

LIV and source intrinsic effects

BridgeQG Workshop
Bridging High-Energy Astrophysical
Modelling and Lorentz Invariance
Violation Studies
LAPP Annecy, 4 - 6 Feb. 2026

Tomislav Terzić

FIZRI Faculty of Physics
University of Rijeka
tomislav.terzic@gmail.com

LIV effects

- Testing for consequences of Lorentz symmetry breaking or deformation
 - Propagation time delays
 - Modified reaction thresholds
 - Modified reaction dynamics
 - Vacuum birefringence
 - Impact on neutrino oscillations

$$E_i^2 = m_i^2 c^4 + p_i^2 c^2 \left[1 + \sum_{n=1}^{\infty} \eta_n^{(i)} \left(\frac{p_i c}{E_{QG,n}^{(i)}} \right)^n \right]$$

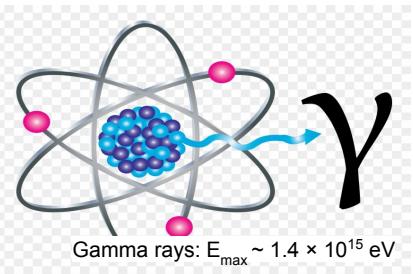
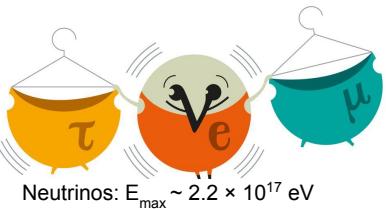
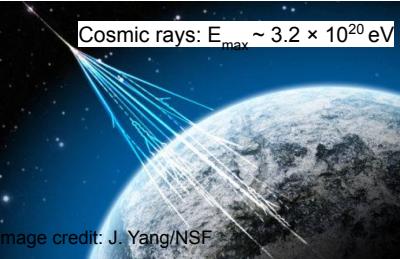
Modified dispersion relation - the usual starting point for LIV tests

Check: Addazi et al. 2022 (arXiv: [2111.05659](https://arxiv.org/abs/2111.05659)) for a comprehensive review of QG models and tests with cosmic messengers

See: [QG-MM Catalogue](#) for a census of measurement results

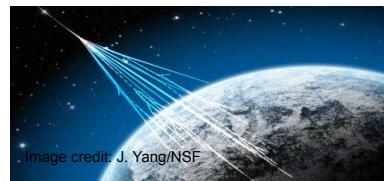
Testing & measuring LIV

- Typical accelerator experiment

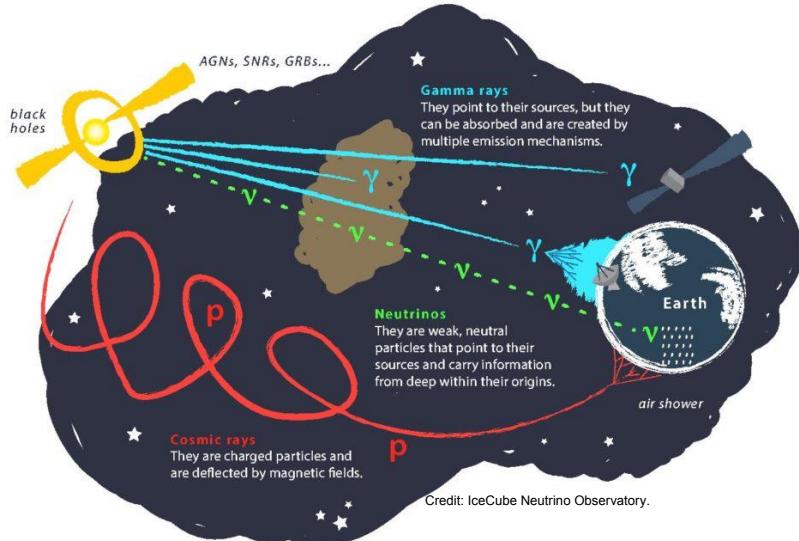



$$E_i^2 = m_i^2 c^4 + p_i^2 c^2 \left[1 + \sum_{n=1}^{\infty} \eta_n^{(i)} \left(\frac{p_i c}{E_{QG,n}^{(i)}} \right)^n \right]$$

However

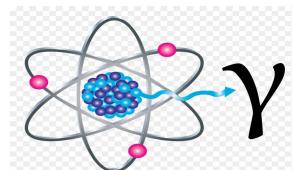
- Expected energy scale of QG: $E_{\text{Pl}} \sim 10^{28} \text{ eV}$
- LHC $E = 10^{13} \text{ eV}$ (10^{17} eV in proton rest frame)
- LHC $t \lesssim \text{day}$


Astroparticles

- UHECR: $E \sim 10^{20} \text{ eV}$
- ν : $E \sim 10^{17} \text{ eV}$
- γ : $E \sim 10^{15} \text{ eV}$
- $t \sim 10^3 - 10^{10} \text{ years}$

