
### **IRT** management

IRT CM5

05 November 2025, Paris

Frédéric Pinsard

On behalf of the IRT team



## Development plan and Schedule

DDVP THS-CEA-IRT-PL-0004

Schedule THS-CEA-IRT-PL-0003

#### **MSR Schedule**

| ■ THESEUS M7 I-PRR/MSR [Mark]                              | 65 days | Thu 15/01/26 | Thu 16/04/26 |
|------------------------------------------------------------|---------|--------------|--------------|
| MSR Review Readiness Check                                 | 0 mons  | Thu 15/01/26 | Thu 15/01/26 |
| MSR (ESA Documents Delivery)                               | 0 days  | Thu 29/01/26 | Thu 29/01/26 |
| I-PRR - Instrument Datapack Delivery [boundary condition]  | 0 mons  | Fri 30/01/26 | Fri 30/01/26 |
| MSR ESA Global KO [Mission design & requirements baseline] | 0 days  | Mon 02/02/26 | Mon 02/02/26 |
| △ THESEUS M7 I-PRR                                         | 31 days | Tue 03/02/26 | Wed 18/03/26 |
| I-PRR KO IRT (@ ESTEC)                                     | 0 days  | Tue 03/02/26 | Tue 03/02/26 |
| I-PRR KO SXI.XGIS (@ ESTEC)                                | 0 days  | Wed 04/02/26 | Wed 04/02/26 |
| Review period                                              | 21 days | Thu 05/02/26 | Thu 05/03/26 |
| Spring Holidays 2026 South Holland                         | 7 days  | Sat 14/02/26 | Sun 22/02/26 |
| Panel Meeting #1                                           | 0 days  | Wed 11/02/26 | Wed 11/02/26 |
| Panel Meeting #2                                           | 0 days  | Wed 18/02/26 | Wed 18/02/26 |
| Panel Meeting #3                                           | 0 days  | Thu 26/02/26 | Thu 26/02/26 |
| RID coordination                                           | 0 days  | Thu 05/03/26 | Thu 05/03/26 |
| RID release                                                | 0 days  | Fri 06/03/26 | Fri 06/03/26 |
| RID response period                                        | 5 days  | Mon 09/03/26 | Fri 13/03/26 |
| co-location IRT (@ ESTEC)                                  | 0 days  | Tue 17/03/26 | Tue 17/03/26 |
| co-location SXI.XGIS (@ ESTEC)                             | 0 days  | Wed 18/03/26 | Wed 18/03/26 |
| △ THESEUS M7 MSR                                           | 28 days | Sat 14/02/26 | Wed 25/03/26 |
| MSR - Prime Datapack Delivery [boundary condition]         | 0 mons  | Mon 16/02/26 | Mon 16/02/26 |
|                                                            |         |              |              |
| Report to Board                                            | 0 days  | Wed 08/04/26 | Wed 08/04/26 |
| MSR - Board Meeting [boundary condition]                   | 0 days  | Thu 16/04/26 | Thu 16/04/26 |



#### **IRT DDVP** main dates



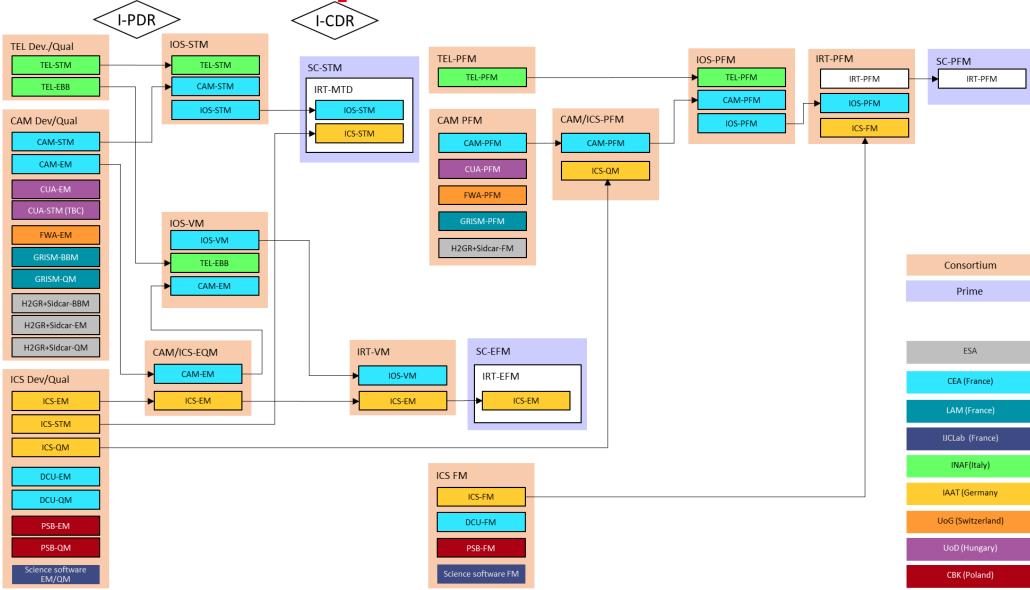
- The IRT will be developed with a Proto Flight Model approach to be able to cope with the main delivery date at spacecraft level:
  - A IRT Proto Flight Model (PFM) delivery Q1 2034
  - A IRT Electrical Functional Model (EFM) delivery Q3 2032
  - A IRT Thermal Demonstration Model (TDM) delivery in Q2 2031
- The IRT development shall also cope with the main instrument review date:
  - IRT-SSR in Q2 2028
  - IRT-PDR in Q2 2029
  - IRT-CDR in Q2 2031

