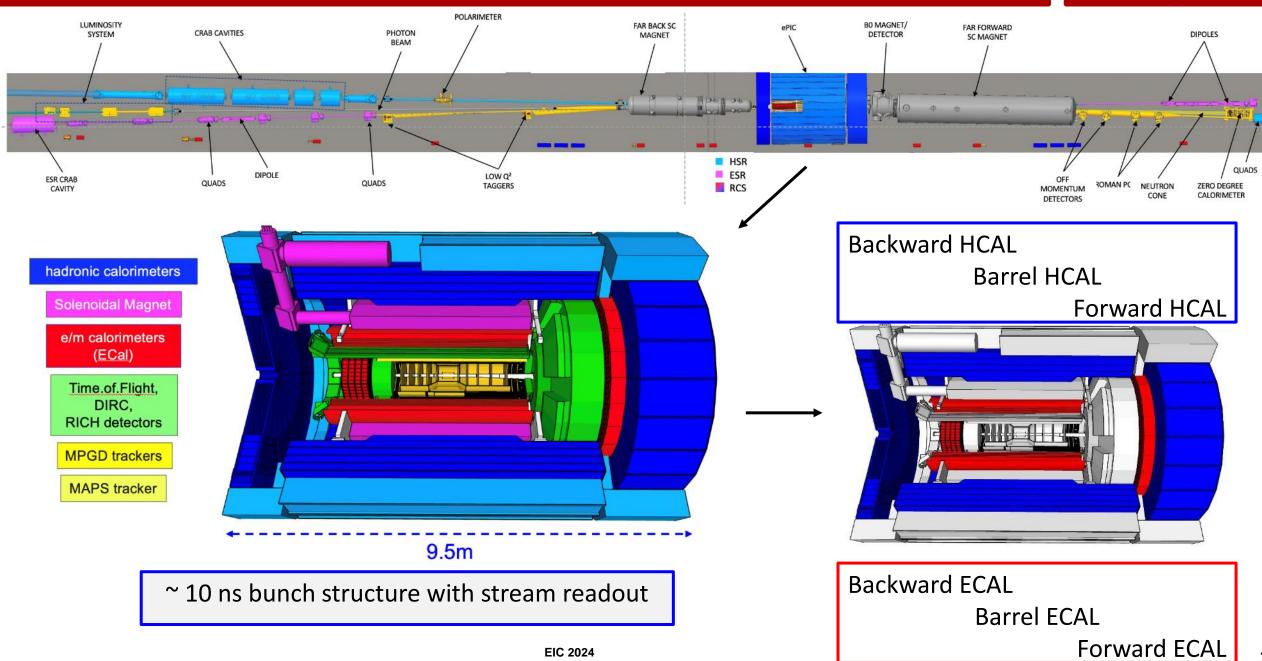
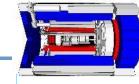


CALOROC for SiPM readout EIC calorimetry

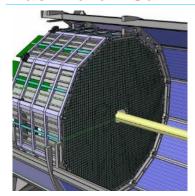
EAP 2025

September 26 - 2025


F. Dulucq

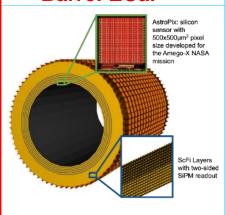


ePIC calorimetry SiPM-based



ePIC Calorimetry

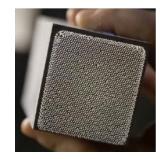
Backward ECal



scattered lepton detection → very high-precision

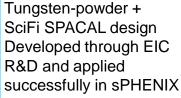
PbWO4 – crystals → long lead procurement

Barrel ECal



scattered lepton and γ detection, hadronic final state characterization

Pb/SciFi sampling part using SiPMs combined with imaging section (6 layers) interleaving Pb/SciFi with ASTROPIX


> Use of ASTROPIX in Calorimetry

Forward ECal


Main Function lepton and γ detection, hadronic final state characterization $\rightarrow \pi^0$. γ separation

Proven Technology

world's first at epic

Backward HCal

Steel + Scintillator

SiPM-on-tile

muon and neutral detection improved jet Energy reconstruction

muon and neutral detection → improved jet Energy reconstruction

Steel + Scintillator design

re-used from sPHENIX

Barrel HCal

longitudinal segmented Steel + Scintillator SiPM-on-tile Pioneered by CALICE analog HCal High resolution insert next to beam-pipe

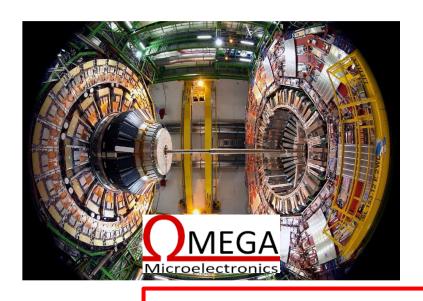
particle-flow

measurements

Forward HCal

first-time full-size CALICE like calorimeter in collider experiment

From CMS SiPM readout to CALOROC



H2GCROC for the endcap calorimeter – Phase II

6M of Silicon channels (+ 240k of SiPM)

