Critical phenomena in the 2 matrix model and problems in graphical enumeration

Journée cartes à Jussieu

Nathan Hayford

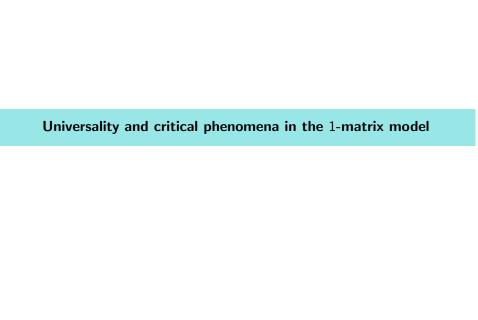
KTH Royal Institute of Technology

November 17, 2025

Overview

▶ Overview of the 1- and 2-matrix models

- ▶ Universality and critical phenomena: conjectures from physics
- ▶ A 'new' critical phenomena: The (3,4) string equation
- ► Implications in graph combinatorics



The 1-matrix model

Ingredients of the 1-matrix model:

- \blacktriangleright \mathcal{H}_N : space of $N \times N$ hermitian matrices, and
- ightharpoonup dX, the Haar measure on \mathcal{H}_N
- \triangleright V(X): (monic) polynomial of even degree

One then defines the probability measure

$$d\mathbb{P}_V(X) = Z_N^{-1} \exp\left[-N \operatorname{tr} V(X)\right] dX$$

where $Z_N = Z_N(V)$ is called the *partition function*. Let

$$\mu_V = \frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_i},$$

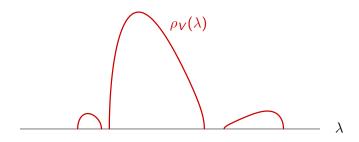
where λ_i are the eigenvalues of a matrix X sampled from \mathbb{P}_V .

Universality in the 1-matrix model

As $N \to \infty$, μ converges to an a.c. probability measure on \mathbb{R} :

$$d\mu_V(\lambda) \longrightarrow \rho_V(\lambda) d\lambda.$$

For **generic** V, ρ_V looks like:



 $\rho_V(\lambda) \sim |\lambda - \lambda_0|^{1/2}$ if λ_0 is an endpoint of supp ρ_V .

Universality in the 1-matrix model: Correlation kernels

Local statistics, behavior of the partition function, etc. are all **universal** in the generic situation (= independent of exact form of V). For instance, if one considers the correlation kernel

$$K_N(\lambda,\mu) := \mathbb{E}_{N-1}^V \left[\det \left(\lambda - X \right) \det \left(\mu - X \right) \right] e^{\frac{N}{2} (V(\lambda) + V(\mu))},$$

then, as $N \to \infty$, for λ^* an interior point of ρ_V ,

$$\frac{1}{cN}K_N\left(\lambda^* + \frac{x}{cN}, \lambda^* + \frac{y}{cN}\right) \longrightarrow \frac{\sin \pi(x-y)}{\pi(x-y)},$$

and for λ^* an endpoint,

$$\frac{1}{c\mathsf{N}^{2/3}}\mathsf{K}_\mathsf{N}\left(\lambda^* + \frac{\mathsf{x}}{c\mathsf{N}^{2/3}}, \lambda^* + \frac{\mathsf{y}}{c\mathsf{N}^{2/3}}\right) \longrightarrow \frac{\mathsf{Ai}(\mathsf{x})\mathsf{Ai}'(\mathsf{y}) - \mathsf{Ai}'(\mathsf{x})\mathsf{Ai}(\mathsf{y})}{\mathsf{x} - \mathsf{y}}.$$

Question: What about the nongeneric situation?

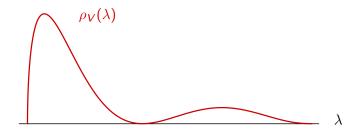
Critical phenomena in the 1-matrix model

For some special choices of V, $\rho_V(\lambda)$ can be made to vanish like:

$$\rho_V(\lambda) \sim (\lambda - \lambda_0)^{2k}$$

or

$$\rho_V(\lambda) \sim |\lambda - \lambda_0|^{\frac{4k+1}{2}},$$



We label vanishings type as (2,2k) and (2,4k+1).

Critical phenomena in the 1-matrix model

In fact, these 'critical' cases are universal as well: if λ^* is a point of vanishing of type (2, q), then

$$\frac{1}{cN^{\frac{2}{2+q}}}K_N\left(\lambda^*+\frac{x}{cN^{\frac{2}{2+q}}},\lambda^*+\frac{y}{cN^{\frac{2}{2+q}}}\right)\longrightarrow K^{(2,q)}(x,y;s),$$

where s is a parameter measuring the deviation from criticality, and $K^{(2,q)}(x,y;s)$ is a kernel arising from the Painlevé II (2,2k) or Painlevé I (2,4k+1) hierarchies:

$$\underbrace{u''(s) = 6u(s)^2 + s}_{PI}, \qquad \underbrace{u''(s) = u(s)^3 + su(s) + \alpha}_{PII}.$$

These equations are Hamiltonian, and as such carry many 'nice' properties (isomonodromy formulation, Painlevé property,...)