#### **IRT** models



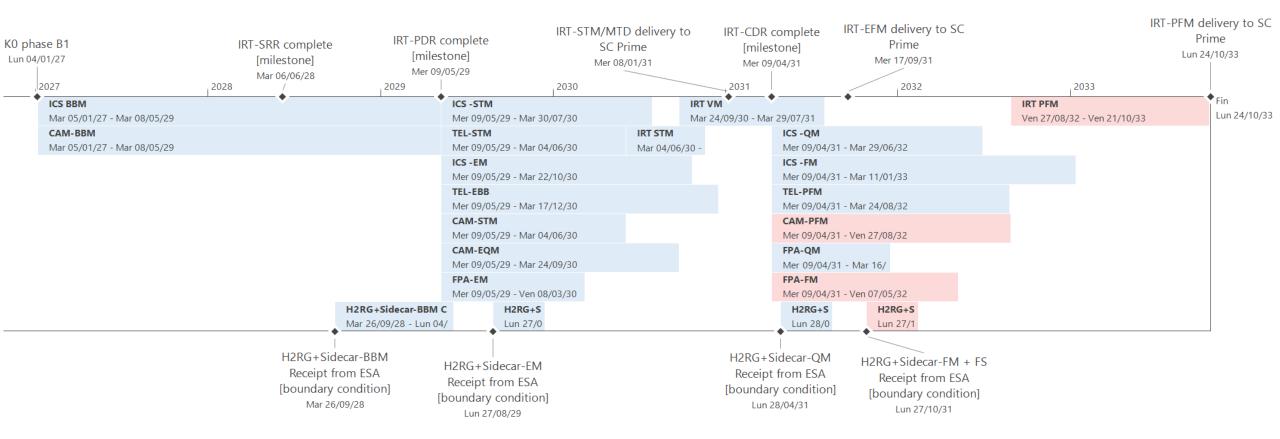
- Breadboards models (BBM): Development testing to retire major risks, first Validation of all functional chains and evaluation of their performances Development testing at subsystem level (From KO Phase B1 to IRT-PDR) 2.5 years
  - BBM of the detection chain will be developed with the two following subsystem:
    - The detector control electronic BBM realized with standard electronics parts.
    - FPA BBM realized with a functional detector and Front end electronic but maybe not in the IRT final configuration.
  - BBM of the calibration functional chain will be developed with the two following subsystem:
    - Calibration Unit control electronic BBM realized with standard electronics parts.
    - Calibration Unit BBM realized with as representative elements as possible of the flight one.
  - BBM of the wheel functional chain will be developed with the two following subsystem:
    - Filter wheel control electronic BBM realized with standard electronics parts.
    - Filter wheel position sensor.
  - BBM of Data Processing board developed in order to start early the IRT software development
    - DPB BBM realized with standard electronics parts.(or processor development kit)
  - Telescope BBM activities
    - On optic mounting and Refocusing system




