
Les services techniques pour faire avancer la physique

Du concept...

....À l'analyse

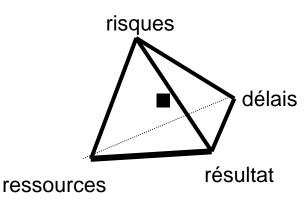
Via la réalisation du détecteur

Particularités des réalisations pour la physique

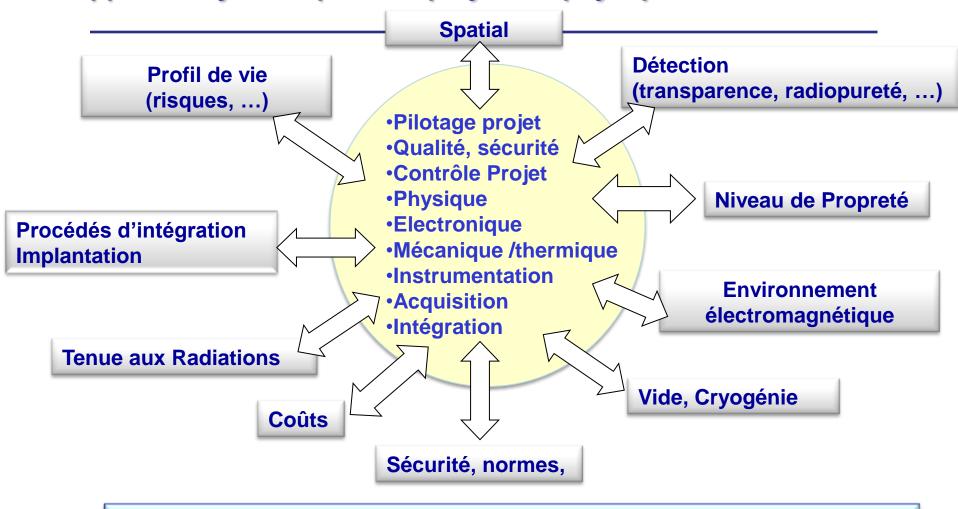
Une méthodologie structurante : la gestion de projet

La gestion de projets est le processus qui consiste à

planifier,



organiser et gérer les ressources



afin d'atteindre un objectif défini, généralement en respectant des contraintes

- de temps,
- de ressources
- de coût.

L'approche système pour les projets de physique

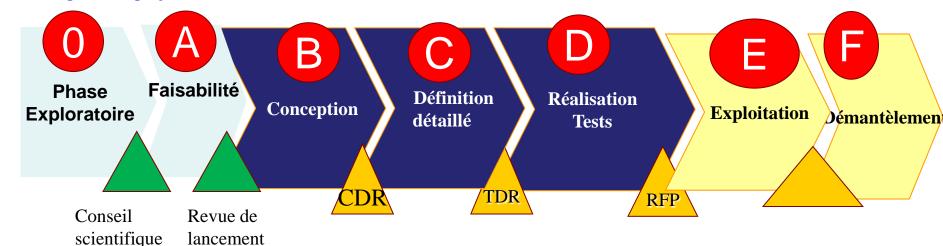
- •Prise en compte de l'interdépendance de tous les paramètres
- Maitrise des interfaces

Le phasage des projets

Physicien (s)
→Services techniques

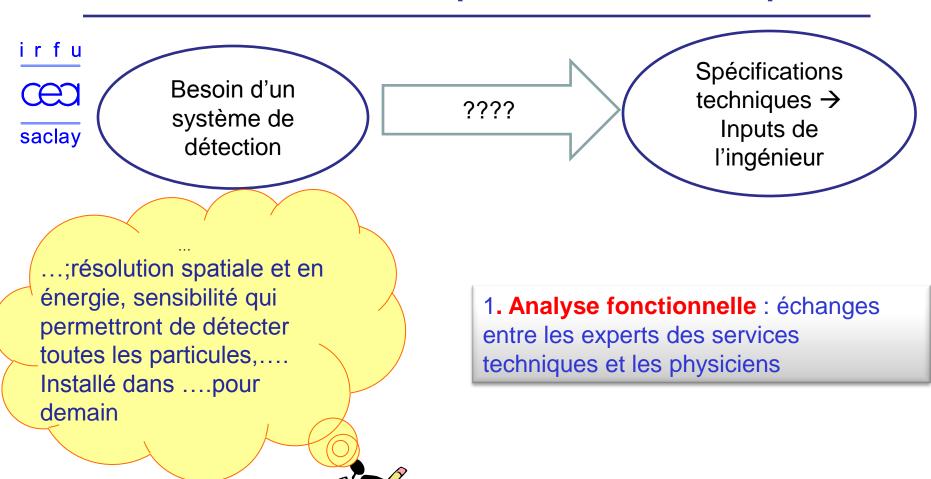
Equipe projet s/c Physicien(s)