Radhard (200 Mrad)
Low Power (15 mW per chn)
Precise timing (25 ps)

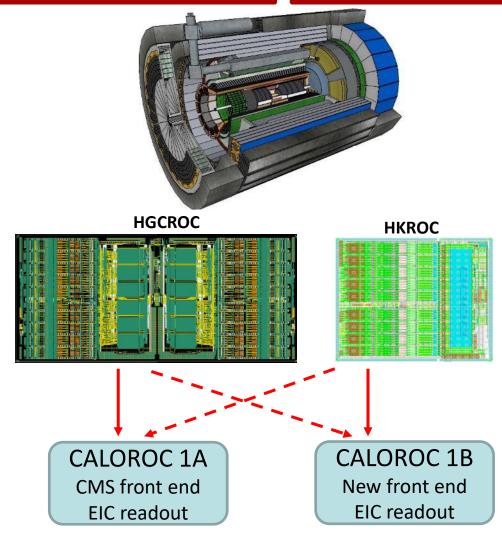
Total of 150k ASICs needed
Pre-prod this year

CALOROC for EIC

Same ASIC structure (floorplan)
Same ADC and TDC
Same readout

Common interfaces

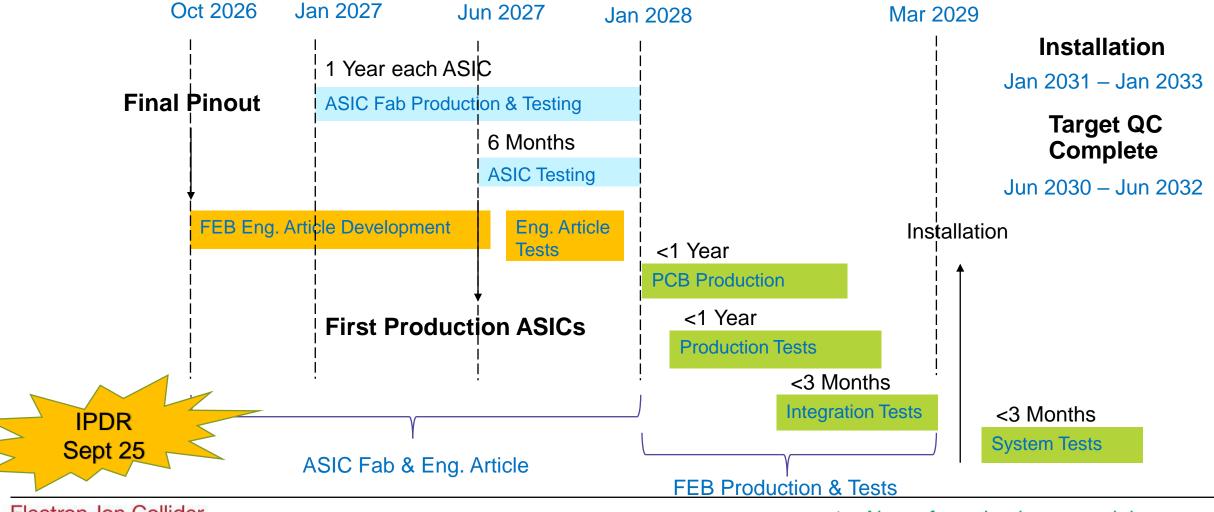
HEP trend => imaging calorimetry


- ☐ High number of channels
- ☐ Charge and precise timing (<100 ps)
- ☐ Low power + System-On-Chip

CALOROC will minimize the risk by reusing H2GCROC verification framework and reusing the 130 nm node (IN2P3 CS recommendations)

What is CALOROC?

- CALOROC will be available in 2 versions for SiPM readout:
 - ☐ SiPM range capacitance from 500 pF to 10 nF
 - \square ~ 10-15 mW / channel
 - Radiation hardening (HL-LHC levels)
 - \square 200 Mrad and 10¹⁶ n_{eq} / cm² (1 MeV equivalent neutrons)
 - ☐ SEE hardening on control logic
 - ☐ Charge and time measurement
- Streaming readout (no external trigger required)
- Conservative CALOROC1A based on CMS H2GCROC:
 - ☐ H2GCROC (ADC, TOT) analog/mixed reuse
 - Back-end compatible with EIC + zero-suppress
- New CALOROC1B based on gain switching:
 - New analog part without TOT (dynamic gain switching)
 - ☐ Backend « à la HKROC »: auto-trigger, zero-suppress EIC compatible