#### **IRT** models



- Structural thermal model (STM) or Thermal Demonstration Model (TDM) deliverable at S/C level: Verification of the mechanical and thermal behavior at Instrument level and PLM level, and optical alignment of telescope. (From IRT SRR to IRT CDR) 3 years
- Engineering model (EM): Verification of the design concepts and functionality as well as the electrical I/Fs at subsystem and instrument level. This model is as representative as possible compared to the flight Model as far as its electrical properties and its functionalities are concerned. (From IRT SRR to IRT CDR) 3 years
- **Verification model (VM):** performance verification and test procedure validation at IRT level. (Starting with the coupling tests between the camera and instrument control system, followed by the telescope EBB and Camera EM integration before IRT CDR, then the end-to-end tests for the IRT VM shall be done before PFM integration.)
- Electrical Functional Model (EFM) deliverable at S/C level: Verification of the communications and electrical behavior and instigate ground test sequences and flight operations. This model is built with the DHU electronic box EM with loads
- Qualification Model (QM): no qualification model will be developed at instrument level, but only at subsystem level (i.e. focal plan, Filter wheel, calibration unite and warm electronic box. Use to qualify the subsystem design. (From IRT CDR to Subsystem Qualification Review) 1 year
- Proto Flight Model (PFM) deliverable at S/C level: Full AIV sequence including IRT instrument performance verification and calibration. (From IRT CDR to PFM delivery) 2.5 years
- Fight Spare (FS) deliverable at S/C level if needed: Spare Parts of the IRT instrument for replacement at the satellite integration facility. (From Subsytem Qualification Review to PFM delivery)








#### **Schedule overview**





<u>cea</u>





| Verification test   | TEL<br>In Italy | CAM<br>@CEA | ICS<br>@IAAT | CAM+ICS<br>@CEA | IOS<br>@CEA | IRT<br>@LAM |
|---------------------|-----------------|-------------|--------------|-----------------|-------------|-------------|
| Performance ambient | EBB             | PFM&EQM     | FM,QM,EM     | PFM&EM          |             | PFM,VM      |
| TVAC (Functional)   | PFM             | PFM&EQM     | FM,QM        | PFM&EM          |             | PFM,VM      |
| TVAC (Performance)  | PFM             | PFM&EQM     | FM,QM        | PFM&EM          |             | PFM,VM      |
| Physical properties | PFM,STM         | PFM&STM     | FM,STM       |                 | PFM,STM     |             |
| Static load         | PFM,STM         | PFM&STM     | FM,STM       |                 | PFM,STM     |             |
| Sine                | PFM,STM         | PFM&STM     | FM,STM       |                 | PFM,STM     |             |
| Random              | PFM,STM         | PFM&STM     | FM,STM       |                 | PFM,STM     |             |
| Acoustic            | PFM,STM         | PFM&STM     | FM,STM       |                 | PFM,STM     |             |
| Shock               | EBB             | EQM&STM     | QM,STM       |                 |             |             |
| Microvibration      |                 | PFM&STM     |              |                 |             |             |
| EMC                 |                 | PFM&EQM     | QM,FM        |                 |             |             |
| ESD                 |                 | EQM         | QM           |                 |             |             |
| Magnetic            |                 | PFM&EQM     |              |                 |             |             |







- The current schedule leaves some margin for delivery at the SC level:
  - 5 months margin for the PFM delivery to S/C
  - 3 months margin for the STM delivery to S/C
  - A year margin for the EFM delivery to S/C
- Currently the IRT-instrument PFM critical path goes through:
  - Detector FM characterization
  - Focal plan FM integration and test
  - Camera PFM integration and tests
  - Instrument PFM integration and tests



# 2 assessment and mitigation

Risk Register THS-CEA-IRT-LI-0002 M7.2.0



| Risk Id     | Sub-system | Risk scenario                                                        | Classification | Control actions / Current status                                                                                                                                                             |
|-------------|------------|----------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IRT-RISK-01 | IRT        | ITAR/Licensing issues                                                | MINOR          | minimize the ITAR component as far as possible                                                                                                                                               |
| IRT-RISK-02 | IRT        | chain detection not redondant (detector + ASICS + DCU                | )MEDIUM        | FMECA on design Quality of EEE components                                                                                                                                                    |
| IRT-RISK-03 | IRT-CAM    | Find infrared LEDs (NISP experience using Russian infrared LEDs)     | MINOR          | R&T (development program ongoing with CNES) Several sources has been idemtified                                                                                                              |
| IRT-RISK-04 | IRT-TEL    | Mirrors manufacturing tolerance are not met                          | MEDIUM         | Anticipate manufacturing technology verification in phase A                                                                                                                                  |
| IRT-RISK-05 | IRT-TEL    | Interface bipods stiffness not compatibile with S/C TE displacement  | MINOR          | Validate the bipods design with S/C TE data                                                                                                                                                  |
| IRT-RISK-06 | IRT-TEL    | Optical bench TE effects not compatible with LoS stability           | MINOR          | Addition of optical bench thermal control                                                                                                                                                    |
| IRT-RISK-07 | IRT-CAM    | Management microvibration at cryo interface                          | MEDIUM         | Study of mechanical decoupling                                                                                                                                                               |
| IRT-RISK-08 | IRT        | The efficiency of earth baffle can not be tested at intrument level  | MEDIUM         | simulation should be done                                                                                                                                                                    |
| IRT-RISK-09 | IRT-CAM    | Aluminium camera design performance not compliant with requirements. | MINOR          | The mechanical and thermal modelling of the camera has been completed and appears to meet the IRT performance requirements. These results shall be confirmed through camera mock-up testing. |

A new risk may need to be added regarding the cryocooler if its management is handled by the IRT consortium?