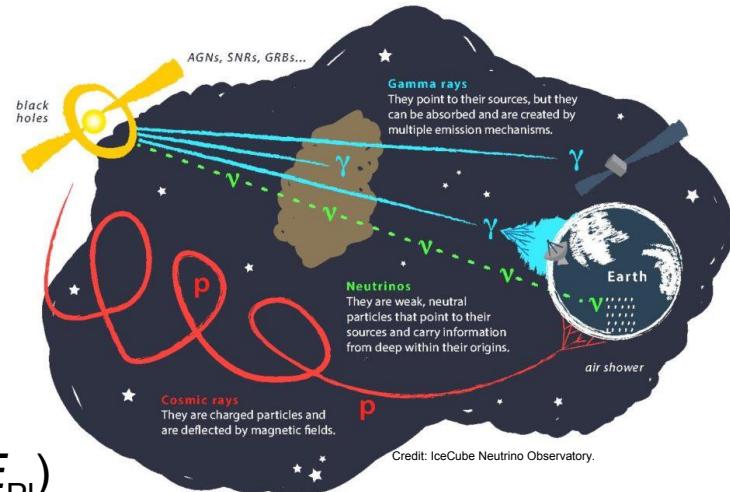


Messenger pros & cons


- Cosmic rays
 - Highest energies
 - Highest fluxes
 - Charged → trajectories deflected by magnetic fields
- Gamma rays
 - Straight propagation from the source
 - Easily detectable
 - Lowest energies
- Neutrinos
 - Straight propagation from the source
 - Probe interiors of sources
 - Notoriously difficult to detect
 - Poor angular resolution

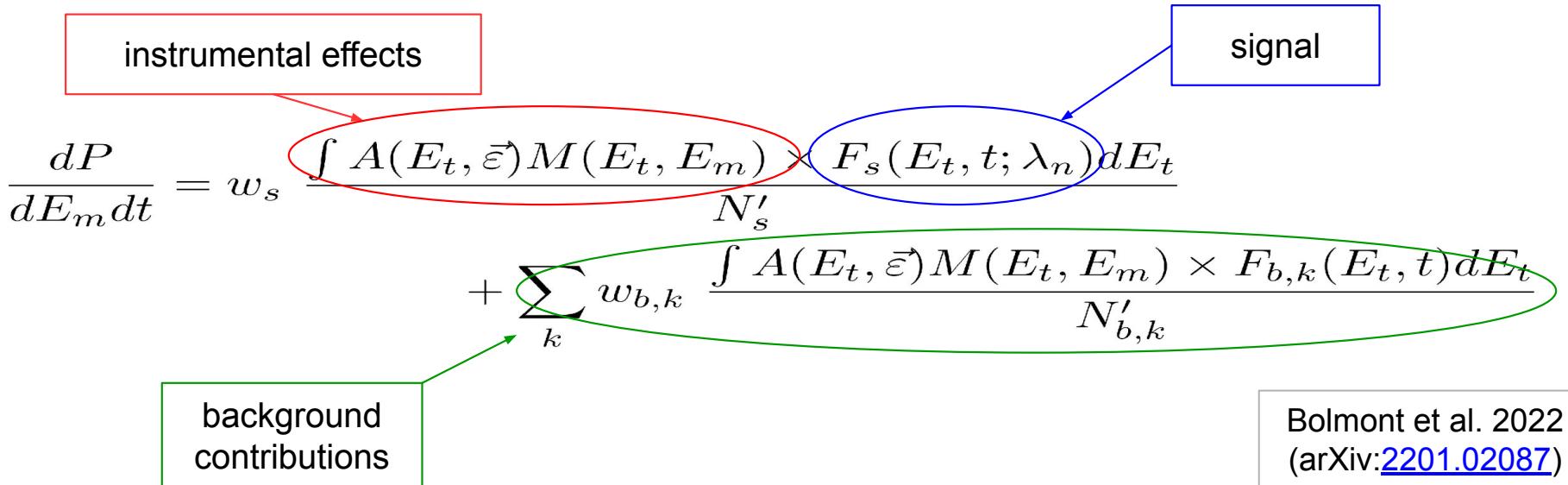
Cosmic rays: $E_{\text{max}} \sim 3.2 \times 10^{20} \text{ eV}$

Neutrinos: $E_{\text{max}} \sim 2.2 \times 10^{17} \text{ eV}$



Gamma rays: $E_{\text{max}} \sim 1.4 \times 10^{15} \text{ eV}$

Astroparticle tests of QG


Fundamental physics accelerator experiment

- **Pros**
 - **Ultra-high energies**
(although still orders of magnitude below E_{Pl})
 - Accumulation of effects on **Gyear** time scale
- **Cons: No control over & limited knowledge of**
 - Source: astrophysical accelerators
 - Propagation: CMB, EBL, IGMF, cosmology, spacetime curvature
 - Detector: atmosphere, ice, water