CALOROCs will share a common backend + pin-pin compatibility

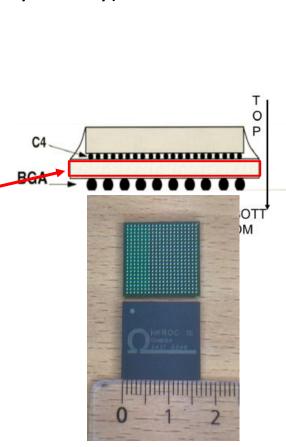
Timeline cont. - Development

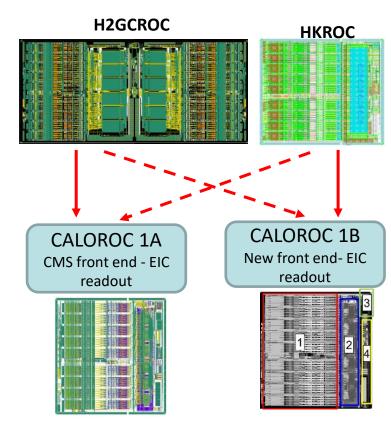
NOTE: FEB designs are contingent upon final ASIC pinout/package design.

Charge 3, 4

Example: Final Design FY27 ASIC Submission

CALOROC Project at OMEGA in 2025


□ ~3,7 FTE involved with one Thesis (Pedro – ending in Jan 27)


- ☐ CALOROC submission in September 2025 (ready in May)
 - All features inside radiation hard
 - ☐ Expected Jan-Feb 2026 (after packaging)

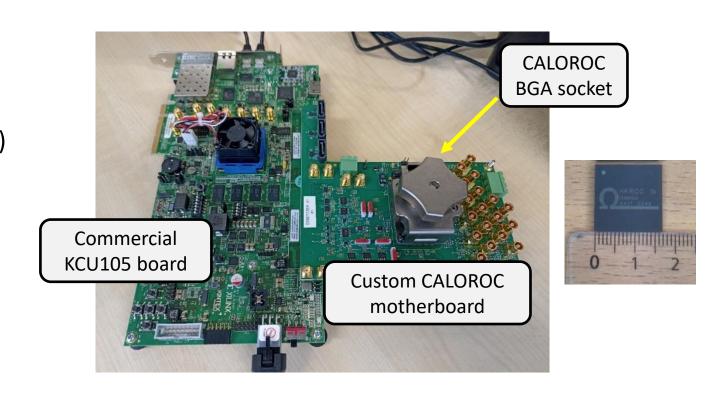
~ 45 k from 2024 IN2P3 EIC-CALO

- ☐ CALOROC substrate designed
 - Needed to package the chip
 - Based on CMS substrate
 - ☐ Ordered in June 2025

JLAB-OMEGA contract 25 k

CALOROC Project at OMEGA in 2025

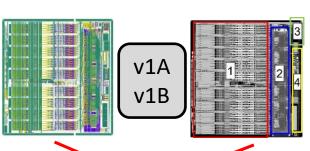
- ☐ CALOROC testboard (motherboard) design started in June
 - ☐ Prototypes v1 will be ordered by the end of 2025

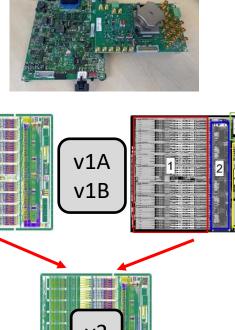

~ 5 k from 2025 IN2P3 EIC-CALO

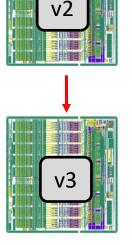
- 1x CALOROC socket ordered and received (Sept)
 - ☐ 1 will be reused from another project

~ 2 k from 2025 IN2P3 EIC-CALO

☐ KCU available (now at IJCLAB)


From HK project



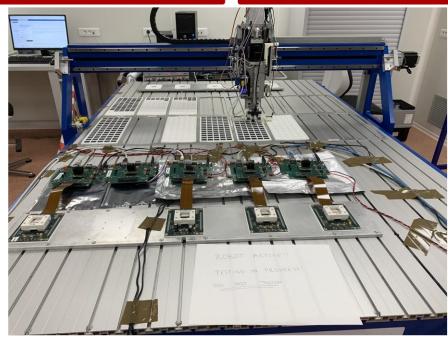

CALOROC Project at OMEGA in 2026 and after

- Jan 2026: produce and distribute testboards
 - ☐ Characterization (with socket to be ordered)
- 2026 Extensive tests and comparison of CALOROCs
 - ☐ End of 2026: selection on performances and system needs
 - Substrate validation
 - Channel count selection (baseline = no change)
- **□** 2027: Submission of <u>selected</u> CALOROC2 (<u>**50** k€</u>)
 - ☐ If needed new substrate (25 k€)
 - Substrate validation
 - Irradiation tests (12+2 k€ order end 2026 to have a slot?)
 - Robot testboards (10k€ sockets + 5 k€ tb)
- Q2 2028: Submission of final CALOROC3 (full wafer 300 k€)
 - ☐ To be adjusted with EICROC tech node (130 vs 65 nm)

Requested **10** k€ for 26

- Test PCB x6 (3 with socket)
- Active components
- Injection board (A and B)
- Wafer dicing

