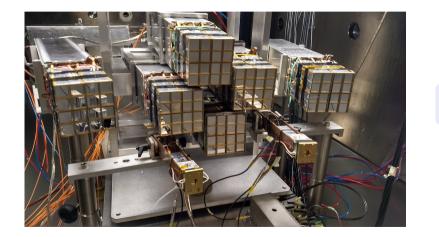


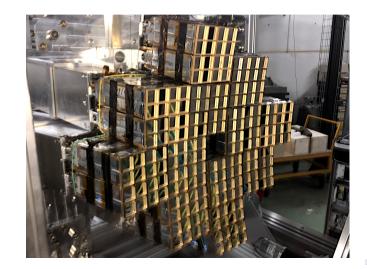
FAZIA000

Laboratories where FAZIA measured so far


Transportable

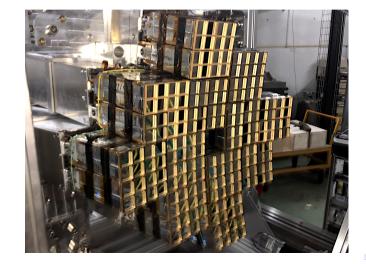
Modular

Couplable

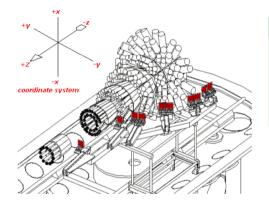

INFN-LNS (Italy) 2014 – 2015

INFN-LNS (Italy) 2016 – 2018

GANIL (France) 2018 – today



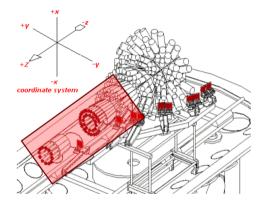
GANIL (France) 2018 – today


Transportable

Modular

Couplable

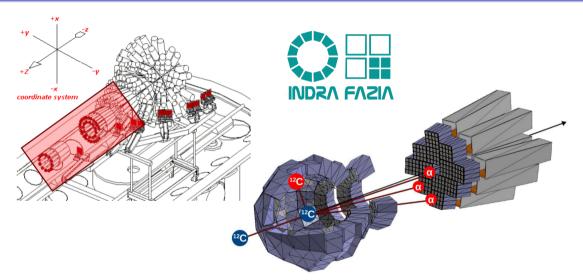
INDRA setup

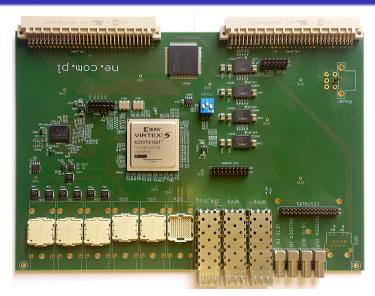


Original configuration (1992-2016)

- 90% of the solid angle covered
- 17 telescope rings (8-24 sectors per ring)
 - ullet ring 1: IC + plastic scintillators
 - rings 2-9: IC-Si-Csl telescopes
 - rings 10-17: IC-Csl telescopes

J. Pouthas et al, Nucl. Instr. and Meth. A 357 (418), 1995


INDRA setup



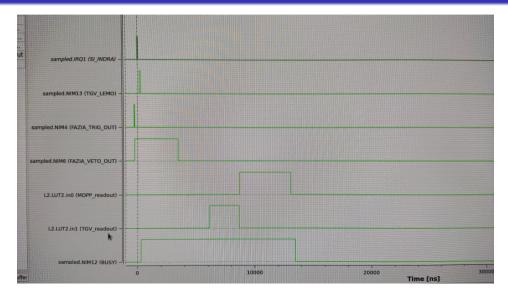
Present configuration (2017-today)

- FAZIA at forward angles!
- 12 telescope rings (8-24 sectors per ring)
 - rings 1-5: removed!
 - rings 6-9: IC-Si-Csl telescopes
 - rings 10-17: IC-Csl telescopes