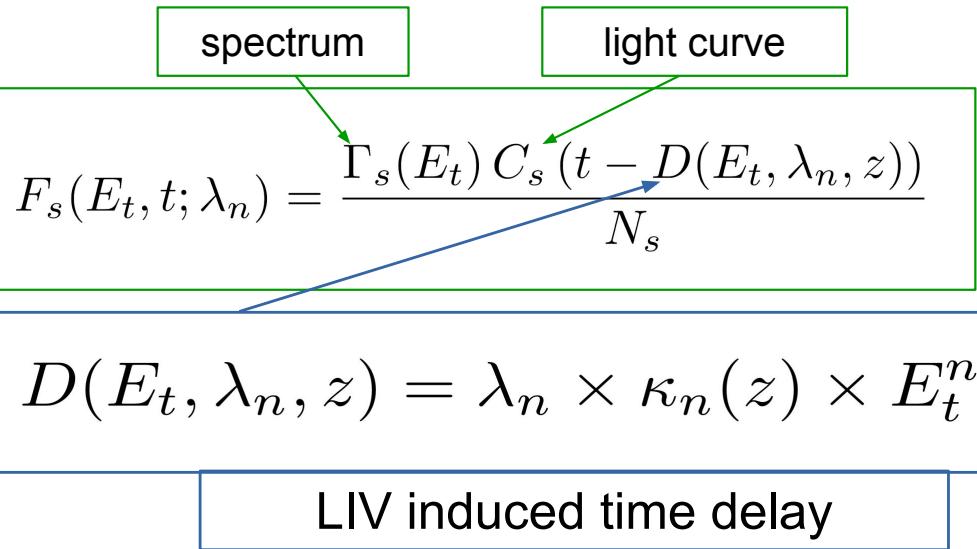
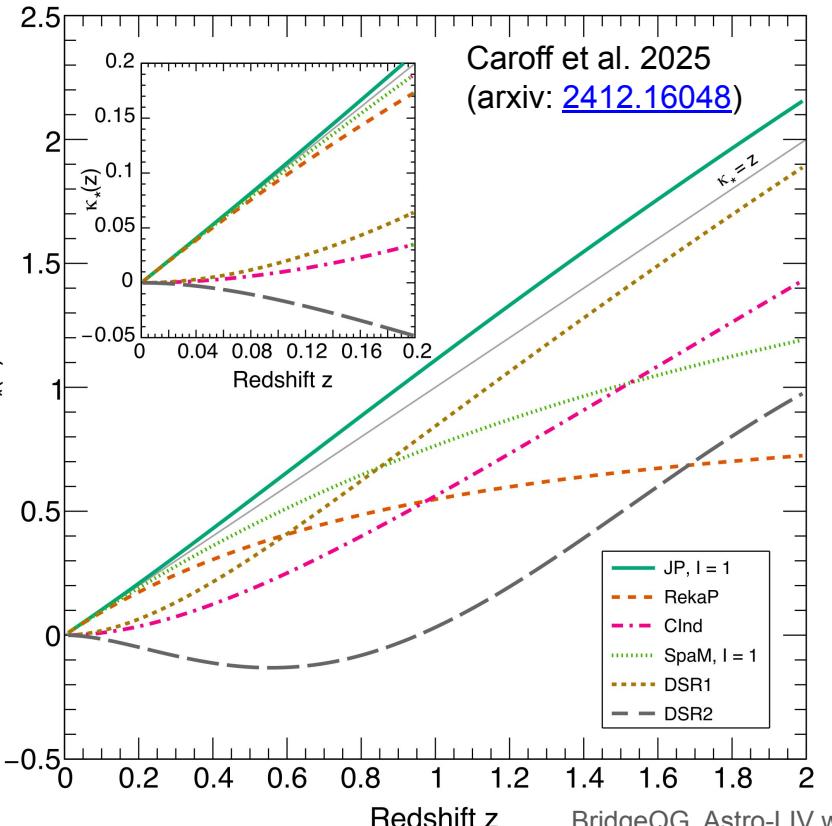
Gamma-ray time of flight

$$L_S(\lambda_n) = - \sum_i \log \left(\frac{dP}{dE_m dt} (E_{m,i}, t_i); \lambda_n \right) \quad \lambda_n \equiv \frac{\Delta t_n}{\Delta E_n \kappa_n(z)} = \pm \frac{n+1}{2H_0 E_{QG}^n}$$

The diagram illustrates the decomposition of the signal into instrumental effects and background contributions. The signal is shown as a blue oval, which is the sum of two terms: instrumental effects (red oval) and background contributions (green oval). The instrumental effects term is labeled $\frac{dP}{dE_m dt} = w_s \frac{\int A(E_t, \vec{\varepsilon}) M(E_t, E_m) \times F_s(E_t, t; \lambda_n) dE_t}{N'_s}$. The background contributions term is labeled $+ \sum_k w_{b,k} \frac{\int A(E_t, \vec{\varepsilon}) M(E_t, E_m) \times F_{b,k}(E_t, t) dE_t}{N'_{b,k}}$. The background contributions term is highlighted with a green box and an arrow pointing to it from the text 'background contributions'.

instrumental effects

signal

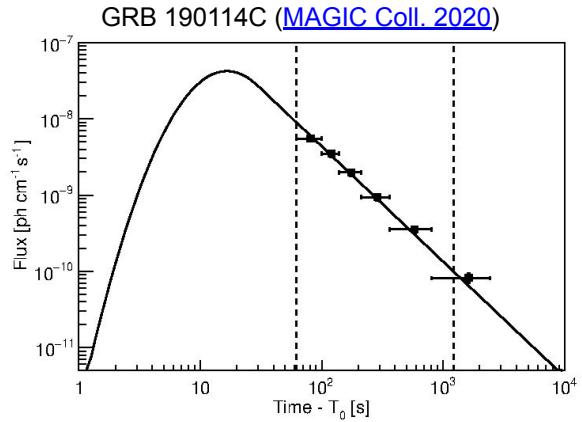
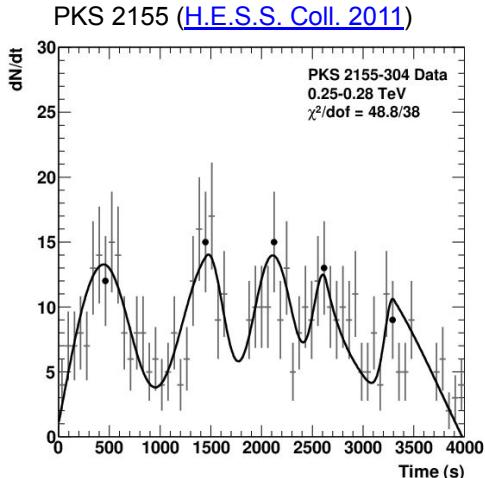


