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Goals | Cosmology

Distance modulus can be measured on lightcurves
Redshift can be measured with a spectrum
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Goals | Cosmology

Distance modulus can be measured on lightcurves Standard model of cosmology: ACDM
Redshift can be measured with a spectrum Cosmological constant A
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Goals | Cosmology

Standard model of cosmology: ACDM

Cosmological constant A
Cold dark matter CDM
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Goals | Cosmology

Standard model of cosmology: ACDM
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Goals | Cosmology

Standard model of cosmology: ACDM
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Goals | Cosmology

Dynamical Dark Energy
w variations are in the thickness of the line : Extensions of the ACDM mode|:  Parameter of the
. ] dark energy
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Goals | Cosmology

Dynamical Dark Energy
w variations are in the thickness of the line : Extensions of the ACDM model- parameter of the
, ] dark energy
we compute y — i, .., Lo see it equation of state
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Goals | Cosmology

Dynamical dark energy detected
2.50, 3.50 and 3.90 with ACDM (DESI 2024 VI)
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Photometric standardisation
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Photometric standardisation

Tripp 1998 Corrections
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Photometric standardisation

Tripp 1998 Correction for host
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Photometric standardisation

Tripp 1998
Guy 2010 "
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SN la standardisation

Problem : Reducing the 0.15 mag dispersion
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Branch classification
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Flux ratios

Bailey 2009
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Nearby Supernova Factory
2004-2014

* |[FS : optical 3200-10000A, R=2000

=

» Temporal follow-up, every 3 days Mﬁ?
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» spectrophotometry : follow-up to remove sky
extinction

e 427 SNe la : 3387 spectra
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SN la spectral diversity
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Initial discovery :
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0.20

0.15}

7))
= 0.10f
o

0.05}

— Sigmoid fit
— Ry =3.1 near-maximum sigmoid fit

¢+ ¢+ Binned RMS

0 20 40 60 80 100
Twinness ranking (%)

0.00

Luminosity RMS for different ‘twinness’ bins
Credit : Fakhouri et al. 2015

—> magnitude dispersion is smaller for the lowest
‘twinness’ parameters (similar time-series)

—> One spectrum at peak is sufficient to have the
variation information

Spectral diversity



Full method :
Twins Embedding - Boone 2021

Twins Embedding Component 1 (§,)
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Twins Embedding components variation effects
on spectra. Credit : Boone et al. 2021

-> Parametrise the spectral
variation at phase=0

—> New standardisation of

SNe la, using spectral
Information

Spectro-photometric standardisation

'Before standardisation :

Opnae = 0-40mag

Photometry :

Omae = 0.15mag

With SNFactory
" Twins Embedding :

Opnae = U-07mag
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Twins Embedding standardisation

: S " New method: E No filter issues
- S Fold o et ® non-linear parameterisation e PSF modelling: CCD calibration,
® [ inked to HR chromaticity not taken into account
111 - ® Based solely on spectra ® Hard to characterise the filters:
3 l H‘ - Y, therefore hard to cross-calibrate the
o ] | filters between dataset
15-component linear SNEMO model

Need 4x less SNe No template model

Photometry :
Opnae = 0-15mag

SNFactory : ~200 SNe

e L With SNFactory
S S C . - N  Twins Embedding : l
SUGAR is not correlated to HR Opnae = 0-07mag
~ +~ ZTF : ~800 SNe

Standardisation



ZTF DR2 - SEDmachine

) E— March 2018 to December 2020
Low-redshift z<o0.15 Two instruments : L0(3600) Supernovae Ia

Northern sky 0(4000) spectra
3 filters : g, 1, i “ P48 camera -
_Limits in magnitude of ~20mag # P60 spectrograph 60% SNe Ia
| spectra from the
SEDm
[ 1

SEDm reconstructed image | A € [5000,3000] A

o —— e
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means SN la redshift R eeeeeeee——
. SEDm (P60)- Integral field Spectrograph
Sky map of 2663 redshifts of SNe Ia field of view of ZTF18abqlpgq
Credit : in prep. ZTF “DR2” Data paper, Smith et al. Credit : pysedm - Rigault, Neill
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ZTF spectra flux-calibration