$INDRA\ setup$

Regional Board

- Designed at Jagiellonian University, Krakow
- Features a Xilinx Virtex-5 FPGA
 - VHDL code has been written mainly at INFN Napoli and INFN - Firenze
- 36x 3 Gb/s bi-directional optical links
 - to/from FAZIA blocks
 - fixed latency protocol
- 2x 1 Gb/s optical ethernet links (1000Base-SX)
 - now only 1 is used \Rightarrow room for transmission speed increase
 - UDP protocol for low-latency transfer
- Possibility to connect GANIL CENTRUM module


Regional Board tasks

- Slow control management of all the electronics
 - data transmission and slow control use the same optical fibre
- Trigger board:
 - multiple majority logic for trigger validation
 - trigger scaling by a settable factor
 - asynchronous or master/slave trigger operation (for coupling)
- Event building from data coming from all the blocks
 - it may add the CENTRUM timestamp to each event
- Transmission of acquired data to servers
 - maximum speed achieved: $\sim 80 \, \text{MB/s} \, (\sim 640 \, \text{Mb/s})$

Regional Board recend upgrades

- 2015 Multi-IP data sending interface
- 2015 Improved slow control state machine (multiple clients simultaneously allowed)
- 2016 CENTRUM interface
- 2017 New TAG data format
- 2018 Pt100 probe reading for temperature measurements
- 2022 trigger/veto signal synchronization with slow control registers
- 2025 FRIB clock acquisition and timestamp storage in data flow

Trigger and veto delay adjustment

FAZIA - INDRA coupling

FAZIA modularity makes coupling easy:

- CENTRUM¹ modules could be used for coupling
- FAZIA INDRA coupled since 2018!

¹developed at GANIL, Caen

FAZIA - INDRA coupling

FAZIA modularity makes coupling easy:

- CENTRUM¹ modules could be used for coupling
- FAZIA INDRA coupled since 2018!

Triqqer

- Master/slave (common dead time)
- Asynchronous mode (keeping common dead time)

¹developed at GANIL, Caen

FAZIA - INDRA coupling

FAZIA modularity makes coupling easy:

- CENTRUM¹ modules could be used for coupling
- FAZIA INDRA coupled since 2018!

Triqqer

- Master/slave (common dead time)
- Asynchronous mode (keeping common dead time)

CENTRUM operation

- Validation received from one or both detectors
- Timestamp given to both detectors

¹developed at GANIL, Caen

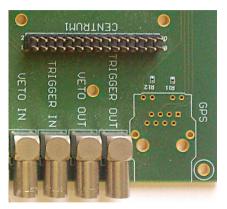
FAZIA - INDRA coupling

FAZIA modularity makes coupling easy:

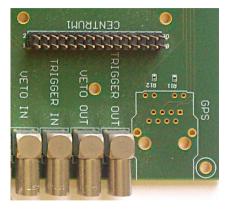
- CENTRUM¹ modules could be used for coupling
- FAZIA INDRA coupled since 2018!
- data merging using NARVAL²

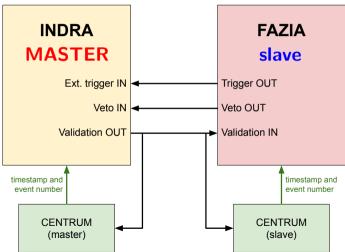
Trigger

- Master/slave (common dead time)
- Asynchronous mode (keeping common dead time)

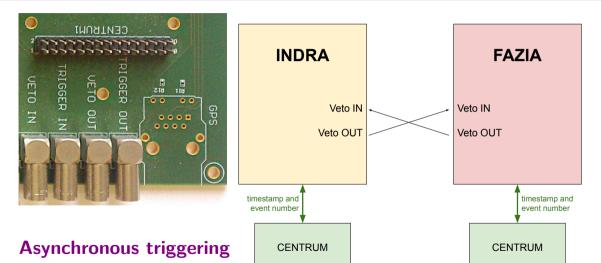

CENTRUM operation

- Validation received from one or both detectors
- Timestamp given to both detectors