Travels **12** k€ for 26


- 2x 2ppl EIC meeting
- 2x conf with proceedings

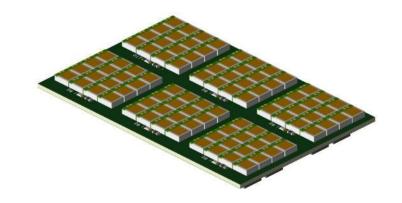
Quality Assurance and Timeline

mega

- ☐ Expertise in radiation-hardened front-end ASICs for HEP
 - ☐ HL-LHC ASICs: ATLAS HGTD and CMS HGCAL (10⁵ ASICs)
- ☐ Expertise in irradiation testing (dose and displacement)
 - \square HL-LHC levels 200 Mrad and 10^{16} n_{eq} / cm² (1 MeV equivalent neutrons)
- Standard interfaces ensures a full compatibility with our robot
 - ☐ 2x 50 ASICs tested per hour (H2GCROC) with QR code scan

- CALOROC timeline 2025 to 2028
 - Now: submission process start CALOROCs submission (Eng. Run)
 - ☐ Dec 2025: first packaged ASICs back to the lab
 - ☐ 2 months to have an overall view of the performances
 - ☐ + 6 months for a deeper characterization
 - □ 2026: Decision for the <u>final number of channels + version A and B</u>
 - □ 2026-2027, irradiation campaigns + CALOROC2
 - ☐ Q2 2028: final submission CALOROC3 (same channel count) + production

Summary and FTE

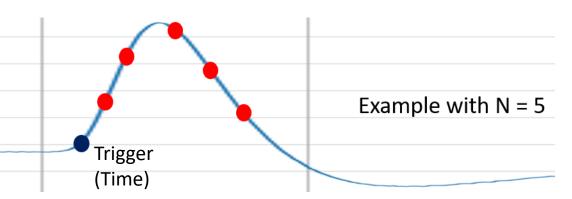

- ☐ Both **CALOROC1** includes everything
 - ☐ Based on CMS SiPM H2GCROC with EIC readout

☐ ASIC production foreseen in 2028

Front-end boards work started at LLR and ORNL

- ☐ System tests are crucial for the ASIC validation/characterization
 - ☐ ASIC mounted on the "final" board

CALOROCs include all features + radiation hardness on the first submission



12

CALOROC: Waveform Digitizer with Auto-Trigger

- ☐ CALOROC is a waveform digitizer working @ 39.4 MHz
 - Number of charge sampling points from 1 to 7
 - ☐ Fast channel for precise timing (25 ps binning)
 - Charge reconstruction algorithm is outside (back-end or offline)

CALOROC can accept ~ 50 kHz rate per channel (worst case)

Internal HKROC memory writing is without dead time Hit-rate is only limited by serial link bandwidth (average values above)

A zero-suppress feature can be activated

A fast command can trigger an ASIC snapshot (monitoring, calibration, heartbeat)

