton

- hadronic models :
proton-synchrotron
dominates y-rays ?

- Disk, Broad Line Region,
dust torus emit strongly

- leptonic models: y-rays
mostly due to External
Inverse Compton

- hadronic models :
proton-induced cascades
dominate y-rays ?

A. Zech, BridgeQG workshop Annecy 2026



flares : macroscopic vs. microscopic variations

variation of the macroscopic parameters of the emission region
- change in size of emission region R (expansion, contraction) or density
- change in magnetic field B or external radiation field

- change in Doppler beaming (Lorentz factor, viewing angle)
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flares : macroscopic vs. microscopic variations

variation of the macroscopic parameters of the emission region
- change in size of emission region R (expansion, contraction) or density
- change in magnetic field B or external radiation field

- change in Doppler beaming (Lorentz factor, viewing angle)
variation in the energy distribution of the emitting particles
- particle injection (pre-accelerated particle distribution)

- particle acceleration (shock, turbulence, magnetic reconnection...)

2 complementary approaches : modeling stochastic variability patterns vs. individual flares
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particle acceleration in jets

Possibly there is no single mechanism at play, but several mechanisms contribute in different regions of the jet.

Reconnection
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Reconnection
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Matthews, Bell, Blundell 2020
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Single-zone models :
particle injection / acceleration

(here applied to BL Lacs)
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particle evolution through injection or acceleration

- a single zone is responsible for the low-state and flare emission
- flares arise from a variation of the electron distribution in the zone
- particle distribution described by Fokker-Planck equation (e.g. EMBLEM code) :
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e.g. Fermi-l acceleration
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- shift of peaks during flare

- flare onset shifts between energy bands

- occurrence of a plateau
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comparison with a 2013 flare of Mrk 421
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- for this simplified application, the injection scenario 15

( = very efficient Fermi-I acceleration) provides the best
representation of the high-energy data

- Time delays :

Injection : early peak in X-rays due to IC cooling
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blob moving through turbulent jet region

In this model using several zones, the continuous low-state emission from Mrk 421 is connected with a flare in Feb. 2010 :

- low state is modelled with a continuous injection (+ cooling, escape) of electrons accelerated on a bow shock

- the hard flare spectrum requires additional Fermi Il acceleration from a turbulent emission region surrounding the blob
as it passes through an inhomogeneous region inside the jet.
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A. Zech, BridgeQG workshop Annecy 2026 12



blob moving through turbulent jet region
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Single-zone models :
propagation through photon fields

(application to FSRQSs)
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modeling the photon fields in a FSRQ

e.g. EMBLEM code

- External Compton emission on photon fields from

accretion disk, corona, Broad Line Region, dust torus
. ° 0. ® P o o BLR
- In many scenarios, the BLR has the most significant N .' o *EN® ° o '. *e
contribution (emission region at sub-pc scales) : ¢ @ '.' .
&

.. . jet
-- photons from a spectrum of emission lines

-- BLR modeled as a spherical shell with inner radius
Rer ~ 3 x 10* ¢cm (0.1 pc)

-- For distance d > Rgr, the energy density decreases as :

2

L 'BLR( € ')rblob

B3Ry c|1+(d/R ) ™ dust
orus

disk

U(e',d) =

(Hayashida et al 2012)

-- y-y absorption following Béttcher & Els (2016)
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accelerating blob model

o»e—»Q—»Q—» Q

low-state emission from a stationary
emission region, e.g. recollimation shock
(“blob 17)

flare is caused by an accelerating,
expanding emission region (“blob 2”)

- acceleration through differential
collimation up to ~ BLR

dust torus blob 1

Le Bihan, Dmytriiev, AZ, 2025

- for d < Rgwr , as blob 2 accelerates :
U'ocd
- for d > dmax, as blob 2 advances at constant velocity :

U I oC d_BBLR

- particle spectrum from injection of a steep power-law
+ cooling (incl. adiabatic) + particle escape

. Zech, BridgeQG workshop Annecy 2026
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accelerating blob model
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accelerating blob model
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Multizone models
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Internal shocks

MUZORF model (multi-zone radiation feedback)
- emission of two relativistic plasma shells with different Lorentz factors into the jet
- faster inner shell catches up with slower outer shell - inelastic collisions produces internal shock

- particle acceleration on the reverse and forward shock
- emission of synchrotron and SSC radiation is followed across multiple cylindrical slices

Accretion Disk

/ Cylindrical emission region

SMBH ’

RS CD |[FS ,——> Jet Boundary
—p

—
=
1
—> To the observer
 —
\
\

Transfer of photons in between
zones throughout the FS & RS
emission regions.