From DR2 : March 2078 to December 2020

Spectra before/after calibration

- Purpose : typing o — initial
. 16.5 Jtfr calibrated 10.8
| Low resolution : R = A_/l ~ 100 ztfg o :_néedgrtated sp
'ﬁ — A { ala
O 17.0
c : ‘ ’M A 2t 10-6
. . 2 17.5| o v
v Spectral extraction by pysedm (Rigault =< y ) S
< \ ~ ©
2019) S g0l - W N DA\ loa 2
v Correction of host galaxy by Hypergal é’ 185 |
(Lezmy 2022) | 0.2
L N
19'540'010 5000 b 6000 7000 8000 9000 "
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[Located in Mount
Palomar in —> 1607 flux-calibrated SNe la

i\ California | |
~JI The flux-calibrated sample will be

published in Ganot et al. (in prep)
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Z1F spectra sample for TE

v Flux calibration, precision of 0.07 mag
. . —> 783 SNe la for TE application
v Milky Way dust correction

100;

v Shift spectra to z=0.05

10;

I
0.12 AT
Cut Interval Quantity removed
ZTF - DR2 cuts
100¢ ~ 1607 SNe
: — Tazone
Ca | | bratiOn - SNFactor
. around 7% Lol — 200 5Ne "
quality 5
Z <0.1 around 5%
phase [-5,+5] days around 40% 1004
DR2 photo around 7% 10k
1}

2 3 6 12 23 43 80 150
mean SNR in 6700--7300 A

I 16

ZTF Dataset



Twins Embedding - Method

3 steps

1. Shift spectra at phase=0

2.RBTL - fit one offset and a color outside the lines

Original spectra

Normalized flu
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o o o o
(V) S o )

o
o

Individual spectra

Normalized flu
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©c e o o o
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Individual spectra
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Recovered intrinsic dispersion
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w .
1 1

Intrinsic dispersion {(maaq)
o
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e

o
o

4000

5000 6000 7000 8000
Wavelength (4)

SNFactory spectra before/after dereddening, and residuals
intrinsic dispersion (std) Credit : Boone et al. 2021

only based on spectral data

-

3.lsomap : parameters reduction

Twins Embedding Component 1 (£;)

o
w

o
~N
Component Value

Normalized flux
(erg/cm?/s/Hz)

4000 5000 6000 7000 8000
Wavelength (A)

Twins Embedding components variation
effects on spectra. Credit : Boone et al. 2021

87% of the remaining variance
Is explained with 3 components

| Twins Embedding
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Twins Embedding - Applied to ZTF

1. Shift spectra at phase=0

2.RBTL - fit one offset Am; and a color AA,
outside the lines

i
wmmm 7TF median=-0.05

—/
mmms SNFactory nmaFl=O.17
— median=0.02
nmad=0.13

—-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
Am [mag]
[
: _, median=-0.03
[ nmad=0.25
: median=-0.10
: = nmad=0.22
|
|
|

—-0.5 0.0 0.5 1.0 1.5

* More dispersion in Am for ZTF
¥ More ‘red’ SNe in ZTF sample

Spectra after RBTL correction
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783 ZTF SNe Ia RBTL spectral correction.
Dispersion of the residuals, before/after correction
compared with 200 SNe of SNf
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Twins Embedding - Standardisation in color

—> 0.153 mag for ZTF (0.164 SALT)

¥ Remaining correlation between RBTL parameters for ZTF
0.113 for SNf

» ZTF -688 SNe

|
SNf - 139 SNe f 39.0
—— 6 bins on ZTF i 38 5 .
— 6 bins on SNf '
0.6 w 38.0 0.2
T 375
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0.4 -02 0.0 02 04 2 00
Adv | g o5
RBTL standardisation : linear color correction | 0.03 0.04 005 006 007 008 009 0.10
j Redshift
"~ Hubble Diagram after RBTL standardisation,
A//tRBTL,i - [Ami — PRBTL ° AAV,i] for ZTF : 688 SNe
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Twins Embedding - Standardisation in color

.5 % 0.04mag dispersion floor due to flux-calibration

Test of the robustness | . s
| % 0.07mag due to 40% of SNe with 5, ~ 10

- 0.2} x - :
| _ | falls to 0.126 mag dispersion
- S e " -------------------------------------
e .ip __________ - i i
: — 0.1 i ’ ‘ 7 ?
'f 8’ - mean=0.086