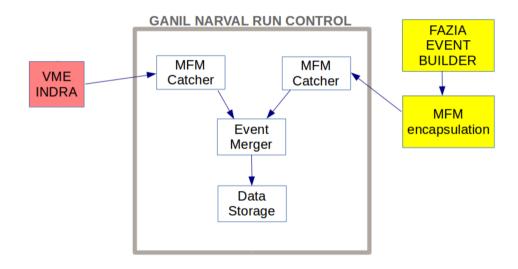

¹developed at GANIL, Caen


²developed at IPN. Orsav

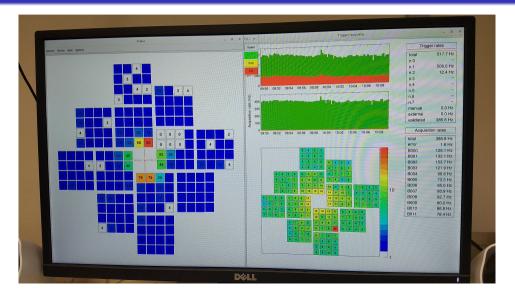
Trigger coupling (preserving common dead time)

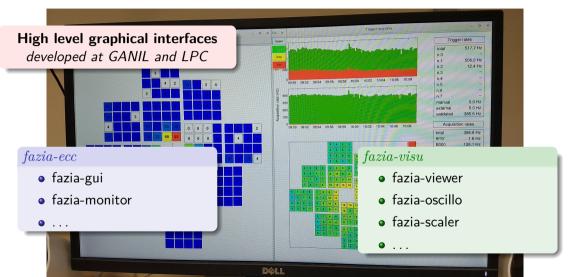


Trigger coupling (preserving common dead time)



Trigger coupling (preserving common dead time)


Data merging with NARVAL



$Acquisition\ system$

- Developed at INFN Napoli
- Finite State Machine logic
- Multi-thread and multi-machine
 - controller sends machine IP addresses to regional board
 - regional board stores IP addresses inside a list
 - each event is sent to a different PC of the list sequentially
- Data merged and written to a data server.
- Monitoring software receives live data from the acquisition
- Data transfer between machines via ZeroMQ protocol
- NARVAL frame encapsulation implemented

Testing and quick analysis

Low level command-line utilities developed at INFN-Firenze

```
fz-acqui Very simple acquisition to ROOT
fz-meter Simple trigger monitoring
fz-scaler Single block scaler
fz-test Complete FEE testing and calibration suite
fz-thresholds Threshold tuning tool
fz-tree .pb to ROOT tree converter
```

FAZIA now

Present status

- FAZIA is a general purpose, modular and flexible apparatus
- almost full solid angular coverage achieved with INDRA+FAZIA coupling
- setup designed for **Fermi energies** (15–50 AMeV)

FAZIA now

Present status

- FAZIA is a general purpose, modular and flexible apparatus
- almost full solid angular coverage achieved with INDRA+FAZIA coupling
- setup designed for **Fermi energies** (15–50 AMeV)

Future at GANIL

There are still many physics cases to be explored

2 experiments performed in 2025!

1 experiment approved for 2026/27!