Joshi M. & Boettcher M., 2011, ApJ, 727, 21

Side View

——— -
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internal shocks
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time-integrated SED MWL light curves for a single collision.

optical flux : rise as long as the shocks are present in the emission region.
Then cooling dominates and the pulse begins to decline steadily.

HE photons : result of Compton up-scattering of optical photons off low-energy electrons - same peak as optical
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VF, [Jy Hz]

Internal shocks
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optical flux : rise as long as the shocks are present in the emission region.
Then cooling dominates and the pulse begins to decline steadily.

HE photons : result of Compton up-scattering of optical photons off low-energy electrons - same peak as optical
X-ray flux : continues to rise even after the shocks exit the emission region - peak delayed and long asymmetric decay
- X-ray photons are produced from up-scattering of IR synchrotron photons off lower energy electrons, which cool slowly
- slow intensity rise
- continued increase of late-arriving photons at the sites of scattering due to the internal light crossing time effect.

VHE photons : scattering of soft X-ray photons off higher-energy electrons that cool faster — earlier peak than at optical /| HE

A. Zech, BridgeQG workshop Annecy 2026
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Internal shocks
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optical flux : rise as long as the shocks are present in the emission region.
Then cooling dominates and the pulse begins to decline steadily.

HE photons : result of Compton up-scattering of optical photons off low-energy electrons - same peak as optical
X-ray flux : continues to rise even after the shocks exit the emission region - peak delayed and long asymmetric decay
- X-ray photons are produced from up-scattering of IR synchrotron photons off lower energy electrons, which cool slowly
- slow intensity rise
- continued increase of late-arriving photons at the sites of scattering due to the internal light crossing time effect.

VHE photons : scattering of soft X-ray photons off higher-energy electrons that cool faster — earlier peak than at optical /| HE
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turbulent plasma and standing shock

Turbulent, Extreme Multi-zone model (TEMZ)

- turbulent plasma flowing down a jet crosses a standing conical shock (e.g. recollimation shock).
- The shock compresses the plasma and accelerates electrons.

- Emission of synchrotron and External Inverse Compton on IR photons from dust torus and photons from the Mach disk.

- Turbulence is approximated as many cells, each with a uniform magnetic field with random direction.
- Density of high-energy electrons in the cells changes randomly with time following the power spectral density from observations.
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turbulent plasma and standing shock

Relative Flux Densily

i T T T

PR B s Atest case usin.g a rapid pulse of high density cells shows the generation
- SSC—MD y-ray 1 of time delays :
'15 B T ' -
. : Optical synchrotron & EC-Dust y-rays :
10 |-
3 Flux rises steeply as the pulse crosses the ring of computational cells at
Sk the upstream end of the shock.
- Then it declines gradually as the pulse crosses smaller rings of cells.
0 | - : s " Electrons that produce y-ray and optical photons lose energy rapidly
r SSC-MD X-ray - - radiation confined to a thin layer close to the shock.
" Synchrolron Oplical -
- Synchrotron 1| mm
10 |
5 |
0

0 10 20 a0 40
Time {days)

A.P. Marscher 2014

A. Zech, BridgeQG workshop Annecy 2026 25



turbulent plasma and standing shock

Relative Flux Densily
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turbulent plasma and standing shock

Relative Flux Densily

B e T
g,=0 EC-Dust y—ray
C SSC—MD y-ray 4
o T% ¥ '
! # ’[% ]
10 |- I %. s
r [ s 1
[ £ Al g ]
b )
L _f I:l L
L .wm' T |
0 ——————— : ——————+
S5C-MD X-ray -
e [ Synchrolron Oplical
- Synchrotron 1| mm
10 |
D
0

0 10 20 a0 40
Time [days)
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A test case using a rapid pulse of high density cells shows the generation
of time delays :

Optical synchrotron & EC-Dust y-rays :

Flux rises steeply as the pulse crosses the ring of computational cells at
the upstream end of the shock.