<u>cea</u>



| Risk Id                   | Sub-system | Risk scenario                                         | Classification | Control actions / Current status                                                                                                                                                                                                                                                     |
|---------------------------|------------|-------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IRT-ICS-RISK-01           | IRT-ICS    | Hardware malfunction                                  | MINOR          | Cold redundant backups of all boards except DCU                                                                                                                                                                                                                                      |
| IRT-ICS-RISK-02           | IRT-ICS    | Single event effects on digital components            | MINOR          | All critical baseline components must be radiation hardened.                                                                                                                                                                                                                         |
| IRT-ICS-RISK-03           | IRT-ICS    | TM/TC transmission error                              | MINOR          | Acknowledgement of data packet receipt. EDAC.                                                                                                                                                                                                                                        |
| IRT-ICS-RISK-04           | IRT-ICS    | Software bug                                          | MINOR          | Thorough testing of all software before deployment. Fully functional 'basic' software stored in PROM as backup.                                                                                                                                                                      |
| IRT-ICS-RISK-05           | IRT-ICS    | Failure of 'master' I-DHU                             | MEDIUM         | Any of the I-DHUs can assume 'master' authority.                                                                                                                                                                                                                                     |
| IRT-ICS-RISK-06           | IRT-ICS    | Lack of personnel                                     | MINOR          | Hire sufficient personnel for phase B activities.                                                                                                                                                                                                                                    |
| IRT-ICS-RISK-07           | IRT-ICS    | Damage of I-DHU due to critical temperatures          | MINOR          | I-DHU temperatures will be continuously monitored during operation. Thermal design and analysis will ensure that the DHUs will not achieve critical temperatures through standard use, Coldredundant backups of all boards can replace the nominal boards in case of thermal damage. |
| IRT-ICS-RISK-08           | IRT-ICS    | Critical mechanical design                            | MINOR          | All units will be designed to meet requirements with appropriate margins. This is verfied through mechanical and thermal FEA.                                                                                                                                                        |
| IRT-ICS-RISK-09           | IRT-ICS    | Critical DPB design                                   | MEDIUM         | All units will be designed to meet requirements with appropriate margins. Alternate components will be identified as backups for each electronic components in case the baseline component does not meet requirements.                                                               |
| IRT-ICS-RISK-10           | IRT-ICS    | Critical PSB design                                   | MEDIUM         | All units will be designed to meet requirements with appropriate margins. Alternate components will be identified as backups for each electronic components in case the baseline component does not meet requirements.                                                               |
| IRT-ICS-RISK-11           | IRT-ICS    | Equipment delay                                       | MEDIUM         | All development activities will have margins to allow for delays.                                                                                                                                                                                                                    |
| IRT-ICS-RISK-12           | IRT-ICS    | Loss of critical skills                               | MEDIUM         | Sufficient personnel will be hired.                                                                                                                                                                                                                                                  |
| IRT-TEL-RISK-01           | IRT-TEL    | Truss designed CTE is not achieved                    | MINOR          | BB manufactured and tested in phase A                                                                                                                                                                                                                                                |
| IRT-TEL-RISK-02           | IRT-TEL    | Refocusing mecanism does not achieve the requirements | MINOR          | Developing a backup configuation without refocusing system                                                                                                                                                                                                                           |
| r 2025<br>irt-tel-risk-03 | IRT-TEL    | M2 mounting not compatible with low temperature range | MINOR          | Addition of M2 thermal control                                                                                                                                                                                                                                                       |



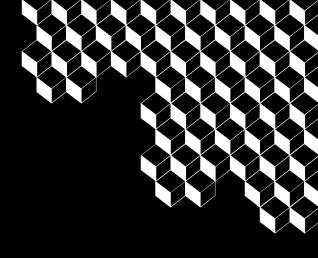
# IRT Critical technology status and plan