$\frac{dP}{dE_m dt} = w_s \frac{\int A(E_t, \vec{\varepsilon}) M(E_t, E_m) \times F_s(E_t, t; \lambda_n) dE_t}{N'_s}$

$+ \sum_k w_{b,k} \frac{\int A(E_t, \vec{\varepsilon}) M(E_t, E_m) \times F_{b,k}(E_t, t) dE_t}{N'_{b,k}}$

background contributions

Bolmont et al. 2022
(arXiv:[2201.02087](https://arxiv.org/abs/2201.02087))

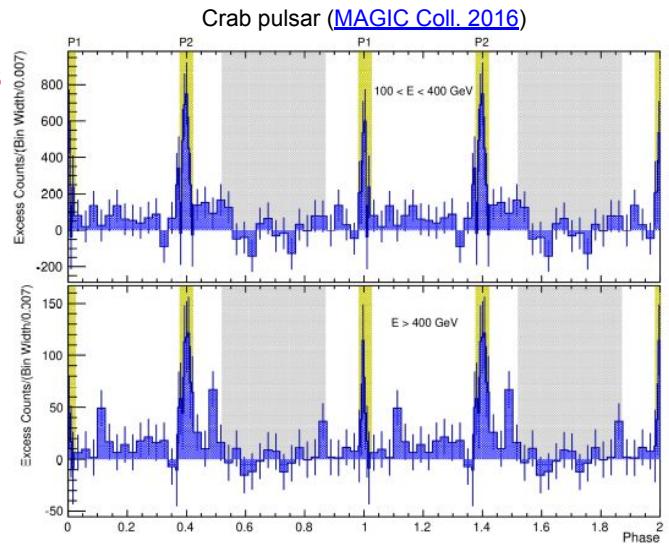
LIV time-delay models

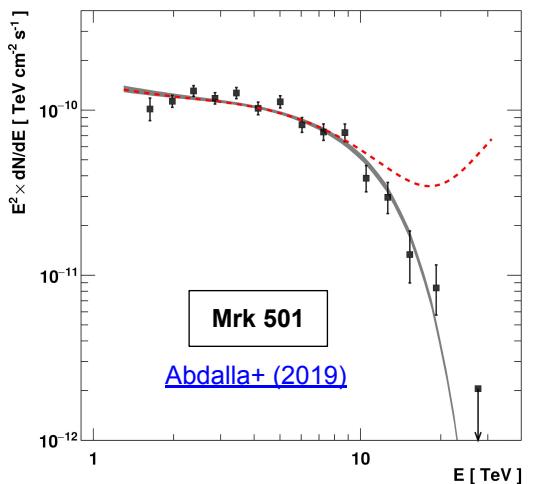
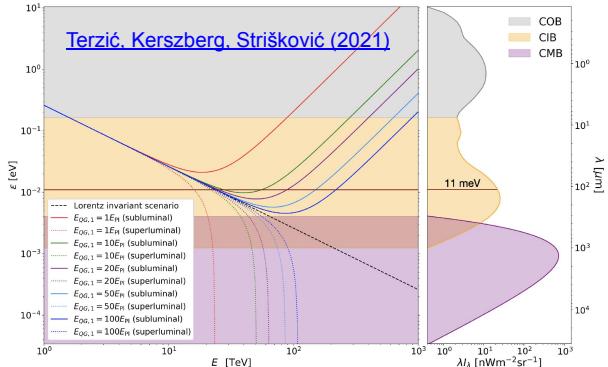



$$\lambda_n \equiv \frac{\Delta t_n}{\Delta E_n \kappa_n(z)} = \pm \frac{n+1}{2H_0 E_{QG}^n}$$

Source input

Assumptions


- Independent distributions in energy and time
- Spectrum usually obtained from the whole data set
- Light curve modelled in different ways
 - Identical temporal distributions in different energy bands
 - LIV effects on low-energy events negligible



spectrum

light curve

$$F_s(E_t, t; \lambda_n) = \frac{\Gamma_s(E_t) C_s(t - D(E_t, \lambda_n, z))}{N_s}$$