Then it declines gradually as the pulse crosses smaller rings of cells.

Electrons that produce y-ray and optical photons lose energy rapidly
- radiation confined to a thin layer close to the shock.

Synchrotron 1 mm :

Electrons lose energy more slowly than for optical synchrotron
- pulse delayed and slower decay

SSC-MD X-rays & SSC-MD y-rays :

Flux increases modestly at first, then a rapid flare occurs as the pulse
crosses the MD, creating a sudden increase in seed photon flux.

The X-ray pulse is longer due to slower cooling of the electrons.
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magnetic reconnection zones

- reconnection events within the jet lead to particle acceleration and flares
- requires high jet magnetization 0 >1 ( - efficient shock acceleration requires low magnetization o < 10?)

- simulation of plasmoids with PIC codes

Reconnection Layer

Petropoulou, Giannios, Sironi, 2016, MNRAS, 462, 3325
Sironi, Giannios, Petropoulou, 2016, MNRAS, 462, 48
Christie, Petropoulou, Sironi, Giannios, 2019, MNRAS, 482

A. Zech, BridgeQG workshop Annecy 2026
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magnetic reconnection zones

Relative Flux
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Study of light curves :
Higher-energy bands peak earlier than lower-energy bands.
The number of higher-energy particles peaks at the maximal

efficiency of magnetic reconnection, i.e. in the contact region of
two merging plasmoids, where the acceleration is most efficient.

As the merging moves beyond the contact region, it can no longer
accelerate these highest-energy particles.

Additionally, synchrotron cooling is slower at lower energies, so
electrons can continue to accumulate in the reconnection layer even
if the reconnection efficiency drops.

H. Zhang, X. Li, D. Giannios et al. 2020
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Conclusions

A variety of possible scenarios for the emergence of blazar flares,
depending on the location and physical conditions that characterize the acceleration / emission region.

(and more scenarios exist : emission from BH magnetosphere, cloud crossing jet ...)

More sophisticated modeling approaches ongoing : MHD + radiatif, PIC + radiatif ...

A. Zech, BridgeQG workshop Annecy 2026
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Conclusions

A variety of possible scenarios for the emergence of blazar flares,
depending on the location and physical conditions that characterize the acceleration / emission region.

(and more scenarios exist : emission from BH magnetosphere, cloud crossing jet ...)
More sophisticated modeling approaches ongoing : MHD + radiatif, PIC + radiatif ...

A variety of physical origins for energy-dependent delays :

- energy-dependent cooling and acceleration

- internal light-travel effects

- self-absorption (radio) and yy-absorption (VHE)

- interplay between the emission of several regions that can dominate the observed flux
- interplay between different emission components (e.g. SSC, EIC on different fields)

Delays can go in both “directions”.

A. Zech, BridgeQG workshop Annecy 2026
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Conclusions

A variety of possible scenarios for the emergence of blazar flares,
depending on the location and physical conditions that characterize the acceleration / emission region.

(and more scenarios exist : emission from BH magnetosphere, cloud crossing jet ...)
More sophisticated modeling approaches ongoing : MHD + radiatif, PIC + radiatif ...

A variety of physical origins for energy-dependent delays :

- energy-dependent cooling and acceleration

- internal light-travel effects

- self-absorption (radio) and yy-absorption (VHE)

- interplay between the emission of several regions that can dominate the observed flux
- interplay between different emission components (e.g. SSC, EIC on different fields)

Delays can go in both “directions”.

Better understanding of location and physical conditions of emission regions ?
- well-sampled MWL datasets of rapid flares are still rare (especially for BL Lacs)

— a variety of models exists, but comparison of different models against data is still the exception

A. Zech, BridgeQG workshop Annecy 2026
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backup
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Outline

Modeling approaches for blazar variability

Single-zone models : particle injection / acceleration
Single-zone models : propagation through photon fields
Multi-zone models

Conclusions

A. Zech, BridgeQG workshop Annecy 2026
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light-curves for different acceleration mechanisms
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Time delays ?

