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BOUNDS ON LIV FROM GRBS

Investigation of possible effects on time of flight: energy dependent
time delay between photons

Best conditions to detect a LIV-induced time delay:
- large source distances

- large photon energy

- short timescale variability

GRBs are good candidates
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EMISSION FROM GRBS: AN OVERVIEW

TWO DISTINCT EMISSION PHASES

Log(flux)

Log (time)

PROMPT AFTERGLOW

from 10 keV to 10 MeV
non-thermal spectra

0.1 seconds to 103 seconds
highly variable flux

from radio to TeV
non-thermal spectra
days - weeks

smooth (PL) lightcurve
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GAMMA-RAY BURSTS - THE STANDARD MODEL

Low-energy
gamma rays

Black hole
engine

WORKSHOP BRIDGE QG

Colliding shells emit
low-energy gamma rays
(internal shock wave)

Slower
shell

emission

Jet collides with
ambient medium
(external shock wave)

NN High-energy
gamma rays

NN\

X-rays

v
Visible light

Afterglow
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AFTERGLOW EMISSION LIGHTCURVES

OBSERVATIONS AT DIFFERENT FREQUENCIES
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AFTERGLOW EMISSION LIGHTCURVES

OBSERVATIONS AT DIFFERENT FREQUENCIES

X-ray GeV (0.1-10 GeV)
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VHE AFTERGLOW EMISSION (SINCE 2019)

Miceli D. & Nava L., 2022, Galaxies, 10, 66
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AFTERGLOW MODEL

SURROUNDING OUTFLOW
MEDIUM ~
o o © ~ o
o ° T~ ~ o~ -~
o o TY~ oL Compact object
o (0] ~ -~ .
~ <~ _ (central engine)
o o ulk Lorentz factor =~
o
o
o © -
o t kinetic energy .-
° _=-="
o o o _ - -
o o _--"
) (o]
number B
density
n(r)
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DYNAMICS

Collision between jet of kinetic energy
Ex = NoMejc? and the external medium

with number density n(r) = Ar-s

At distance r, the collected mass is

m(r) = J47r > n(r) m, dr P37

Conservation of energy and momentum

BEFORE COLLISION AFTER THE COLLISION
oM, cc+m@r)cc = T [M,; + m(r) + €'(r)/ c?] c?
LoboM,jc = T(NPIM,; + m(r) + €'(r)/ c?]c

WORKSHOP BRIDGE QG LARA NAVA - INAF



DYNAMICS

M . .
o m(r) < —2 I'(r) =T, coasting phase
L'y
M . ,
o Y <m@) <M,T, I'(r) = Ex deceleration phase
FO I m(r) see Blandford & McKee 1976
e m(r) > M,I ['(r) =1 non-relativistic phase
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DYNAMICS

A closer look to the deceleration phase
see Blandford & McKee 1976

M,;
<m(r) <M,L —>
I
- -

Given the relation
between radius
and time:

r

t e =~ (1 4+2) =

WORKSHOP BRIDGE QG LARA NAVA - INAF



RELATIVISTIC SHOCKS

DIFFUSIVE SHOCK ACCELERATION (FERMI MECHANISM)

ejecta movesiill this direction

shock <
Upstream downstream
[
= o o
[ [
02 . ﬁ
ks - ° o
& ° ® © ®
TU ° Turbulence = 9,.
- Q

E ) j:>'_? e
QO @ |lJLFwaves M
= : o
X [ L \
() ® ¢ -

°
Diffusive acceleration

Parameters describing electrons: €e, &e, P, Ymax
Parameter describing magn. field: €g

WORKSHOP BRIDGE QG LARA NAVA - INAF



RELATIVISTIC SHOCKS

PARTICLE ACCELERATION

A fraction of the dissipated energy is used to accelerate particles
through collisionless (no Coulomb collision) shocks. The output of this
acceleration process is a power-law particle spectrum with index p =2.2
-2.4

energy spectrum of

dN 4 the accelerated
dy electrons
' . >
}/min }/max Y
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RELATIVISTIC SHOCKS

PARTICLE ACCELERATION an 4
— .. dy
Derivation of the average and minimum .
Lorentz factor (<y> and ymin) of the electrons E . q
Ymin Vmax Y
o N, <y>m,c*= eeNpmpcz(F — 1)
Wlp
= <y>=¢— T -1)=2x10%,_,T,
m

e

Iymax d—];]}/d}/ Jymax y—p+1dy

° < }/ > _ Ymin d . Ymin
o Ymax d_N d B Ymax —p d
J}’min dy 4 I7/min 4 4

for Ymax = = Ymin and p > 2

= Ymin — €e
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RELATIVISTIC SHOCKS