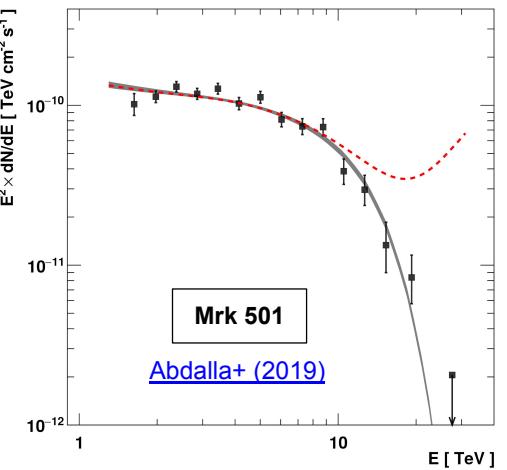
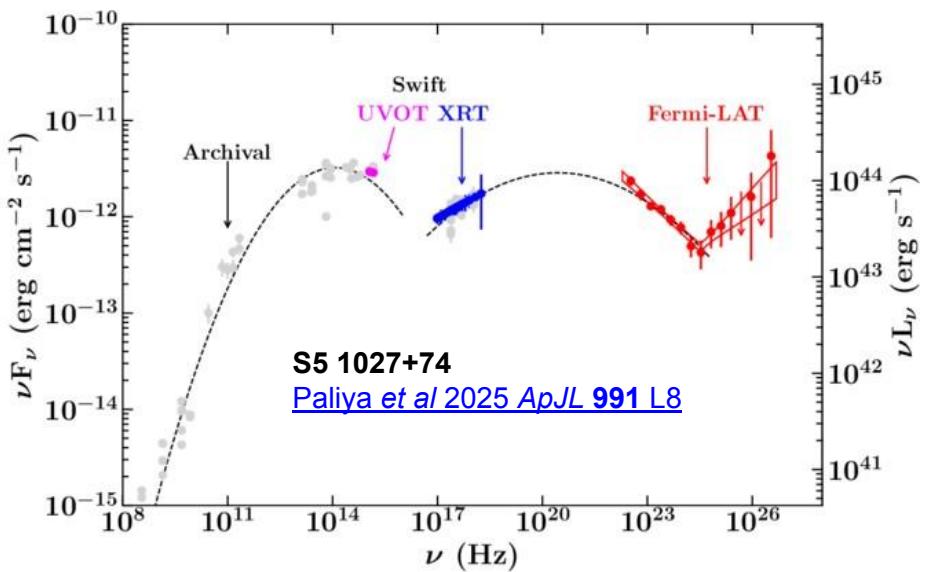
Modified gamma-ray reactions

- Modified kinematics and dynamics

$$\epsilon_{th} = \frac{m_e^2}{(1+z)E_\gamma} \rightarrow \frac{m_e^2}{(1+z)E_\gamma} + S \frac{((1+z)E_\gamma)^{n+1}}{4E_{QG,n}^n}$$

- LIV ambiguities: which particles are affected

- Cosmological ambiguities




$$\tau(E_\gamma, z_s) = \int_0^{z_s} dz \frac{dl(z)}{dz} \int_{\epsilon_{th}}^{\infty} d\epsilon \frac{dn_{EBL}(\epsilon, z)}{d\epsilon} \int_0^2 d\mu \frac{\mu}{2} \sigma_{\gamma\gamma}(s)$$

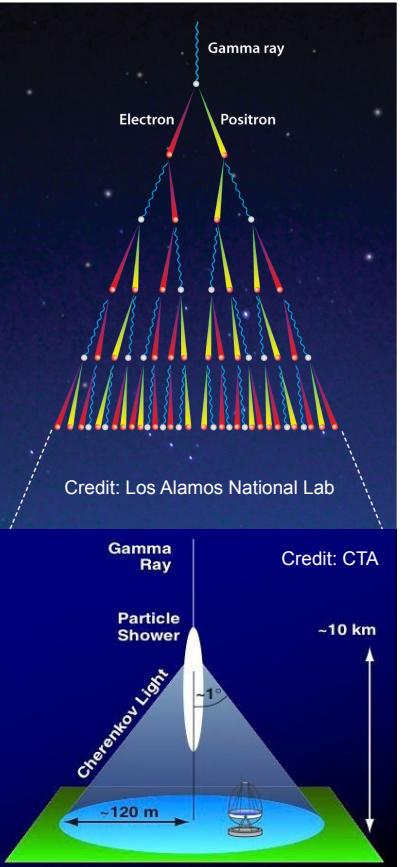
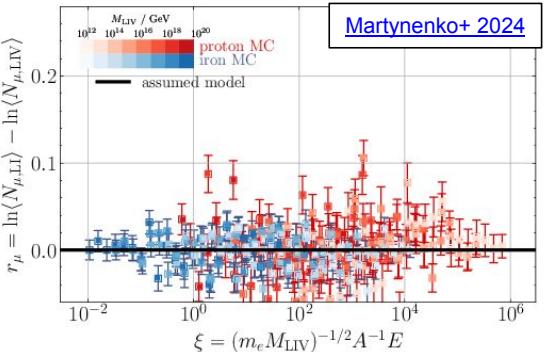
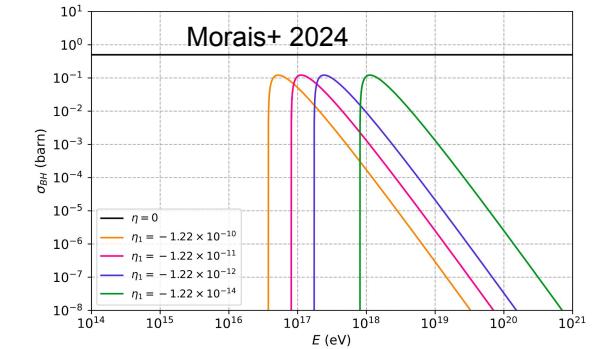
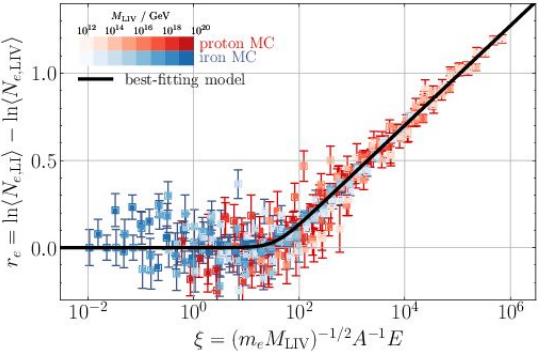
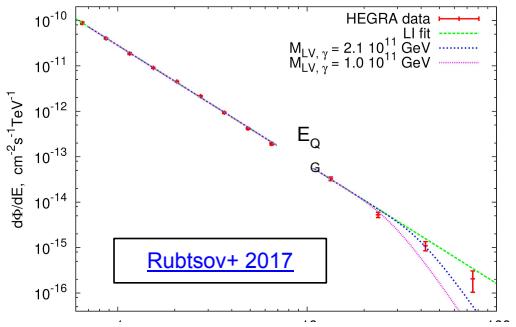
Source input