- \ ] std=0.433
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I S Av color
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Q i} 6t |.| 1 -02 -01 00 01 02 03 -02 -01 00 01 02 03
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A . : o s
. e SNf: 34 SNe per bin | f © C - - ;r‘:r‘
. : | 2t o G - =
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; -2 -1 0 1 . 0t WIS b —04 -02 00 02 04 —04 -02 00 02 04
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R, : Cl

SNe with high color / low stretch are % Remaining host contamination on ZTF

not well standardised in ZTF sample (unknown dispersion) : artificial

reddening
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Twins Embedding - Standardisation in color

Less dependency in host galaxy properties:
Astrophysical biases mitigated

color step: 0.108+0.018 mag (50) color step: 0.019+0.019 mag (10)
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1 |
0.25|

0.00+
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—0.50+

| Twins Embedding




Twins Embedding - Standardisation in color

Less dependency in host galaxy properties:
Astrophysical biases mitigated

mass step: 0.109+0.018 mag (50) mass step: 0.022+0.019 mag (10) |
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Twins Embedding - Isomap parameters

—

3. Fit three Isomap parameters & per SN

w— ZTF - 688

e

me SN - 139 ] SNf ) ZTF
® Broad Line
| ® Cool
4 Core Normal ‘ 4r
| ® Shallow Silicon . g o ®
2t 21
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uwr O uwr O
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-_67.5 _é_o _2l.5 ojo 2;5 5.‘0 7.5 ——67.5 50 -25 00 25 50 7.5
&1 &1

Recovered Branch classes

|
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£

Normalised distributions of Isomap parameters

Twins Embedding 22



Twins Embedding - Isomap parameters

GP(/I)(EZ-) modelling lines

(not a standardisation) %
| 0.4} = ZTF
1 O == SNFactory
Frdop i A) = Fnax(A) - 10+04Am+AAyCLA) _ g E 03
1+ GPA)(¢ ) S
502
Q
Q.
at —.- Reference spectrum - g 0.1
— RBTL
g5 IR VYR VAN - - %%000 5000 6000 7000 8000
E ".\.ﬂ \/\ “ ‘ Wavelength [A]
%2 N
S | v , : i
s ; Nl Spectral dispersion for 682 ZTF SNe
'L . . | . and 139 SNf SNe after RBTL
4000 5000 6000 7000 8000 - .
Wavelength [A] Standal’dlsatlon

with/without line correction

Spectral modelling using RBTL and Isomap

| parameters of SN ZTF18aaxvpsw
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Spectral dispersion for 682 ZTF SNe
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Twins Embedding - Standardisation

SNf - 139 SNe ZTF - 688 SNe
RBTL : nMAD=0.114 mag RBTL : nMAD=0.153 mag
TE : nMAD=0.097 mag e TE : nMAD=0.156 mag

Manifold standardisation
color (#1)+ 6m®F #3)

—_— _ GP = : ® *E = “I

Aprg; = — lAmi — Pre1L - AAy,; —om (¢ i)] 0.0} :&nﬂ : > o
5 —0.1 ’ o JI ) ’ “is “
Residual prediction £ e s o A

P ° — - W ox ¥ | * &“ »

* I poon g‘ b # . ¥
—0.3¢1 ! ““**! 3*8
10 =05 00 05 1.0 -10 —05 00 05 1.0
Au Au

Residuals for 688 ZTF SNe and 139 SNf SNe
SNT results differences with Boone 2021: J 39 SNf

e wavelength range -
e no cut on data quality Gaussian Process om ™ doesn'’t

e Jinear color correction decrease the dispersion on ZTF
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Conclusion

Ganot et al. (in prep)
O 1607 ZTF spectra flux-calibrated at 0.07 mag 5]

QO ZTF TE sample has 4x more SNe than SN{

Distance modulus
w
~J
(@)