MAGNETIC FIELD AMPLIFICATION
Derivation of the magnetic field strength

B?
/ 2
® ezpn m,cC I'-1)=—
7T
N N
n’ P-_7r n I’

7 S

factor 4 due to shock compression = n'=4In

= B'= \/327r€Bnmp62F
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AFTERGLOW MODEL

SURROUNDING OUTFLOW
MEDIUM ~
o o © ~ o
o ° T~ ~ o~ -~
o o TY~ oL Compact object
o (0] ~ -~ .
~ <~ _ (central engine)
o o ulk Lorentz factor =~
o
o
o © -
o t kinetic energy .-
° _=-="
o o o _ - -
o o _--"
) (o]
number B
density
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SYNCHROTRON+INVERSE COMPTON EMISSION

E(y) 6brm,c

+ ZC,' ,B, — — /
Synchr.otro.n IC (v, B') P(yv,B) o;,yB2(1+7Y)
cooling time

6brm,c

Ye =

O'Tt/BQ(l + Y)

Ymin Ye Ymax 7 Ve Y min Ymax 7

Valid in Thomson regime, otherwise Y(y)
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SYNCHROTRON SELF COMPTON SPECTRUM

log,, [V, /v f (v.)]

log,, [V, /v _f (V)]

slow cooling

fast cooling
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AFTERGLOW MODEL: suMMARY OF MODEL PARAMETERS

JET SURROUNDING MEDIUM
- ® . e o . . e N = no R-S
* Exin ¢ * .
) ro I- t-
* Qiet, Yview, Structure - nielrant! Ip4=ndioln faig
- radial profile s
AFTERGLOW
LIGHTCURVES
AND SPECTRA
from to
ABSORPTION SHOCK PHYSICS
RS FS
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-
RS
)

WORKSHOP BRIDGE QG LARA NAVA - INAF



GRB 190114C

Z=0.42 MAGIC 2019, Nature, 575, 459
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GRB 190114C

Z=0.42 MAGIC 2019, Nature, 575, 459
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GRB 221009A

z=0.15

LHAASO collab. 2023

lightcurves

Energy flux [erg cm™ s7]
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GRB 221009A

z=0.15 Ren, Wang & Dai 2024

Modeling of all multi wavelength data
Structured jet: narrow cone (VHE from SSC) + wings (lower frequencies)
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THE SHORT GRB 090510 DETECTED UP TO 31 GEV

Counts/bin Counts/bin Counts/bin
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BOUNDS ON LIV FROM GRBS

GRB 090510 190114C 221009A
Fermi/LAT MAGIC LHAASO
Redshift 0.9 0.42 0.15
Photon | 31 ey 2 TeV 13 TeV
energy
Timescale| seconds 102103 s

sub |super| sub |super| sub | super

Eqac: 22 | 3.9
[1019GeV] | 9.3 13

Eqc,2 4.9 3.7
[100 GeV]| 13 9.4

0.58 | 0.55 10 11

6.3 5.6 69 70

Lower limits (95%) for the linear (n=1) and quadratic (n=2) cases
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BACK-UP SLIDES




GRB 190114C

Zz=0.42
Model parameters Ex (erg) o no (s=0) | A, (s= €e €8 p
MAGIC et al. 2019 8x1053 700 0.5 — 0.07 | 8x105 |2.6
Wang et al. 2019 6x1053 300 0.3 — 0.07 | 4x105 |2.5
Zhang H. et al. 2020 5x1054 0.1 — 0.05 | 5x10¢ |2.6
Asano et al. 2020 1054 600 1.0 — 0.06 9x104 (2.3
Asano et al. 2020 1054 300 — 0.1 0.08 | 1.2x10-3 |2.35
Joshi & Razzaque 2021 4x1054 300 0.02 0.03 | 1.2x102 |2.18
Derishev & Piran 2021 3x1053 — 2 0.11 | (3-6)x103 |2.5
Derishev & Piran 2021 3x10533 — 0.11 | (3-6)x103 |2.5




GRB 19082%A

Z=0.08 H.E.S.S. Collab, 2019, Nature, 575, 464
10™° - T T T T T =
XRT |
i LAT
To* 183, TS Tested models:
la / \ /@Q\ H.E.S.S.
B AN syn only
2 10" b To+[27.2,31.9) hrs \ _
E:’ : syn + SSC
<
Z
&
10"