Fermi | acceleration :

Delays between flare onset due to
gradual acceleration.
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>200 GeV

Fermi Il re-acceleration , Injection :

o

o

S

-- Injection/acceleration start
-+ Injection/acceleration end
—e— Injection
—e— Fermi | acceleration
—e— Fermi | reacceleration
—— Fermi Il acceleration
= Fermi Il reacceleration

Flare peaks early in the X-ray band,
then IC cooling sets in rapidly and
leads to a flux decline.

T + T T T u T T T T T
0 2 4 6 8 10 12 14 16 18 20

t [R/c]

Thevenet, AZ, Dmytriiev, Boisson, accepted A&A
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accelerating blob model

- for d < Rgr , as blob 2 accelerates :

o &> 3—>Q—>o—> Q U'od

- for d > dmax, as blob 2 advances at constant velocity :

blob 2 BLR dust torus
" 202 blob 1
Le Bihan, Dmytriiev, AZ, 5 , -
y U m d ﬂBLR
low-state emission from a stationary _ o
emission region (“blob 17) - partlcl_e spectrum _from_lnjectlon_of a steep power-law
+ cooling (incl. adiabatic) + particle escape
flare is caused by an accelerating,
expanding emission region (“blob 2”) .
- Bbhionr =0.09 G, initial B'pion2 = 0.03 G ,
(differential collimation) : Ribiobs ~ 5 x 10% cm, initial R'bionz ~ 2 X 10> cm
I_‘blob = min(rmax ’\/d/(3Rs))
o _ - relativistic effects important for BLR crossing
(Ghisellini & Tavecchio 2009) Distance traveled in observed time interval Atops :
Mmax = 30 D = AtobstlobC6Fblob/(1+Z)

— acceleration up to ~ BLR

A. Zech, BridgeQG workshop Annecy 2026
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propagating blob model : hadronic vs. le

A plasma blob is moving along the jet with constant velocity.

It is expanding following the constant jet opening angle.
B-field decreasing (magnetic flux is conserved)

Continuous injection of relativistic particles with constant power.

VHE band is fully absorbed at early times due to yy pair production
on photon fields - delay wrt other bands !

Effect of pair production (dashed lines) :
For large opening angles, t.sc becomes very large at large distance

- secondary flares from pair production
- more significant for hadronic scenario (secondary particles)
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M. Zacharias 2023
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jet/cloud interaction scenarios

very rapid variability seems possible if relativistic hadrons in the jet interact with stellar envelopes (red giants) or gas clouds
(BLR) via p-p, p-y or p-synchrotron.
(e.g. D.V. Khangulyan, M.V. Barkov, V. Bosch-Ramon, FA. Aharonian, A.V. Dorodnitsyn 2013)

3.5

{

F,[ph/cm’s]
n

- 4l
° 0.5 § § T
pp (ga 2 e+...) ol B
Mo shock Disrupted RG %
Jet _05-.5529 5.5I292 5.5I294 5.5I296 5.5I298 5.I53 5.5302
t, [days] x 10°
e e B
Accretion disc .
VHE flare of M87 in 2010
Bosch-Ramon, Perucho, Barkov, A&A (2012) Barkov, Bosch-Ramon, Aharonian, ApJ (2012)
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e.g. blazar flares in the Fermi-LAT band

Flux in erg cm? sec™ Flux in erg cm? sec™

Flux in erg cm? sec™

Figure 1. Top left — 3C 279; top right — 3C 273; middle left —
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1510-089; middle right — Mrk 501; bottom left — PKS 2155-304; bottom right — PKS 1424-41.

The red open circles denote the Fermi-LAT light curves of the above blazars at the energy range 0.1-300 GeV, which are smoothed with a Gaussian function of
width 10 days; green long-dashed lines represent the individual decomposed flares (see the text), the blue dot—dashed line is the best fit to the model function

given in Section 3.1, which is the sum of the individual flares, while the magenta dotted line is the residue after the fit.