Physicien (s)


-Simulations pour choix de concepts

- R & D technologiques
- Recherche de collaborateurs
- Analyse de risques techniques et programmatiques
- Evaluation des contributions
- Mise en place du projet

-Simulations de validations


- Préparation de l'analyse
- Etudes détaillées
- Tests de modèles dédiés
- Gestion des marchés
- Suivi des engagements
- Réalisation

Prises de données Analyses

Phasage du projet = rythme du projet + maitrise des risques

Phase de faisabilité -> spécifications techniques

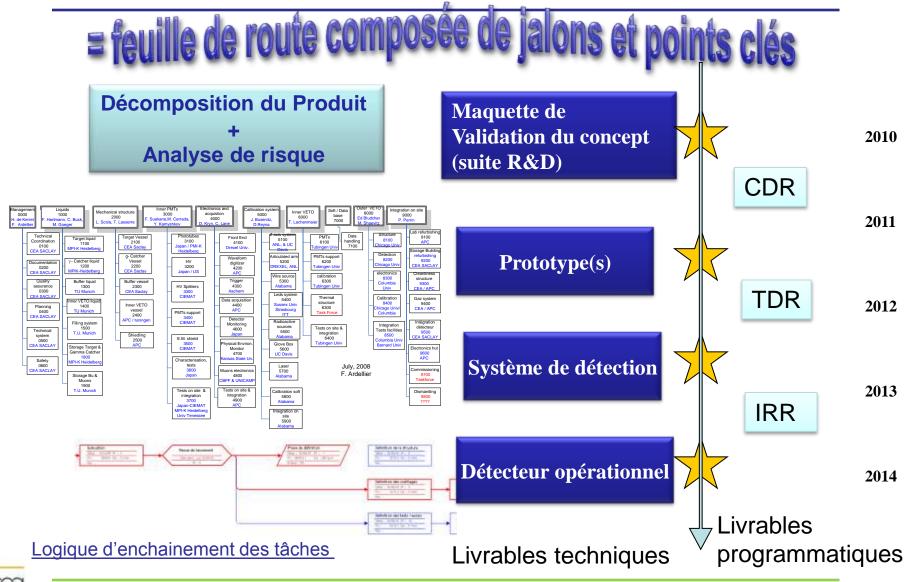
Phase de Faisabilité -> organisation du projet

2. Élaboration :

- Découpage technique (PBS, WBS),
- Analyse de risques → Plan de développement
- Définition des interfaces,
- Plan de management
- Plan d'assurance produit...

3. Constitution de <u>l'équipe projet</u>

- identification des compétences techniques
- disponibilités dans les services techniques


4. Élaboration du planning

- Jalons liés aux points clé technique
- Jalons commerciaux et programmatiques
- 5. Plan de charge de l'équipe projet

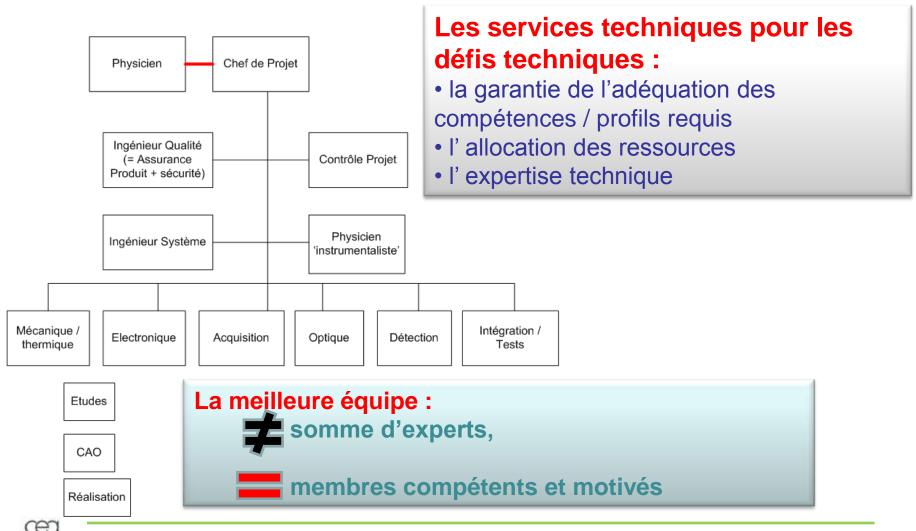
6. Estimation budgétaire pluriannuelle

es necessaires pour les aléas

Plan de développement

œ

Phase de Faisabilité -> Phase A


2. Élaboration :