Energy (eV)

syn+SSC interpretation: no good modeling found, but it is imposed:

» Ex= Eiso = 2 X 103%erg
»ng=1cm-3



MODELING OF AFTERGLOW LIGHTCURVES

EXAMPLE OF MODELING OF MULTI-WAVELENGTH
AFTERGLOW LIGHTCURVES

1071

' ' UL | ! ! L | ! ! L | i ! et ] ]. 0_7
3' KA X-rays 90 GHz $ 5 GHz ]
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GRBS AT GEV ENERGIES

THE MAXIMAL SYNCHROTRON FREQUENCY

Maximal electron energy y, . is reached when
acceleration time is equal to cooling time:  #,..(¥) = £,,(¥)

t'/ ~Y i ~Y E/ — ymecz l’ — 6ﬂmec
““ ¢ eBc eBc > orBYy
5 Ome
= Vmax = GTB/
, , eB'h 9m,ch
E. . ..=h,,  =hv 2= Ymax I'= '~ 150MeV X T
C 4re
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GRBS AT GEV ENERGIES

THE MAXIMAL SYNCHROTRON FREQUENCY

electron spectrum after acceleration

e B’

2rm,c

, e B’
U

2
min — }/min
2rm,c

/ 2
v max ~— ymax

maximal energy of accelerated electrons implies
maximal energy of synchrotron photons
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GRBS AT GEV ENERGIES

PROBLEM WITH THE INTERPRETATION

Many photons detected from GRBs have energies exceeding the maximal
synchrotron energy

102E all these photons can not
: have synchrotron origin!
— ...iInverse Compton?
T
O,
>-101-_ /
>
()
(-
()
(-
2
2109 T~
o
synchrotron limit:
[ * o o maximum energy for
B o R Yo LN V0L S ¥\ AN 1= R T L photons produced by
Nava 2018 Photon arrival time [s] synchrotron radiation
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GRBS AT TEV ENERGIES???

PRESENCE OF SYNCHROTRON SELF COMPTON?

v

syn

>
photon energy
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SYNCHROTRON LIGHTCURVES

EXAMPLES OF EXPECTED o,
AFTERGLOW LIGHTCURVES |

high frequency
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X-ray and TeV luminosity light curves

Miceli D. & Nava L., 2022, Galaxies, 10, 66
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GRB 180720B

Z = 0.65

HESS 2019, Nature, 575, 464
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GRB 180720B

Wang et al., 2019, ApJ, 884, 117

Z = 0.65
N total flux
o L. Svyn flux
! ———— flux
2
=
O
Fs)
)
X
=)

10° ' ' ' ' ' ! i
total flux t=10hrs 1
9 T Syn flux
107 F - - - - IC flux 3
- - - - - |C flux without internal absorption
o 10

10 ' F

flux (erg/cm’s)

energy (eV)

Interpretation: syn+SSC

E=10%erg, Ih = 300

n=0.1cm-3 (s = 2 discarded: HESS

observation would result in huge
flux in the LAT range at 100 s)

€. =0.1, eg =104, p=2.4.

(see also Beniamini, LN et al., 2015)

First optical point: reverse shock?
Arimoto et al., 2024, NatAs, 8, 134

Synchrotron maximum energy hidden by

the rising of the SSC component



GRB 19082%A

Z=0.08 H.E.S.S. Collab, 2019, Nature, 575, 464
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GRB 19082%A

z=0.08 Salafia,...,LN, 2022, ApJ, 931L, 19
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GRB 19082%A

Z=0.08 Sato et al., 2021, MNRAS 504, 5647

* No prompt emission? o

- Late X-ray and radio * Promptemission
Central - Early X-ray and optical peaks (at 1400 sec)
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GRB 201216C

z=1.1

MAGIC collabor., MNRAS, 527, 5856, 2024
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Radio data: synchrotron emission from slower and much less energetics wings
(cocoon? See Rhodes et al, 2020, MNRAS, 496, 3326)
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Zz=1.1 MAGIC collabor., MNRAS, 527, 5856, 2024
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SYNCHROTRON SPECTRUM

SPECTRUM FROM A POPULATION OF ELECTRONS
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GRB 190114C

Z=0.42 MAGIC 2019, Nature, 575, 459
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LHAASO: WCDA DATA

Ren, Wang & Dai 2024

Flux (erg/cm’/s)

Modeling of all multi wavelength data
Structured jet: narrow cone (VHE from SSC) + wings (lower frequencies)
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