Q RBTL standardisation efficiency is confirmed for ZTF 60, e e (o] |

o std=0.171+0.005
35.5 nmad=0.153+ 0.004 -

—> 0.153 mag | 0.164 mag SALT c and x,

Residuals

~ 0.1 mag for the bluest

0.03 0.04 005 006 0.07 008 0.09 0.10
Redshift

Less dependency to environment

0.4} = ZTF
= == SNFactory
£ 0.3
. . eqo, o . 7 % 0.2
O Recover the line variabilities with GP(1)( ¢ ) .
O Manifold standardisation limited by spectral quality R TS
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Wh at ,S n eXt Be prepared for

new surveys

We need simulations to know what to

focus on for future surveys SNFactory
2004 —> 2014

Ongoing work: sntwin ZTF

O Application of the TE to another surveys

O Dataset simulations: wavelength coverage,
SNR, o,, resolution, revise the cuts...

O Improving the method: phase range, the
colorlaw (dust evolution in z...)

Conclusion



SUGAR SNEMO

Leger 2019 Saunders 2018

PCA describing the variations of SN |la
spectral time series

Eigenvectors e/(p, 1) + Eigenvalues cgy ;

features are highly correlated : SUGAR is
combining the pEW and velocities
Linear combination of 13 spectral features

3 parameters g, 2, 7 or 15 parameters
N
raining-77 | | ' FSN (p ’ A) — CSN,O eO (p ’ A) ECSN,I el (p ’ A)
: T Minimum of pcygni profe | i=1
g - Phase -8
2 - . - Phase 0
< . - Phase 16
§ b — Phase 30
: Q.
=
< Q
% 2
E 0 - H.‘Y 7
V Sill A4131 1 E & —
e ‘ % 40'00 50100 6OIOO 7OIOO 80100
V'S 1l A5640 *‘/Si | A6355 :' Wavelength (A)

5000 6000 7000

W gth [A]

First eigenvector ¢,(p, 4) for several phase p
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Data processing

1.01 TPy TI T ' “I,I e i ‘r I ‘ql T
B (.81
::i_ﬁ().ﬁ-
Z.%: (0.4
o | —— SEDm resolution
0.2 Telluric O, area
M Extraction from data cude | | | | |
4000 5000 6000 7000 8000 9000 10000
Wavelength (A)
4 Wavelength calibration Telluric absorption lines from Kitt Peak Observatory
Credit: Hinkle et al., 2003
. . ><].0_14
I Correction atmospheric L0- O Host ol

~ EM/AB lines
Input z=0.042

contamination

;1:’ O[111]
|§ 0.81 \h ;
_ _ T V'\"‘ T J
> | y
M Host galaxy contamination oo |1 WM 4y
E Alfg
0.41
4000 5000 6000 7000 000 9000
Wavelength(A)

Spectrum of ZTFi18accrorf host galaxy
Credit: Jeremy Lezmy thesis
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Goals | Dark Energy

Ground Space
Precision required (Systematics)
0.02 W
i Calibration :
D 0.01 omag = 0.001
© ' . .
= CMB Scale Astrophysical bias:
= omag = 0.001
8 0.00 / 5
<
| Dispersion (Statistics)
~ —0.01 - |
j SNe Ia dispersion :
o005 | Cppag = 0.40

SNe la are not

102 10-1 100 101 102 103
Redshift standard candles !
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Flux calibation : precision estimates

Isolated SEDm observation error

RMS of individual stars
— mean of the 6 stars RMS

|

4000 5000 6000 7000 8000 9000
Obs-frame wavelength [A]

- —— SNf

NMAD of residuals to SALT models
|

— ZTF

S

==« SNf + 0.07

—

NA N

A Ny
AN AVA g

I I | I
5000 6000 7000 8000
Rest-frame wavelength [A]

ZTF mean SALT residual dispersion [mag]

4000

|
| +++w+++++++++++

e 75 spectra per bin
0.04 mag

FESW R S

10 15 20 25 30 35 40
Median SNR in 4500-7000 A

Standard stars
Residuals of SEDm observations
with CALSPEC reference spectra

SNe la
Dispersion error floor of ZTF compared to SNf

Isolated flux-calibration dispersion
Separate the contribution of SNR
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DTEM - phase correction

1. Generate at maximum luminosity

m;(p; Ak) — mi(0;\g) = p-ci(A) +p° - 02()‘k)|

ztf-g band

o
N

o~
o

N

&
Phase (days)

=
=

x& (mag)

”" ' ""“3-1....‘;,..