- Découpage technique (PBS, WBS),
- Analyse de risques → Plan de développement
- Définition des interfaces,
- Plan de management
- Plan d'assurance prioduit...
- 3. Constitution de <u>l'équipe projet</u>:
- identification des compétences techniques
- · disponibilités dans les services techniques
- 4. Élaboration du planning
- Jalons liés aux points clé technique
- Jalons commerciaux et programmatiques
- 5. Plan de charge de l'équipe projet
- 6. Estimation budgétaire pluriannuelle

a necessaires pour les aleas

L'équipe projet

Structure temporaire

Phase de Faisabilité -> Phase A

2. Élaboration :

- Découpage technique (PBS, WBS),
- Analyse de risques → Plan de développement
- Définition des interfaces.
- Plan de management
- Plan d'assurance prioduit...
- 3. Constitution de <u>l'équipe projet</u>:
- identification des compétences techniques
- disponibilités dans les services techniques
- 4. Élaboration du planning
- Jalons liés aux points clé technique
- Jalons commerciaux et programmatiques
- 5. Plan de charge de l'équipe projet
- 6. Estimation budgétaire pluriannuelle

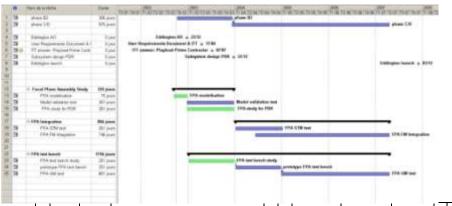
a necessaires pour les aleas

Le planning

= outil de pilotage de projet qui permet de suivre, d'anticiper,

- le plan d'investissement
- la mobilisation des équipes techniques
- le passage des jalons programmatiques et techniques
- l'organisation des pots

	11.03	12.03	1.04	2.04	3.04	4.04	5.04	6.04
Preparation and Planning								
Develop project proposal								
Approve project proposal								
Recruit project team								
Development and Test		·						
Specify detail requirements								
Develop prototype								
Approve prototype								
Develop beta version								
Test beta version								
Apply final corrections								
Approve final version								
Implementation								
Train users								
Roll-out final version								


Phase de Faisabilité

2. Élaboration :

- Découpage technique (PBS, WBS),
- Analyse de risques → Plan de développement
- Définition des interfaces.
- Plan de management
- Plan d'assurance produit...
- 3. Constitution de <u>l'équipe projet</u>:
- identification des compétences techniques
- disponibilités dans les services techniques
- 4. Élaboration du planning
- Jalons techniques
- Jalons commerciaux et programmatiques
- 5. Plan de charge de l'équipe projet
- 6. Estimation budgétaire pluriannuelle

a necessaires pour les aleas

Lancement du projet et engagement des services techniques

Lancement du projet

Analyse de l'impact du projet sur le plan de charge global → identification des compétences

Analyse de l'impact du plan de financement pluriannuel

SERVICE	LABORATOIRES	WON	Libelié profil	Profil	Nature d'activités	OTP ou Centre de coûts	Prog/proj	Commentaires	11 2003	T2 2003	T3 2003	T4 2003	TOTAL 2003	T1-T2 2004	T3-T4 2004	TOTAL 2004	2002	
SEDI	TRAPS	TIMIDE	jénieur/chercheur études/développement en physique et instrumentati	IDP	PP	A-VIOCP-02-05-02	NA48 II KABES SEDI				0,2		0,1	0,2		0,1		1
SEDI	TRAPS	TIMIDE	T.S. études/développement en instrumentation	SDP		A-VIOCP-02-05-02	NA48 II KABES SEDI		1	0,5	0,5		0,5	0,5		0,3		1
SEDI	TRAPS	TIMIDE	T.S. études/développement en instrumentation	SDP	Ρ	A-VIOCP-02-05-02	NA48 II KABES SEDI		0,3	0,1			0,1					1
SEDI	TRAPS	TIMIDE	Technicien études/développement en électronique	TDE	Р	A-VIOCP-02-05-02	NA48 II KABES SEDI			0,1	- 1		0,3				Т	1
SEDI	TRAPS	TIMIDE	Chef de projet, chargé d'affaire	IGJ	Р	A-VIOCP-02-05-02	NA48 II KABES SEDI	C.P.	0,2	0,2	0,2	0,2	0,2	0,2		0,1		1
SEDI	TRAPS	TIMIDE	Ingénieur/chercheur études/développement en électronique	IDE	Р	A-VIOCP-02-05-02	NA48 II KABES SEDI		0,2		0,1	0,8	0,3					1
SEDI	TRAPS	TIMIDE	T.S. études/développement en électronique	SDE	Р	A-VIOCP-02-05-02	NA48 II KABES SEDI			0,1			0,0	0,1		0,1		1
SEDI	TRAPS	TIMIDE	T.S. études/développement en électronique	SDE	Р	A-VIOCP-02-05-02	NA48 II KABES SEDI		0,3				0,1			\neg		1
								TOTAL SEDI	2,0	1,0	2,0	1,0	1,5	1,0		0,5	I	1
					Р													1