Future challenges

Collaboration is planning to measure at higher energies (FRIB @ MSU) to explore the supra-saturation regime of the nuclear matter. We are considering many alternatives:

FAZIA future

Future challenges

Collaboration is planning to measure at higher energies (FRIB @ MSU) to explore the supra-saturation regime of the nuclear matter. We are considering many alternatives:

• Thicker sensors with the same FAZIA electronics

FAZIA future

Future challenges

Collaboration is planning to measure at higher energies (FRIB @ MSU) to explore the supra-saturation regime of the nuclear matter. We are considering many alternatives:

- Thicker sensors with the same FAZIA electronics
- New block design with the same FAZIA acquisition protocols

FAZIA future

Future challenges

Collaboration is planning to measure at higher energies (FRIB @ MSU) to explore the supra-saturation regime of the nuclear matter. We are considering many alternatives:

- Thicker sensors with the same FAZIA electronics
- **New block** design with the same FAZIA acquisition protocols
- Full re-design of the apparatus based on the FAZIA expertise

FAZIA future

Future challenges

Collaboration is planning to measure at higher energies (FRIB @ MSU) to explore the supra-saturation regime of the nuclear matter. We are considering many alternatives:

- Thicker sensors with the same FAZIA electronics
- **New block** design with the same FAZIA acquisition protocols
- Full re-design of the apparatus based on the FAZIA expertise

FAZIA technology will be fundamental for the future developments

FAZIA @ 23058

- As a first test, FAZIA will measure at FRIB coupled with other apparatuses
- We started a 2-weekly technical meeting cycle to prepare the setup

Mechanics

- The scattering chamber is too small to host FAZIA
- A "nose" will be build to host a FAZIA block at 80 cm distance from target

DAQ and electronics

- FRIB DAQ experts received the full description of the FAZIA data flow protocol
- FAZIA data will be merged with other setups and handled by FRIB
- independent acquisition to store FAZIA data in the old format?

Future at FRIR

FAZIA @ 23058

- As a first test, FAZIA will measure at FRIB coupled with other apparatuses
- We started a 2-weekly technical meeting cycle to prepare the setup

Mechanics

- The scattering chamber is too small to host FAZIA
- A "nose" will be build to host a FAZIA block at 80 cm distance from target

DAQ and electronics

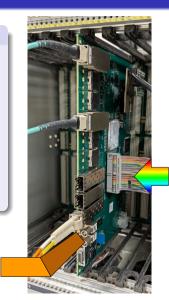
- FRIB DAQ experts received the full description of the FAZIA data flow protocol
- FAZIA data will be merged with other setups and handled by FRIB
- independent acquisition to store FAZIA data in the old format?
- Successful FAZIA@FRIB coupling test in October!

FRIB DAQ coupling

- Common dead time by trigger coupling
- Timestamp (TS) generated from external clock
- TS reset is provided to all the coupled devices
- TS written in data flow
- FRIB DAQ extracts TS to merge data

FRIB DAQ coupling

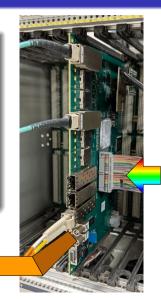
- Common dead time by trigger coupling
- Timestamp (TS) generated from external clock
- TS reset is provided to all the coupled devices
- TS written in data flow
- FRIB DAQ extracts TS to merge data


FRIB veto signal in FAZIA for **common dead time**

FRIB DAQ coupling

- Common dead time by trigger coupling
- Timestamp (TS) generated from external clock
- TS reset is provided to all the coupled devices
- TS written in data flow
- FRIB DAQ extracts TS to merge data

FRIB veto signal in FAZIA for common dead time



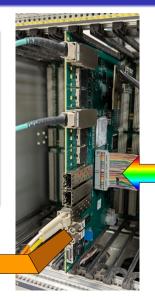
Timestamp **clock** and **reset** signals are sampled by ReBo and written in data flow

FRIB DAQ coupling

- Common dead time by trigger coupling
- Timestamp (TS) generated from external clock
- TS reset is provided to all the coupled devices
- TS written in data flow
- FRIB DAQ extracts TS to merge data

FRIB veto signal in FAZIA for **common dead time**

Timestamp **clock** and **reset** signals are sampled by ReBo and written in data flow


Timestamp coherency verified!