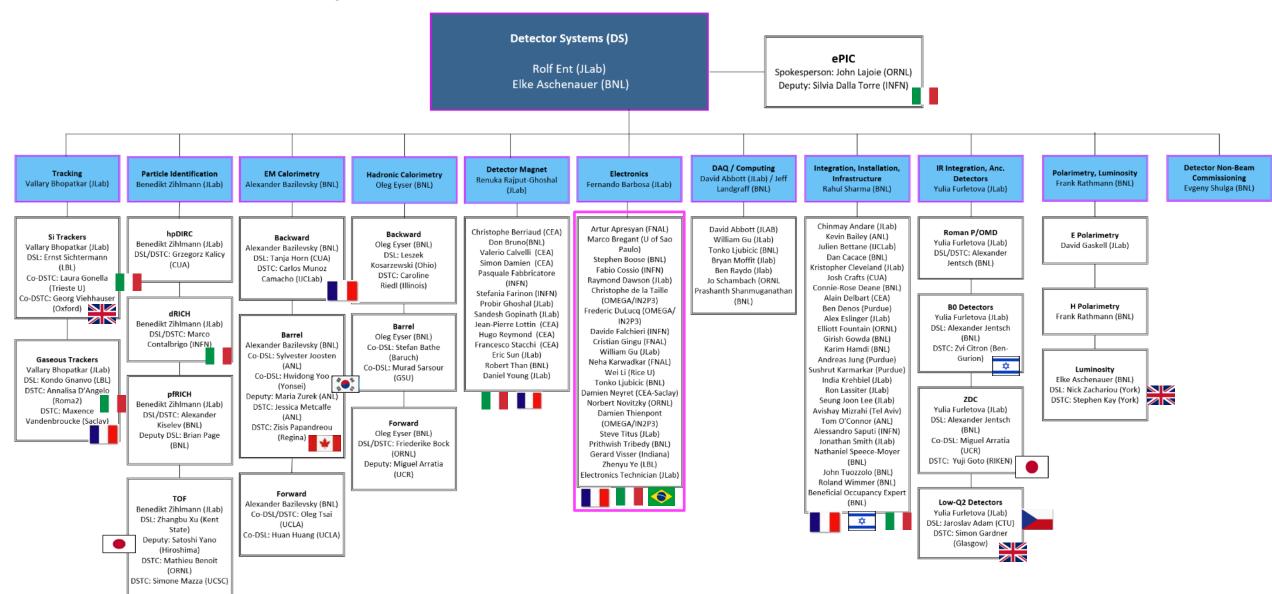
Detector System	Sensor	ASIC / Digitization	Digitization Clock	FEB	FEB-RDO Protocol	RDO Type	RDO Location	Notes
Si Tracking (ITS3 / LAS): (IB, OB, EE, HE)	ITS3/LAS	Integrated /w sensor	39.4 MHz (2-8 us time)	Integrated (Schambach)	GBT	Fiber Aggregator GenericRDO	South Platform	J. Schambach Presentation
MPGD tracking: (SAMPA): (IB, OB, EE, HE)	urWELL / uMegas	SALSA	39.4 MHz	lpGBT / VTRX+	GBT	4 → 1 GenericRDO	South Platform	 RDO – N. Novitzki Presentation FEB – F. Barbosa Presentation
Calorimeters (CALOROC): BarrelHCAL, Backward HCAL, Barrel ECAL, Backward ECAL, Backward HCAL	SiPM	CALOROC	39.4 MHz	lpGBT / SFP+	GBT	4 → 1 GenericRDO	South Platform	N. Novitzki Presentation
Calorimeters (CALOROC): LFHCAL, HCAL Insert	SiPM	CALOROC	39.4 MHz	lpGBT / SFP+	GPT	4 → 1 GenericRDO	East HCAL Platform	N. Novitzki Presentation
Calorimeters (Discrete): FwdEcal	SiPM	Discrete	98.5 MHz	FPGA / SFP+ / Cu	Internal	16 → 1 GenericRDO	South Platform	G. Visser PresentationPlanned RDO similar to existing designs
Far Forward (AC-LGAD / EICROC): B0 tracking, Roman Pots, Off Momentum	AC-LGAD	EICROC	39.4 MHz	lpGBT / VTRX+	GBT	Direct to FELIX	N/A	Same as per Endcap TOF
Far Backward: (AC-LGAD / FCFD): Lumi photon spectrometer tracker	AC-LGAD	FCFD	39.4 MHz	lpGBT / VTRX+	GBT	Direct to FELIX	N/A	Same as per Barrel TOF
Central Detector (AC-LGAD / EICROC): Endcap TOF	AC-LGAD	EICROC	39.4 MHz	lpGBT / VTRX+	GBT	Direct to FELIX	N/A	F. Barbosa Presentation
Central Detector (FCFD): Barrel TOF, pfRICH, DIRC	HRPPD / MCPMT	FCFD	39.4 MHz	lpGBT / VTRX+	GBT	Direct to FELIX	N/A	F. Barbosa Presentation
Far Forward/Backward (CALOROC / Discrete): B0 Crystal Calorimeter, ZDC Crystal Calorimeter, ZDC HCAL, Lumi Photon Spectrometer Calorimeter	SiPM	Discrete	39.4 MHz (or) 98.5 MHz	FPGA / SFP+ / Cu (or) lpGBT / SFP+	Internal GBT	$ \begin{array}{c} 16 \rightarrow \text{gRDO} \\ \text{(or)} \\ 4 \rightarrow 1 \text{ gRDO} \end{array} $	East/West Tunnel Near Detectors	 Small channel count detectors Expect to copy either CALOROC or Discrete
Far Backward: (Discrete): Direct Photon Lumi Calorimeter*	SiPM	Flash-250	197 MHz	FADC 250	Streaming ADCs	(N/A)	West Tunnel	Special FELIX processing to histogram / Sum bunch by bunch luminosity data
Far Backward: (TimePix): Low Q Tagger	TimePix	Integrated / w sensor	98.5 MHz	Integrated / w sensor	Internal	SPIDR4 Variant (NIKEF)	West Tunnel Under Detector	K. Livingston PresentationPlanned RDO similar to existing designs
Imaging Calorimeter (Astropix):	AstroPix	Integrated / w sensor	98.5 MHz	Integrated / w Sensor	Astropix Internal	End of Stave Card (NASA)	On Detector	J. Metcalfe PresentationPlanned RDO similar to existing designs
Central Detector (ALCOR): dRICH	SiPM	ALCOR	39.4 MHz	FPGA / Cu	Internal	FPGA / VTRX+	On Detector in PDU	Pietro Antonioli Presentation