Roy et al. 2019

For example Roy et al. 2019 :

Study of long-term (~weeks—months)
and short-term (~hour—day) GeV flares
in a sample of 10 blazars from the
Fermi-LAT and the Yale/SMARTS
monitoring programme.

— most long-term flares are
symmetric : dominated by the crossing
time-scale of a disturbance ?

- larger fraction of short-term flares
asymmetric : signature of gradual
particle acceleration and cooling ?

A. Zech, BridgeQG workshop Annecy 2026
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rapid variability from the BH magnetosphere ?

Scenarios of pulsar-like particle acceleration by the electric field across a magnetospheric gap
at the base of the radio jet.

- A maximally rotating BH with event horizon ry accretes plasma. In the ergosphere extending to
2rq in the equatorial plane, Poynting flux generated by frame-dragging effect (— Blandford-Znajek)

- The rotation of the BH induces a magnetosphere with polar vacuum gap regions. In the gaps,
the electric field of the magnetosphere has a component parallel to the magnetic field
accelerating particles to ultra-relativistic energies.

- Inverse-Compton scattering and pair production due to interactions with low-energy thermal
photons from the accretion disk leads to the observed gamma rays.

0.040 7

0.035 3 .. | |
;ﬁ 0.030 WMMWMWWW Add (Aleksic et al. 2014)
5
=]

&

0.023 — —— Monopole, aobs = 33.5° Info
0.020 4 — == Disk, aops'=11.2°
~ —— Disk, aops'= 71.2°
S 0.015 4

(Crinquand et al. 2021)
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variation of the particle distribution

a systematic study

(P. Thevenet, AZ, C. Boisson, A. Dmytriiev;
submitted to A&A)

A. Zech, BridgeQG workshop Annecy 2026
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Internal light-crossing effect

=t -
—t49A Correction for internal light-crossing effect
Hlor2Al — Inspired by the treatment in jetset (A.Tramacere).
_ -~ “Smoothing” of simulated light curves.
Observed
flux 4

A. Zech, BridgeQG workshop Annecy 2026



the scenarios

injection

Qi : fixed injection rate, fixed PL
spectrum, injected during flare
window

Shock pre-accelerating particles

— Particle injection
stream

A

Blob —]
(emission zone)

Jet

injection & adiabatic expansion

Qinj plus fixed expansion rate

Shock

Particle injection
stream

Expanding blob
(emission zone)

Jet
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- shift of peaks during flare decay : :

o 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20

- occurrence of a plateau (=high steady-state) HE tIR/c] ¢ [R/c)
in light curves

- flux decrease during plateau due to
adiabatic expansion
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the scenarios

injection Fermi-l acceleration

Qin : fixed injection rate, fixed PL Qinj With increasing ymax during flare
spectrum, injected during flare window
window tsnock : time-scale of ymax evolution

Shock pre-accelerating particles
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Fermi-l acceleration
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the scenarios

injection

Qi : fixed injection rate, fixed PL
spectrum, injected during flare
window

/j-? Shock pre-accelerating particles
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Qi plus fixed expansion rate
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tshock : time-scale of ymax evolution

e
/O o% Turbulences
(particle acceleration)

Blob —
(emission zone) \

Jet

—

Standing shock
= ‘diamond structure’

Fermi-l re-acceleration

Qi : fixed continuous PL injection
tm : time-scale for sys. energy gain

Shock ——7—1
\
Particle injection ——l l l l
stream /—\
Q o% Turbulences
(particle acceleration)
Blob —ft
(emission zone) \
L1 Standing shock
Jet = ‘diamond structure’

A. Zech, BridgeQG workshop Annecy 2026

47



Fermi-l re-acceleration

F log[ergcm~2s71]