Future at FRIR

FRIB DAQ coupling

- Common dead time by trigger coupling
- Timestamp (TS) generated from external clock
- TS reset is provided to all the coupled devices
- TS written in data flow
- FRIB DAQ extracts TS to merge data

FRIB veto signal in FAZIA for **common dead time**

Extra details from FRIB side in the talk by **G. Cerizza** at the NUSDAF meeting

Timestamp clock and reset signals are sampled by ReBo and written in data flow

Timestamp coherency verified!

Backup slides

FAZIA collaboration

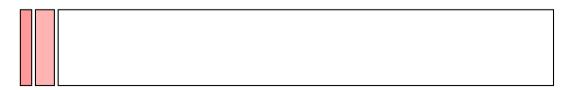
in FAZIA MoU or FAZIA related

The telescope stages

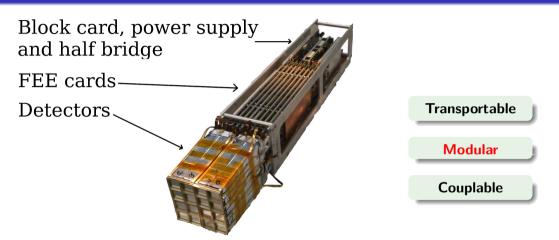
- 300 μm reverse-mounted Si detector;
- 500 μm reverse-mounted Si detector;
- 10 cm Csl(Tl) cristal read by a photodiode.

The telescope stages

- 300 μm reverse-mounted Si detector;
- 2 500 μm reverse-mounted Si detector;
- 10 cm Csl(Tl) cristal read by a photodiode.


The telescope stages

- 300 μm reverse-mounted Si detector;
- 500 μm reverse-mounted Si detector;
- ⊕ 10 cm Csl(Tl) cristal read by a photodiode.


The telescope stages

- 300 µm reverse-mounted Si detector;
- 500 μm reverse-mounted Si detector;
- 10 cm CsI(TI) cristal read by a photodiode.

To achieve the best possible energy resolution and A and Z identification Si detectors come from a nTD input cut at random angle to avoid channeling effects.

The FAZIA block

16 telescopes, together with **front-end electronics**, form a **block** operating in **vacuum**.

- Analogue chain: charge preamplifiers and anti-aliasing filters
- Signals are immediately digitized with 14-bit ADCs:
 - on-line processed on FPGAs
 - energy resolution is better than 1 % from 5 MeV to 4 GeV

S. Valdré et al, Nucl. Instr. and Meth. A 930 (27), 2019

- Analogue chain: charge preamplifiers and anti-aliasing filters
- Signals are immediately digitized with **14-bit** ADCs:
 - on-line processed on FPGAs
 - energy resolution is better than 1 % from 5 MeV to 4 GeV
- common clock distribution for synchronous sampling

S. Valdré et al, Nucl. Instr. and Meth. A 930 (27), 2019

- Analogue chain: charge preamplifiers and anti-aliasing filters
- Signals are immediately digitized with **14-bit** ADCs:
 - on-line processed on FPGAs
 - energy resolution is better than 1 % from 5 MeV to 4 GeV
- common clock distribution for synchronous sampling

- Compactness and modularity
- Very good isotopic discrimination capabilities
- Thresholds (≤10 MeV/u) suited for Fermi energies
 - S. Valdré et al, Nucl. Instr. and Meth. A 930 (27), 2019

- Analogue chain: charge preamplifiers and anti-aliasing filters
- Signals are immediately digitized with **14-bit** ADCs:
 - on-line processed on FPGAs
 - energy resolution is better than 1 % from 5 MeV to 4 GeV
- common clock distribution for synchronous sampling

- Compactness and modularity
- Very good isotopic discrimination capabilities
- Thresholds (\lesssim 10 MeV/u) suited for Fermi energies
 - S. Valdré et al, Nucl. Instr. and Meth. A 930 (27), 2019