Assumptions

- Spectrum is expected to be continuous
- Spectral upturn is physically unexpected

LIV effects on particle acceleration and emission

- $\eta = +/- 1 \rightarrow$ increased / decreased interaction rate
- Fermi acceleration mechanism more/less effective
- $+1 \rightarrow$ HE particles become unstable \rightarrow limits on E_{\max}
- $-1 \rightarrow$ extended lifetime of unstable particles
 - e.g. π^0 interacts before decaying
- $-1 \rightarrow$ upper limit on synchrotron radiation energy ([Jacobson+ 2003](#))
- Limitation on Compton scattering – [Abdalla & Böttcher \(2018\)](#): LIV signatures expected to be important only for $E_\gamma \gtrsim 1$ PeV (see also [Li & Ma, 2022](#))
- ...

- This is all in addition to uncertainties in standard acceleration and emission modelling

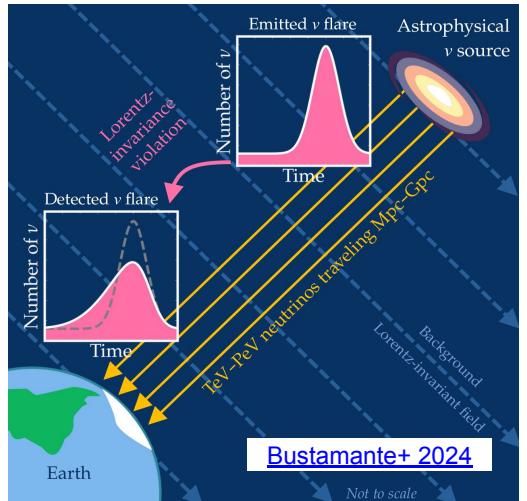
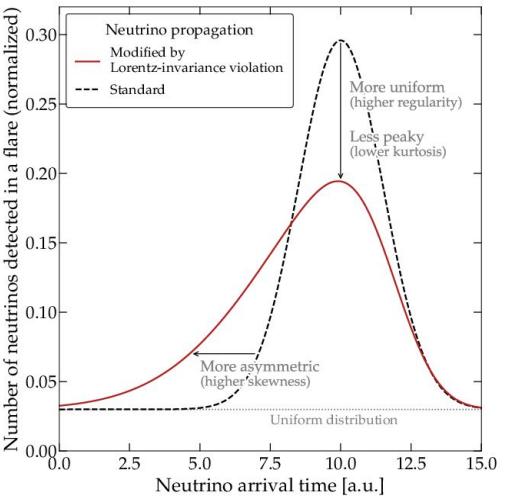
$$E_i^2 = m_i^2 c^4 + p_i^2 c^2 \left[1 + \sum_{n=1}^{\infty} \eta_n^{(i)} \left(\frac{p_i c}{E_{QG,n}^{(i)}} \right)^n \right]$$

LIV effects on detection

- $\eta = +/- 1 \rightarrow$ increased / decreased interaction rate
 - Overall effect opposite to the effect on propagation