1.5-3.5eV 0.2-10 keV
7 ® Peaks rise 7 i - Acceleration start { % «+++ Acceleration start
— SED, 2.0 Ric - Acceleration end 251 «+++ Acceleration end
— SED. 4.0 R/c 6 tr =07 Ric —— t =07 RiC
—— SED, 8.0 R/c tr = 1.0 R/c —e— tr; = 1.0 R/C
-8 4 ® Peaks decay x tr =13 R/c x 20 —e— tr =13 R/C
—— SED, 10.0 Ric EEE trr= 2.0 Ric 3 —— = 2.0 R/
SED, 14.0 R/c = =
SED, 18.0 R/c 8 8 i)
SED, 22.0 R/c Na N
-9 { — SED, 30.0 R/c = =
optical E E
Xrays ’5 3 a 10
y-rays = =2
VHE y-rays
_10 2 5
1
T t T T T T T T T T T 0 t T T T T T T T T T
- o 2 4 6 8 10 12 14 16 18 20 0o 2 4 6 8 10 12 14 16 18 20
H t[R/c t[R/c
optica (Rrcl X-ray (Ricl
0.1-100 GeV >200 GeV
-12 I J T
301 X ===+ Acceleration start 00 ===+ Acceleration start
«+++ Acceleration end «+++ Acceleration end
55 —— t; =07 RIC 250 —— t;=0.7 RIC
—— tr=1.0 R/C —— tr=1.0 R/C
-13 .5 it = p 7 T - s " s x —— t=13R/c > —— tr=13R/c
E logleV] é 20 4 —— tr = 2.0 R/C é 200 —— tr=2.0 R/C
t;=13R/c 3 3
N 54 N 150
© ©
£ E
O 10 ) 100
=2 =2
- difference in flare shapes and peak times - ; »
between optical/GeV and X-ray/TeV. o — 1 0

0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20

t[R/c] t[R/c]

A. Zech, BridgeQG workshop Annecy 2026 48



the scenarios

injection

Qi : fixed injection rate, fixed PL
spectrum, injected during flare
window
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Fermi-ll acceleration
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the scena

ros

injection

Qi : fixed injection rate, fixed PL
spectrum, injected during flare
window
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Fermi-ll re-acceleration
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light-curve comparison

* injection scenarios :

Onset of the flare rise occurs at the same
time in all bands.

Occurrence of plateaux.

» Fermi-l scenarios :
Flare onset is delayed at higher energies.

* Fermi-ll scenarios :

Flare onset occurs ~ at the same time in
different bands.

Acceleration of cold particles does not reach
a plateau.

Efficient re-acceleration leads to a flare that
is peaking earlier at higher energies.

Decay times determined by the escape time
and the effect of radiative cooling.
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systematic study: parameter

Parameter [[ Variable | Value | Unit
Source
Initial magnetic field By 0.04 G
Magnetic field configuration mp 1 -
Initial blob radius Ry 2.8 x 1016 cm
Blob Doppler factor 0 29 -
Redshift 4 0.0308 -
Angle to observer [’ {0; 1} °
Evolution
Quiescent injection duration tinj 30 R/c
Quiescent escape timescale tesc 1 R/c
Beginning of expansion fexp 0 R/c
Beginning of flaring Hlare 2 R/c
Duration of flaring tdur 3 days (observer frame)
Escape timescale during flaring tesc,flare 1 R/c
Continuous injection spectrum
Spectrum normalization Ninj 1.86 x 1071 cm st
Spectrum slope Qipj -2.23 -
Pivot Lorentz factor Y inijpivot 1.0x 10° -
Cutoff Lorentz factor Vin,cut 5.8x10° -
Minimal injected Lorentz factor Yinj,min 800 -
Flaring injection spectrum
Spectrum normalization Nagd 4x1071 cm st
Spectrum slope @add -2.23 -
Pivot Lorentz factor Yadd,pivot 1.0x10° -
Cutoff Lorentz factor Yadd,cut 5.8x10° .
Minimal injected Lorentz factor Y add,min 800 -
Particle acceleration
Fermi I re-acceleration timescale tr, [0.7 - 2.0] R/c
Turbulent spectrum slope q 2 -
Maximum spectrum wavelength Amax [0-1] R
Turbulence level Loy [0-1] -
Simulation grids
Minimal electron Lorentz factor Ymin 100 -
Maximal electron Lorentz factor Vmax 1.0 x 107 -
Lorentz factor grid’s points ny 200 -
Simulation start time tstart 0 R/c
Simulation end time Fond 30 R/c
Time grid’s bins Npins 1000 -
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