Critical technology THS-CEA-IRT-RP-0004 M7.2.0





| Parts                       | Technology foreseen          | anteriority       | Status of verification/qualification | specific qualification foreseen | back-up foreseen                |
|-----------------------------|------------------------------|-------------------|--------------------------------------|---------------------------------|---------------------------------|
| Detectors                   | Teledyne Hawaii-2RG          | Used on           | Qualified (TRL9)                     | TRL6 for mission adoption       | -                               |
|                             | 2048x240 pix, 18μm, RON 7 e- | NISP/EUCLID       |                                      |                                 |                                 |
|                             | EUCLID customized (TRL9)     |                   |                                      |                                 |                                 |
| Camera Structure            | Material: Aluminium 6061 T6  | Used on JWST/MIRI | Standard                             | No specific qualification is    | SIC utilized in NISP/EUCLID and |
|                             |                              |                   |                                      | foreseen. A material trade-off  | in the M5 design study          |
|                             |                              |                   |                                      | is ongoing with a camera        |                                 |
|                             |                              |                   |                                      | manufacturing and testing       |                                 |
|                             |                              |                   |                                      | activities.                     |                                 |
| (Cold) Front-end electronic | Asics Teledyne               | Used on           | Qualified (TRL9)                     | To be qualified at cold         | -                               |
|                             |                              | NISP/EUCLID       |                                      | temperature                     |                                 |
| Warm electronic             | Standard                     | All project       | Standard                             | No specific qualification       | -                               |
| Filter wheel assembly       | Standard                     | HITOMI & XRISM    | Standard                             | To be qualified at cold         | -                               |
|                             |                              | filter wheels,    |                                      | temperature to verify           |                                 |
|                             |                              | Euclid/RSU        |                                      | especially the torque margins,  |                                 |
|                             |                              |                   |                                      | the repeatability and           |                                 |
|                             |                              |                   |                                      | positional accuracy, the        |                                 |
|                             |                              |                   |                                      | holding of the position during  |                                 |
|                             |                              |                   |                                      | shock/vibration tests           |                                 |
| Driving motor               | SAGEM Phytron stepper motor  | Euclid/NISP       | TRL 9 will be achieved likely at the | To be qualified while           | -                               |
|                             |                              |                   | time of the THESEUS adoption         | mounted on the IRT WA but       |                                 |
|                             |                              |                   |                                      | operations at cold for many     |                                 |
|                             |                              |                   |                                      | more actuations than needed     |                                 |
|                             |                              |                   |                                      | for IRT already achieved        |                                 |
|                             |                              |                   |                                      | within the context of the       |                                 |
|                             |                              |                   |                                      | Euclid/NISP qualification in a  |                                 |
|                             |                              |                   |                                      | similar temperature range       |                                 |






| Parts                     | Technology foreseen     | anteriority   | Status of verification/qualification | specific qualification foreseen | back-up foreseen |
|---------------------------|-------------------------|---------------|--------------------------------------|---------------------------------|------------------|
| Filters                   | Material SILICA         | Many projects | Standard                             | To be qualified at cold         | -                |
|                           | Thickness : 7mm         |               |                                      | temperature during the          |                  |
|                           | Clear aperture CA=35 mm |               |                                      | lifetime test of the unit.      |                  |
|                           | approx                  |               |                                      | Resistance to shock and         |                  |
|                           |                         |               |                                      | vibrations to be                |                  |
|                           |                         |               |                                      | demonstrated during the         |                  |
|                           |                         |               |                                      | corresponding campaigns but     |                  |
|                           |                         |               |                                      | no issue foreseen given         |                  |
|                           |                         |               |                                      | heritage from many previous     |                  |
|                           |                         |               |                                      | missions.                       |                  |
| Grism                     | Material N-F2 / Silica  | Galex, NISP   | Standard                             | Tests to be performed after     | N/A              |
|                           | Thickness: 7mm          |               |                                      | gluing into the mounts:         |                  |
|                           | Clear aperture CA=35mm  |               |                                      | - cryogenic tests               |                  |
|                           | approx                  |               |                                      | - vib tests                     |                  |
|                           | Grating: 27 lines/mm    |               |                                      |                                 |                  |
| Mirrors                   | Zerodur                 | Many projects | Standard                             | Cryogenic test                  | N/A              |
|                           |                         |               |                                      |                                 |                  |
| IR LED (calibration unit) | LED                     |               | several provider as been idemtified  | Qualification foreseen          | -                |
|                           |                         |               |                                      |                                 |                  |
|                           |                         |               |                                      |                                 |                  |







### **Thank You**

Frederic.pinsard@cea.fr