Electron-Ion Collider

ASICs – Path to Completion

Charge 1, 2, 3, 5

	Status & Development Summary	Next Steps	Production	Institution
CALOROC	Interface design FY23- FY24, CALOROC1A/B designed FY24-FY25 CALOROC1A: ADC/TOT + TOA, full SRO interface CALOROC1B: Switched gain (4) + ADC + TDC, full SRO interface Tests: Oct 2025	CALOROC2 (64 ch) – FY25-FY26 Select version and increase (?) channels from 32 ch to 64 ch.	FY28	OMEGA/IN2P3/I JCL, ORNL
EICROC (32x32)	EICROCOA (4x4) designed FY24-FY25, EICROC1 (32x32) FY25 EICROCOA: ADC + TOA, improved testability EICROCOB: Replaced ADC with peak sensing, Wilkinson ADC, lower power EICROC1: added full SRO interface	EICROC2 (32x32) FY26 Add Derandomizer and ZS. Digital on Top design for lower power (~1 mW/ch).	FY27 – FY28	OMEGA/IN2P3/I JCL/CEA-Saclay, AGH
FCFD (128)	Front end characterized, FCFDv1 (6 ch) FY23-FY24 characterized, FCFDv1.1 FY25 Optimized for HPK sensor characteristics	FCFDv2 (32 ch) FY25-FY26 Add ADC, TDC, interfaces from ETROC, ECON CERN. FCFDv3 (128 ch) FY26	FY27	FNAL
FCFD Variant (64)	FCFDv1.1 FY25 Preliminary tests with sensors	Harmonize sensor/ASIC specifications, adapt FCFD for 64 ch.	TBD	FNAL
ALCOR	ALCORv2.1 (32 ch) beam tests FY24, ALCOR v3 (64 ch) FY24-FY26 Full specification, SRO interface, BGA	ALCOR-64 — FY26 Final iteration for production	FY26 – FY27	INFN
SALSA	SALSAO/1 FY24, SALSA2 (32 ch) designed FY23-FY25 Full SRO interface, most DSP features, Submission October 2025	SALSA3 (64 ch) FY25-FY27 full DSP, 64 ch	FY28	CEA-Saclay, U Sao Paulo


□ ASIC production is ~1 Year: Fab, Packaging, Test. Additional information in the following slides. PED is expected to be completed in FY26.

Electron-Ion Collider

Complete.

Fab is imminent – at TSMC now.

Integrating

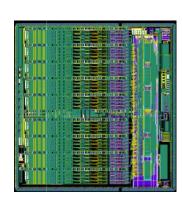
ASICs & Electronics - Scope of the Effort

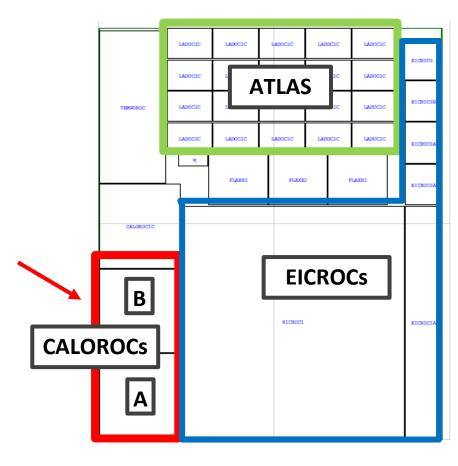
Charge 1, 2, 3

- Approximate quantities and costs.
- Costs include mask sets, fabrication and packaging, wrt quantities needed.

		#Ch	#Ch/Unit	#ASICs /Wafer	#Wafers	Node (nm)	Packaging	Cost/ch (\$)	Institution
	Discrete/COTS	24 k	32	NA	740 Digitizers	COTS	NA	91 (Includes FE Adapter)	Indiana University
	CALOROC	97 k	64	480	5	130	BGA	3.2	OMEGA/IN2P3/IJCL, ORNL
	EICROC	5.2 M	1,024	160	42	130	Wafer Bump	0.1	OMEGA/IN2P3/IJCL/CEA-Saclay, AGH
	FCFD strip FCFD Variant	2.6 M 144 k	128 64	180	149 13	65	Wire Bond BGA	0.5	FNAL
	ALCOR	318 k	64	800	8	110	BGA	0.9	INFN
(SALSA	167 k	64	500	7	65	BGA	4.1	CEA-Saclay, U Sao Paulo

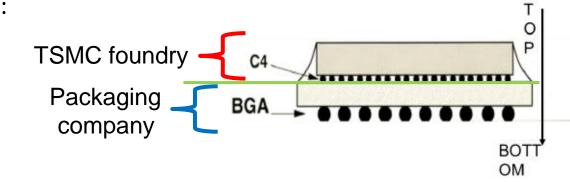
- Production
- 65 nm: \$750 k masks + \$3.5 k per wafer
- 110 nm: \$190 k masks + \$4 k per wafer
- 130 nm: \$250 k masks + \$4 k per wafer


- Packaging BGA: \$3-\$7.5 per chip.
- ASIC Costs Total: ~\$3.3 M
 - Masks: ~\$2.2 M; Chips: ~\$1.1 M