SIS	LEIGE	SIMPLET	nieur/chercheur conception/recherche en mécanique/thermique/cryog	ICM	P	A-VIOCP-02-05-03	NA48 II KABES SIS		0,2		0,2		0,1			-
SIS	LEIGE	SIMPLET	T.S. études/développement en mécanique/thermique/cryogénie	SDM	Р	A-VIOCP-02-05-03	NA48 II KABES SIS		0,3			0,3	0,2			
			•			•	•	TOTAL SIS	0,5		0,2	0,3	0,3			
SACM	LRDS	GRINCHEUX	génieur/chercheur conception/recherche en physique et instrumentation	ICP	Р	A-VIOCP-02-05-01	NA48 II KABES SPP		1	1	1	1	1,0	1	0,5	5
SACM	LRDS	GRINCHEUX	génieur/chercheur conception/recherche en physique et instrumentation	ICP	Р	A-VIOCP-02-05-01	NA48 II KABES SPP		0,2	0,2	0,2	0,2	0,2	0,2	0,1	1
SACM	LRDS	GRINCHEUX	génieur/chercheur conception/recherche en physique et instrumentation	ICP	Р	A-VIOCP-02-05-01	NA48 II KABES SPP	R.S.	0,5	0,5	0,5	0,5	0,5	0,5	0,3	3
SACM	LRDS	ODINOUELIN	génieur/chercheur conception/recherche en physique et instrumentation	ICD	٥	A-VIOCP-02-05-01	NA48 II KABES SPP		0.5	0.5	0.5	0.5	0.5	0.5	0,3	

PHASE	DE DE	VELOPPE	MENT
conce	ption et	définition	détaillé

Si l'analyse est compatible avec les contraintes programmatiques :

- Un chef de projet est nommé
- Les services techniques engagent leurs ressources

Phase de conception et design détaillé

Phase de conception :

- Définition de l'architecture globale du système (CAO + maquettes)
- Vérification de la cohérence du système
- Validation des interfaces

Nombreuses itérations avec les physiciens

Revue de Design Conceptuel

Phase de design détaillé :

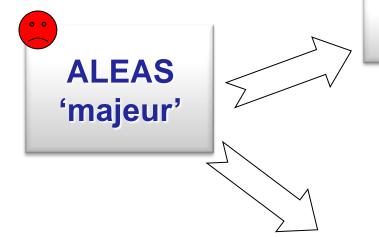
- Dossiers de définition (pour réalisation)
- Vérification des interfaces
- Choix de la stratégie industrielle

Revue Technique du Design

Phase de réalisation et tests

Phase intense pour les services techniques

- -Utilisation des outils mis en place
- -Fortes interactions Physiciens / Equipe technique



Gestion des écarts et maitrise des actions correctives

Recherche de solutions au sein du projet

- Recherche des causes
- Expertise
- Proposition d'un plan d'actions

Revue de projet

Expertises externes

Validation de l'impact sur les performances

Validation de l'impact sur les ressources

Livraison de l'instrument, tests

... et passage du flambeau pour la prise de données et l'analyse

Conclusions

L'association entre les services de physique et les services techniques constituent un **ressort pour la physique**

saclay → La gestion de projet est structurante

Le défi des services techniques :

- Veiller à maintenir un niveau de compétences techniques et un patrimoine qui permettent de relever les défis technologiques en perspective des nouveaux projets
- Gérer un portefeuille de projets à des phases différentes avec la capacité d'anticiper l'évolution des besoins et de mobiliser les équipes
- Capitaliser les connaissances

Structure projet transverse aux services techniques 'métiers'

=

Efficacité, flexibilité et réactivité