Takeaways

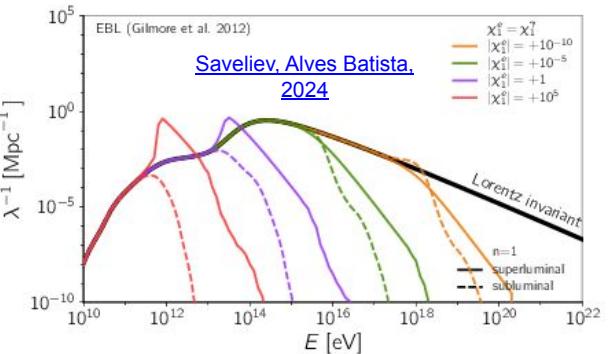
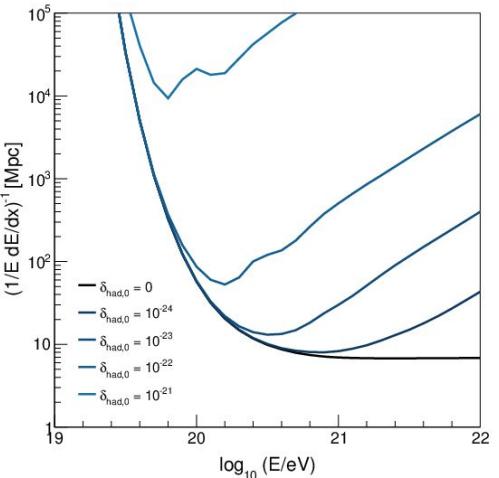
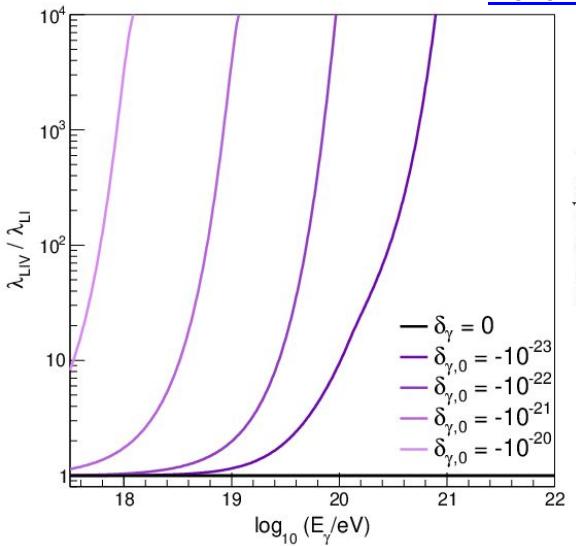
- Astroparticle experiments – significantly higher energies than ground based accelerator experiments
- Ambiguities and uncertainties related to emission, propagation, detection
- LIV studies plagued with some strong assumptions
- Studies based on UHECRs and neutrinos face field-specific but essentially similar issues
- Wish list:
 - Energy and temporal distribution of events at emission
 - UHECR → chemical composition + proton E_{\max}



Backup

Neutrino time of flight

- Essentially same as gamma-ray time of flight

However




- Very low statistics
- Difficult association with sources → multi-messenger observations

Modified gamma-ray reactions

- Based on cosmic ray, gamma ray, and neutrino interactions and stability
 - Increased/decreased universe transparency
 - Superluminal massless particle decay
 - Vacuum Čerenkov emission

Pierre Auger Collab. 2022

Table A1. Summary of systematic uncertainties for all sources and combinations simulated for the J&P case.

Source	Correction order	Template statistics (s.TeV ⁻ⁿ)	Energy scale (s.TeV ⁻ⁿ)	Background normalization (s.TeV ⁻ⁿ)	Uncertainty on power law index (s.TeV ⁻ⁿ)	Distance/redshift uncertainty (s.TeV ⁻ⁿ)	Reconstruction uncertainty (s.TeV ⁻ⁿ)	All syst. combined (s.TeV ⁻ⁿ)
GRB 190114C	$n = 1$	17.8	6.9	8.0	9.4	< 7.7	3.0	25.6
	$n = 2$	9.4	12.4	1.7	15.4	< 9	4.2	24.1
PKS 2155-304	$n = 1$	101	11.7	< 20	< 22	17.8	< 3.3	107
	$n = 2$	21.8	19.3	0.7	8.1	12.0	< 2.2	37.4
Mrk 501	$n = 1$	155	56	< 51	49	1.	< 8.5	197
	$n = 2$	11.2	18.3	< 10.3	9.3	0.19	< 1.6	28.8
PG1553+113	$n = 1$	631	150	324	< 361	112	< 64	727
	$n = 2$	916	638	537	< 552	338	< 112	1282
Crab V	$n = 1$	897	137	< 73	142	145	< 25	1135
	$n = 2$	1141	410	< 264	694	265	< 174	1820
Crab M	$n = 1$	371	66	7	23	74	< 11	416
	$n = 2$	167	64.5	61	24	48	< 72	190
Vela	$n = 1$	1.36×10^4	1.03×10^4	0.46×10^4	$< 1.3 \times 10^4$	1.30×10^3	$< 5.87 \times 10^3$	2.28×10^4
	$n = 2$	1.0×10^5	2.05×10^5	0.48×10^5	$< 1.5 \times 10^5$	1.57×10^5	$< 0.95 \times 10^5$	3.05×10^5
Crab (M+V)	$n = 1$	357	49	< 56	32	61	< 32	398
	$n = 2$	161	59	45	59	38	< 83	197
PSR	$n = 1$	355	52	< 58	38	58	< 11	394
	$n = 2$	90	71	49	24	62	< 55	138
AGN	$n = 1$	89.5	12	< 15	3.7	15.8	< 2.9	94.9
	$n = 2$	10.1	11.1	< 6	6.2	3.4	< 1.3	19.7
AGN+PSR	$n = 1$	85	11	< 18	5	15	< 2.9	91
	$n = 2$	9.6	10.9	< 8	5.9	4.5	< 1.1	17.8
GRB+AGN	$n = 1$	17.8	5.8	6.8	8.3	1.4	3.3	24.5
	$n = 2$	6.8	7.8	< 6.6	9.0	1.7	1.4	16.2
GRB+PSR	$n = 1$	17.5	6.7	7.9	9.1	1.0	3.2	24.9
	$n = 2$	8.1	11.3	1.6	12.7	2.8	< 1.1	19.4
All	$n = 1$	18.0	5.8	6.7	8.2	1.5	4.1	24.8
	$n = 2$	7.5	7.7	< 6.2	8.2	2.4	4.8	16.4