Brightness relative to

Offsets [mag]
S
|_|

" : ¢ Pealitss it 8
0.8 — 0.2 %96 after correction : ]
4000 5000 6000 7000 8000 ¥ 4 ® ®  nmad=0.01
Wavelength (4) -03F—a"® _.4 _.2 O 2 4
Quadratic evolution in phase of SN Ia spectra Phases [day]
5 25 0 42545 ph Synthetic photometry in g-band for 789 SNe of ZTF,
» Phase compared to LC data at peak,
fA) betore/atter DTEM correction

On bessell-b Light . »
1 DESSElD HGTIEHIve —> estimated precision of 0.01 magq for ZTF

Capture 85% of the spectral time evolution variance In ztf-g band
common to every Sne between -5 and 5 days
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The Twins Embedding parameters space

Spectral distance between two Sne |l and j : _ _ _ _
Isomap algorithm embed high-dimensional space

to low-dimentional while preserving distances

faered..i(Ak) — fdered..j(Ak) ) y
Z ( fmean(Ak‘)

Vi ]
k? ~— RBTL + 0 Components —— RBTL + 3 Components

~—— RBTL + 1 Component ~—— RBTL + 4 Components
—— RBTL + 2 Components

o
»

o
w

o
N

1.0

!
Dispersion (mag)

©
=

4000 5000 6000 7000 8000
Wavelength (A)

o
O
L

o
o

O
o

From K.Boone et al. 2021. SN Factory spectra fluxes STD, in
function of wavelengths, for different numbers of Manifold
Learning components (parameters reduction)

&
(@)
1

Fraction of variance explained
o
~l

O
u

—&— Isomap + GP
~— PCA
Measurement uncertainty

<
&
1

1 2 3 4 b éfc 6 7 8 9 10 But it does not provide a model of a spectrum
Number of Components . . . . -
given its coordinates in the embedding : for that
they use Gaussian Process

86.6% of variance explained with 3 components
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The standardisation using Twins Embedding

To map the magnitude residuals through the TE
space : linear standardisation not sufficient,

instead Gaussian Process regression : Fitted parameters :
m,.r & common reference magnitude
GP _ . (£ =2 2 w a linear correction term
5mi =GP (/’t(mref’ w - AAV,i)’ 6( 5 ° Up.v.,i’ Gu))

o, the unexplained residual dispersion

i . Known :

, | . o % ? e l GP ] -
m M o %%%;, om.”" the RBTL magnitude residual
' 0- “ of{ o0 g OC_@ ‘- %‘) }

.c : % o %6(3 F—0.1 u»
S AAy . the RBTL color
. , © 000 R @ | o $Rs° " 7 .
o PR Hodsr o 0 o%go% o £ ¢ ; the Isomap coordinates

o 0 o 0 ° o Qﬁo% gQ)O JO 0 ] X @Z@ .

-2 O%E)%J 1* o ig% I‘ 012”.31. the host galaxy peculiar velocity variance

6 -4 -2 616 2 4 6 —2 6£3 2 4

Before/after correction of magnitude residuals with GP
from Boone 2021b
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ZTF additional dispersion estimates

We run on 60% percent of the sample that -
have both SNID-Z anqd ga/-Z.' ZTF mean SALT residual dlspers.|0n7[5rr;zsjc]tra —
we found 0.07mag difference (in quadratic)

O
[
un

—— 0.04 mag

0 snid-z: 0=0.197mag
gal-z: 0=0.168mag

o
o
a1

Mean dispersion [mag]
o
=
o
_._
———
_._
] e
_._
———
——
_._
——
_._
_._
_._
_._

5 10 15 20 25 30 35 40
Median SNR in 4500-7000 A

SNR should be absorbed by Am

— |

~1.0 —0.5 0.0 0.5 1.0
RBTL residuals for 402 SNe

% 0.07mag due to 40% of SNe with 6, ~ 107

. . 0
S0 we reduce the dispersion of 40% of ¥ 0.04mag dispersion floor due to flux-calibration

the sample which have SNID-z only.
falls to 0.126 mag dispersion
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