Critical phenomena: Partition function

Suppose ρ has a vanishing of type (2, 2k + 1): then

$$V(\lambda) o V(\lambda) + \sum_j N^{-rac{2(k-j)}{2k+1}} \mathbf{s}_{2j+1} \delta V_j(\lambda)$$
 so, near $\xi := \lambda - \lambda^*$,

$$\rho_{V+\delta V}(\xi) \sim \xi^{\frac{2k+1}{2}} + \sum_{j=0}^{k-2} \mathbf{s}_{2j+1}(\xi) \xi^{\frac{2j+1}{2}},$$

 $\mathbf{s}_{2j+1}(\xi)$: analytic functions such that, uniformly for $|\xi| \lesssim N^{-\frac{2}{2k+1}},$

$$N^{\frac{2(k-j)}{2k+1}} \mathbf{s}_{2j+1}(\xi) \xrightarrow[N \to \infty]{} \mathbf{s}_{2j+1}.$$

Then, we have the convergence

$$\mathbf{d} \log \check{Z}_N(V + \delta V) \xrightarrow[N \to \infty]{} \mathbf{d} \log(\boldsymbol{\tau}(\vec{s})),$$

where $\tau(\vec{s})$ is a τ -function for the k^{th} member of the PI hierarchy.

Why do we see Painlevé? Some Heuristics

Morally, the reason why such hierarchies appear is the following. For given V, there is a corresponding OPE:

$$\int p_n(\lambda)p_m(\lambda)e^{-NV(\lambda)}d\lambda = h_n\delta_{nm}$$

Three-term recurrence relation \leftrightarrow multiplication by λ is Jacobi-type operator:

$$\lambda \Leftrightarrow P := \begin{pmatrix} a_0 & b_0 & 0 & 0 & \cdots \\ b_1 & a_1 & b_1 & 0 & \cdots \\ 0 & b_2 & a_2 & b_2 & \cdots \\ 0 & 0 & \ddots & \ddots & \ddots \end{pmatrix}$$

Polynomial $V\leftrightarrow rac{d}{d\lambda}$ is a $(\deg V)+1$ -diagonal matrix, Q

Why do we see Painlevé? Some Heuristics

(M. Douglas, '90) If we tune parameters of ${\it V}$ to be critical, then we can arrange that

$$P = \begin{pmatrix} a_0 & b_0 & 0 & 0 & \cdots \\ b_1 & a_1 & b_1 & 0 & \cdots \\ 0 & b_2 & a_2 & b_2 & \cdots \\ 0 & 0 & \ddots & \ddots & \ddots \end{pmatrix} \longrightarrow \partial_s^2 + u(s),$$

$$Q \to \partial_s^q + v_{q-2}(s)\partial_s^{q-2} + \dots + v_0(s)$$

The trivial identity $\left[\frac{d}{d\lambda},\lambda\right]=1$ at the level of the scaled operators becomes a *string equation*:

$$[Q, P] = 1.$$

The *PI* hierarchy is precisely this set of equations!

What does it mean for graphical enumeration?

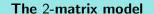
E. Bender, Z. Gao, L. Richmond (2008), paraphrased: the number $\mathcal{N}_g(j)$ of connected, p-regular, genus g maps on j vertices grows asymptotically as:

$$\mathcal{N}_{g}(j) = \kappa_{g} \cdot j! \left(C_{p} \right)^{j} \cdot j^{\frac{1}{2}(5g-7)} \left(1 + \mathcal{O}(j^{-1/2}) \right),$$

where $\kappa_{\mathbf{g}}$ appear in the asymptotic expansion of the PI au-function:

$$\mathbf{d} \log \tau_{Pl}(x) \sim \sum_{g=0}^{\infty} \kappa_g \cdot (-x)^{3/2 - 5g/2}, \qquad x \to \infty.$$

So, $\tau_{PI}(x)$ contains combinatorial information.