Likelihood analysis for time delays

From: LIV on Mrk 421 by MAGIC
[Abe et al. JCAP07\(2024\)044](#) and
[Strišković \(2025\)](#)

$$\mathcal{L} = \prod_{i=1}^{N_t} \prod_{j=1}^{N_E} \mathcal{P}(s_{i,j}, b_{i,j} | N_{\text{on},i,j}, N_{\text{off},i,j})$$

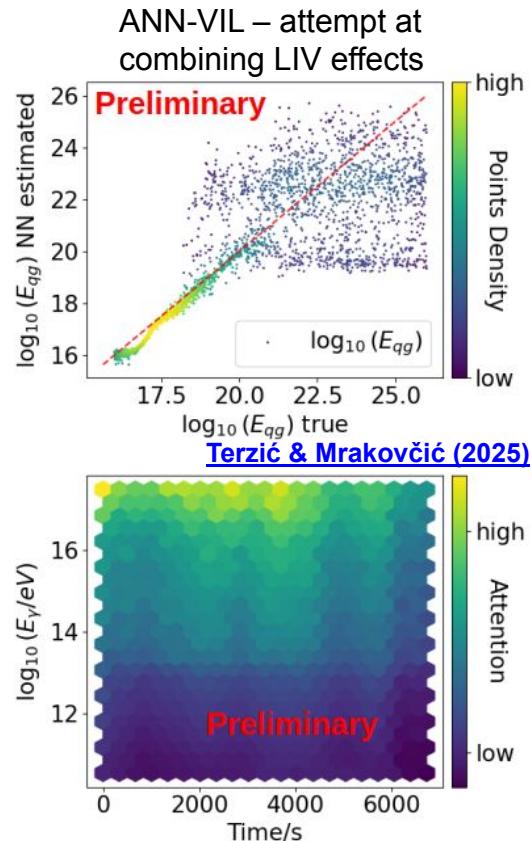
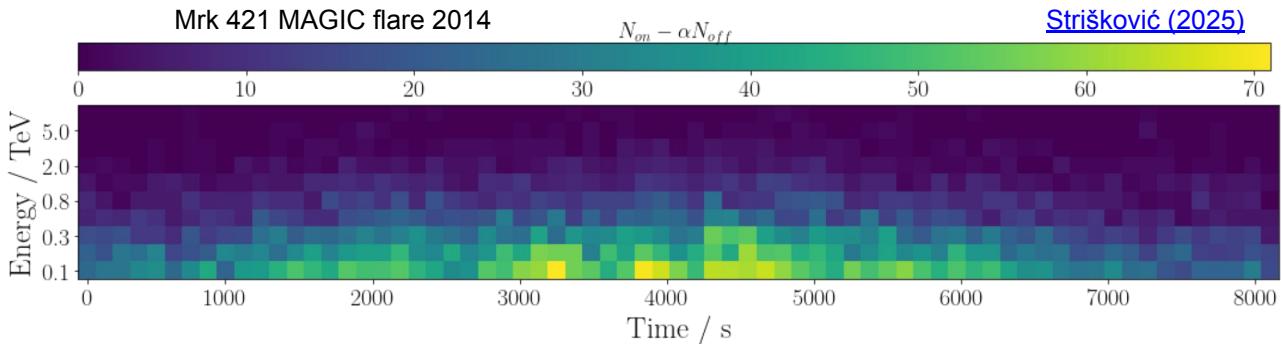
Diagram illustrating the likelihood function \mathcal{L} as a product of terms for each time bin i and energy bin j . The function is given by:

$$\mathcal{L} = \prod_{i=1}^{N_t} \prod_{j=1}^{N_E} \mathcal{P}(s_{i,j}, b_{i,j} | N_{\text{on},i,j}, N_{\text{off},i,j})$$

The inputs to the probability density function \mathcal{P} are:

- bins in time (N_t)
- bins in energy (N_E)
- expected signal count
- expected background count
- detected count in ON region
- detected count in OFF region

$$\mathcal{P}(s, b) = \frac{(s + \alpha b)^{N_{\text{on}}}}{N_{\text{on}}!} e^{-(s + \alpha b)} \frac{b^{N_{\text{off}}}}{N_{\text{off}}!} e^{-b}$$



$$s_{i,j} = \sum_{k=1}^{N_{\text{bin}}} \int_{\Delta E'_j} dE' \int dE \frac{d\Phi_k(E)}{dE} B(E) A_i(E) G_i(E'|E) \Delta t_{i,k}(\eta_n, E)$$

Combining LIV effects

$$\mathcal{L} = i\bar{\psi}\gamma^\mu D_\mu\psi - m\bar{\psi}\psi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} + i\chi\bar{\psi}\gamma^i D_i\psi + \frac{ig}{M^2}D_j\bar{\psi}\gamma^i D_i D_j\psi + \frac{\xi}{4M^2}F_{kj}\partial_i^2 F^{kj},$$

[Rubtsov et al. \(2012\)](#)

- $n = 1$: time delays + modified interactions + vacuum birefringence
- $n = 2$: time delays + modified interactions (Rubtsov+ case)
- affected particles?