Summary and FTE

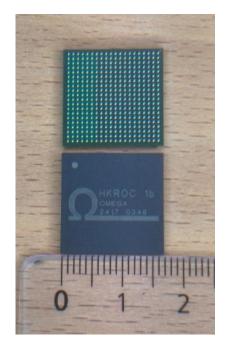
- Conservative CALOROC-1A:
 - ☐ Based on CMS SiPM H2GCROC with EIC readout
- New CALOROC-1B:
 - New analog front end
 - ☐ Higher dynamic range and input capacitance
 - ☐ Same backend (and pinout)

- ☐ All CALOROCs share the same backend + RadHard
 - ☐ We ~150 ASICs per each flavor
 - ☐ GIT for back-end designers
 - ☐ Datasheet available now
- ☐ ASIC submitted with CERN/IMEC (May 2025)
 - ☐ Chips expected packaged in December



CALOROCs are targeted to include all features + radiation hardness on the first submission

CALOROC project at OMEGACALOROC Packaging



- ☐ CALOROC will have the same package as the existing HKROC:
 - ☐ JEDEC MO-216 17 x 17 mm BGA version
 - ☐ 400 balls with 0.8 mm pitch
 - ☐ Specific substrate (interposer) designed at OMEGA
 - ☐ **QR code** like HGCROC3

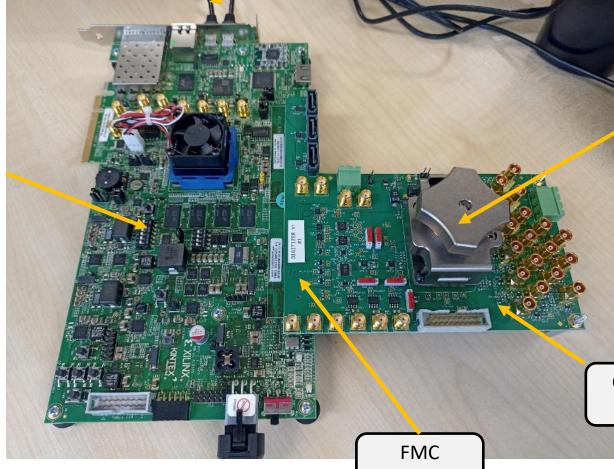
JEDEC	TITLETHIN PROFILE, SQUARE AND	ISSUE:	DATE:		T
SOLID STATE PRODUCT OUTLINE	RECTANGULAR, BALL GRID ARRAY FAMILY, 1.00 & 0.80 mm PITCHES	E	AUG 2003	MO-216	

	TABLE 3: SQUARE VARIATIONS - 0.80 PITCH											
D / E	e = 0.80											
D / E	MD/ME	Ν	SD/SE	VARIATION	MD-1/ME-1	N	SD/SE	VARIATION				
14.00	17	289	0.00	BAJ−1	16	256	0.40	BAJ-2				
15.00	18	324	0.40	BAK-1	17	289	0.00	BAK-2				
16.00	19	361	0.00	BAL-1	18	324	0.40	BAL-2				
17.00	20	400	0.40	BAM-1	19	361	0.00	BAM-2				

Test System for Characterization

mega

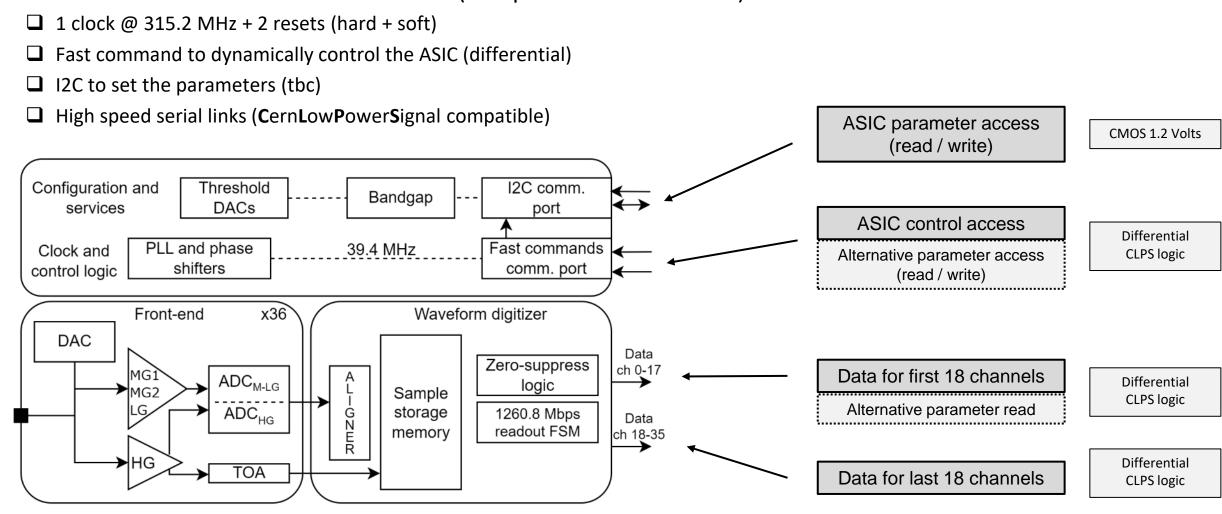
- ☐ CALOROC characterization motherboard under design at OMEGA:
 - Originally developed for HGCROC and the HKROC
 - Well-known at OMEGA and LLR (firmware based only)
 - ☐ Compatible with KRIA motherboard (CERN) but software + firmware needed