Introducing the 2-matrix model

Consider the unitary invariant measure

$$d\mathbb{P}_{V_1,V_2}(X,Y) = Z_N^{-1} \exp\left[N\operatorname{tr}\left(\tau XY - V_1(X) - V_2(Y)\right)\right] dX dY,$$

where V_1, V_2 - polynomials, and $\tau \in \mathbb{R}$. Define counting measures

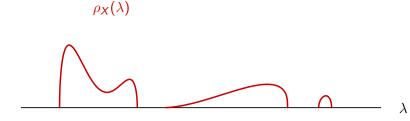
$$\mu_{X} = \frac{1}{N} \sum_{i=1}^{N} \delta_{x_i}, \qquad \qquad \mu_{Y} = \frac{1}{N} \sum_{i=1}^{N} \delta_{y_i}.$$

It is believed (and in some cases proven, cf. Guionnet et. al., Kuijlaars-Duits et. al.) that $d\mu_X \to \rho_X(\lambda) d\lambda$, $d\mu_Y \to \rho_Y(\lambda) d\lambda$ as $N \to \infty$, with the same **generic** behavior for $\rho_X(\lambda)$, $\rho_Y(\lambda)$ as the 1-matrix model

Conjectures from physics

However, the universality classes of critical phenomena in the 2-matrix model are believed to be much wider: For any* (p,q) coprime, one can find potentials V_1 , V_2 such that $\rho_X(\lambda)$ can be made to vanish like

$$\rho_X(\lambda) \sim |\lambda - \lambda^*|^{\frac{p}{q}}$$



^{*} if one allows for analytic continuation.

Douglas' Heuristics revisited

Similarly to the 1-matrix model, λ^* is a point of vanishing of type (p,q), quantities like correlation kernels and partition functions should be described by the (p,q) string equation:

$$[Q, P] = 1,$$

where $Q = \partial_s^q + \cdots$, and $P = \partial_s^p + \cdots$

Heuristic: orthogonal polynomials \Rightarrow biorthogonal polynomials, Multiplication by λ : tridiagonal matrix $\Rightarrow 2q-1$ -diagonal matrix

More conjectures from physics

Correlation Kernel: Suppose λ^* is a point of vanishing of type (p,q) of $\rho_X(\lambda)$. One can define X-X, Y-Y, and X-Y correlations. Then, for example,

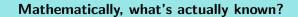
$$\frac{1}{cN^{\frac{p}{p+q}}}K_N^{XX}\left(\lambda^* + \frac{x}{cN^{\frac{p}{p+q}}}, \lambda^* + \frac{y}{cN^{\frac{p}{p+q}}}\right) \longrightarrow K^{(p,q)}(x,y;s),$$

 $K^{(p,q)}$ is a kernel related to a (p,q) string equation.

Partition function: Under an appropriate choice of scaling of parameters,

$$\mathbf{d} \log \check{Z}_{N}(V + \delta V) \longrightarrow \mathbf{d} \log \boldsymbol{\tau}(\vec{s}),$$

where $\tau(\vec{s})$ is a τ -function for the (p,q) string equation.



Known results from mathematics

Early 2010s: (Delvaux, Duits, Geudens, Kuijlaars, Mo, ...)

Riemann-Hilbert formulation of biorthogonal polynomials to study the 2-matrix model

Identify the *Pearcey kernel*, 4×4 Painlevé II kernel as special eigenvalue correlation kernels in the case when

$$V_1(X) = \frac{t}{2}X^2 + \frac{1}{4}X^4, \qquad V_2(Y) = Y^{2k} + \cdots$$

However, no 'higher-order' critical phenomenon aside from the Pearcey process were found

Quartic 2-matrix model: Ising phase transition

 $\it V.~Kazakov$ ('86): critical point of type (3,4) if one considers the potentials

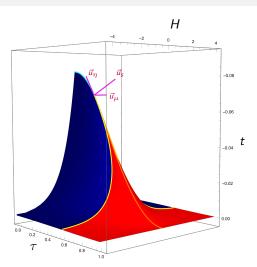
$$V_1(X) = \frac{1}{2}X^2 + \frac{te^H}{4}X^4, \qquad V_2(Y) = \frac{1}{2}Y^2 + \frac{te^{-H}}{4}Y^4,$$

with $t_c=-\frac{5}{72}$, $\tau_c=\frac{1}{4}$, $H_c=0$.

Kazakov, Douglas, Migdal,... ('90): Convergence of $Z_N(V)$ to a τ -function for (3, 4) string equation

M. Duits, N.H., & S.-Y. Lee ('24): we can obtain the same phase portrait as Kazakov, and identify the same critical point rigorously using Riemann-Hilbert analysis

Phase Diagram for the quartic model



Our main theorem will be stated in terms of the directions $\vec{u}_{s}, \vec{u}_{\mu}, \vec{u}_{\eta}.$

What is the (3,4) string equation?

The most general equation arising from $[\partial^3 + \cdots, \partial^4 + \cdots] = 1$ ($' = \frac{d}{ds}$):

$$(\star) \begin{cases} 0 = \frac{1}{2}V'' - \frac{3}{2}UV + \frac{5}{2}\eta V + \mu, \\ 0 = \frac{1}{12}U^{(4)} - \frac{3}{4}U''U - \frac{3}{8}(U')^2 + \frac{3}{2}V^2 + \frac{1}{2}U^3 - \frac{5}{12}\eta(3U^2 - U'') + s \end{cases}$$

N.H. ('24), part II: Equation is *Hamiltonian*: there exists polynomial H_1 in $\{p_k, q_k\}_{k=1}^3, s, \mu, \eta$:

$$\frac{\partial p_k}{\partial s} = -\frac{\partial H_1}{\partial q_k}, \quad \frac{\partial q_k}{\partial s} = \frac{\partial H_1}{\partial p_k} \Longleftrightarrow (\star)$$

Can further find polynomials H_2, H_5 , which Poisson commute with H_1 , so that (\star) is Hamiltonian in μ , η as well: then

$$\mathbf{d} \log \tau(\eta, \mu, s) = H_1 ds + H_2 d\mu + H_5 d\eta.$$

Our theorem (soon)

M. Duits, N.H., S.-Y. Lee, ('25) Let $\vec{P} = (\tau, H, t)$, and

$$Z_N(\vec{P}) = \iint \exp N \operatorname{tr} \left[au XY - V(X; e^H t) - V(Y; e^{-H} t) \right] dX dY.$$

Put $\vec{P}_c:=\left(\frac{1}{4},0,-\frac{5}{72}\right)$, and let $\vec{u}_s,\vec{u}_\mu,\vec{u}_\eta$ be the directions from before. Then,

$$\mathbf{d} \log \check{Z}_{N} (\vec{P}_{c} + \frac{\eta \vec{\mathbf{u}}_{\eta}}{N^{2/7}} + \frac{\mu \vec{\mathbf{u}}_{\mu}}{N^{5/7}} + \frac{s \vec{\mathbf{u}}_{s}}{N^{6/7}}) \xrightarrow[N \to \infty]{} H_{1} ds + H_{2} d\mu + H_{5} d\eta$$

$$= \mathbf{d} \log \tau(\eta, \mu, s),$$

i.e. the partition function converges to a τ -function for the (3,4) string equation.

Properties of $\tau(\eta, \mu, \nu)$

The au-function itself admits an $\hbar o 0$ 'topological expansion'

$$\hbar^2 \mathbf{d} \log \tau (\hbar^{-2/7} \eta, \hbar^{-5/7} \mu, \hbar^{-6/7} \nu) \sim \sum_{g=0}^{\infty} \mathbf{d} \log \tau_g (\eta, \mu, \nu) \hbar^{2g}.$$

 $au_{\mathbf{g}}(\eta,\mu,
u)$ can be computed iteratively. Contain 'topological data', since

$$\mathbf{d} \log \check{Z}_N(\tau, t, H) \sim \sum_{g=0}^{\infty} \frac{F_g(\tau, t, H)}{N^{2g}},$$

and

$$F_g(\tau, t, H) \xrightarrow{multi-scaling \ limit} \tau_g(\eta, \mu, \nu)$$

Implications in graph combinatorics

We would like to say something about the large-j asymptotics of $\mathcal{N}_g(\tau,j)$ near the critical temperature $\tau=\tau_c$.

O. Bernardi, M. Bousquet-Mélou (2011): For $\tau = \tau_c$, as $j \to \infty$,

$$\mathcal{N}_0(\tau_c, j) \sim \tau_0 \cdot K^{-j} \cdot j^{-\frac{1}{3}(10-0.7)} \left(1 + \mathcal{O}(j^{-1/3})\right).$$

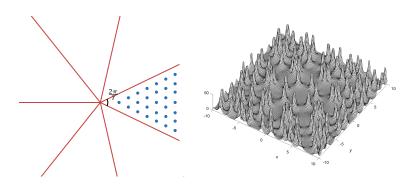
Higher genus formulae seem to be unknown. By analogy to the 1-matrix setting, it seems that the form of this expansion should be determined by the τ -function for the (3,4) string equation.

Concluding remarks: What have we studied?

- ightharpoonup Critical phenomena in random matrices often involve integrable equations, e.g. critical partition function o au-function
- ► The 2-matrix model is a good source for a much richer class of critical phenomenon, many of which are still unexplored
- ▶ We were able to study the first critical phenomenon not appearing in the 1-matrix model, i.e. the (3,4) cusp: our result has implications for the critical Ising model on random graphs

Thanks!

Question 1: What does our solution to the (3,4) equation look like? Some speculations



*Second figure from the algorithm of Fornberg/Weideman