Python scripts

Monitor Program Test

Commercial KCU105 board

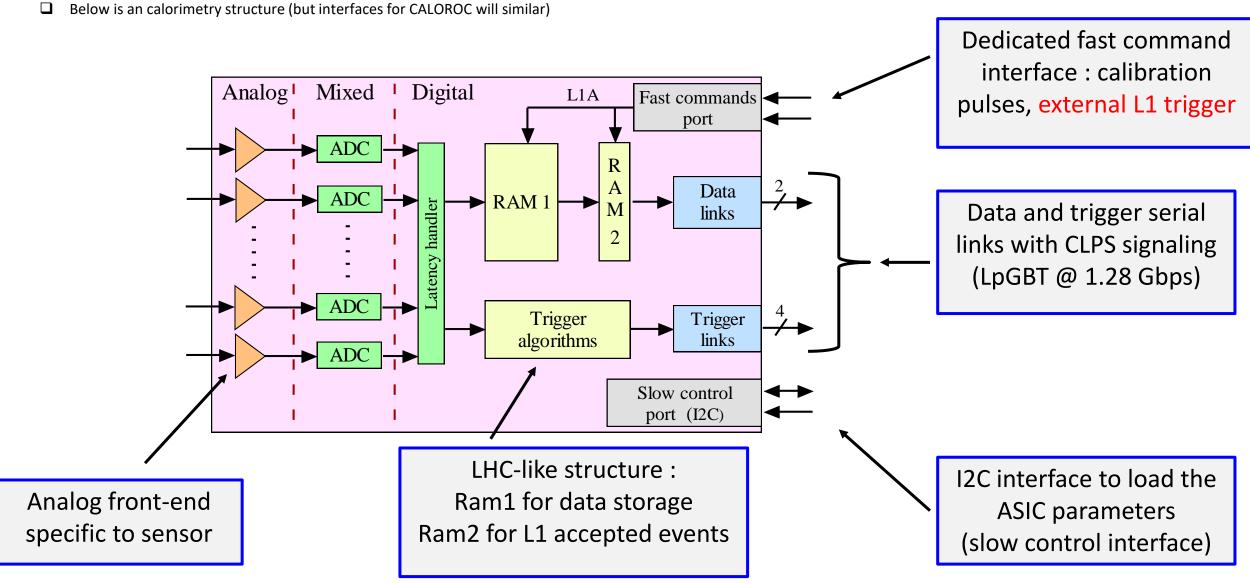
CALOROC BGA socket


Custom CALOROC motherboard

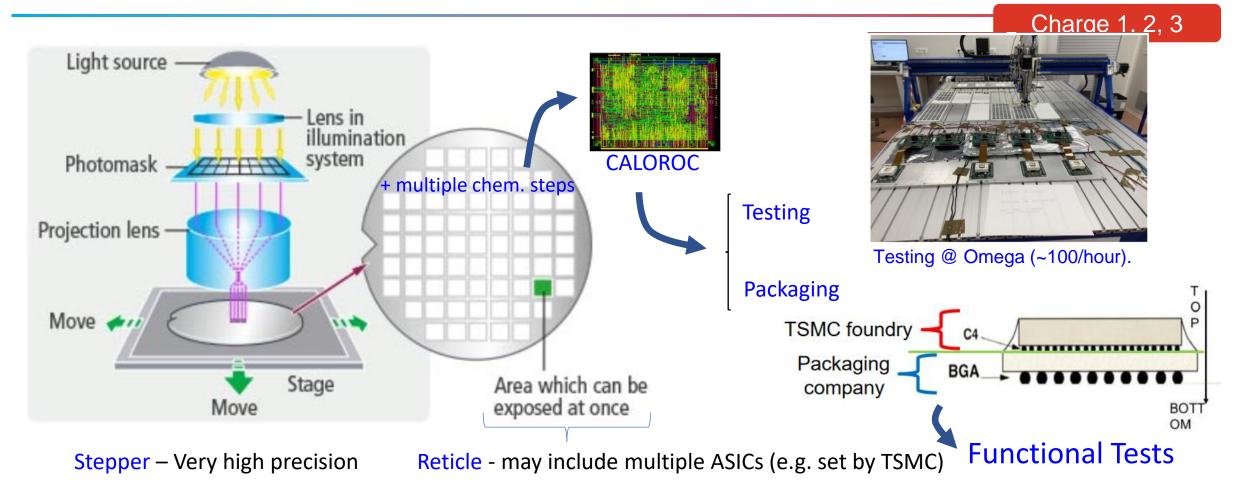
connector

CALOROC: Block Diagram - Interfaces

CALOROCs will have the same interfaces (comparable to CMS ones):

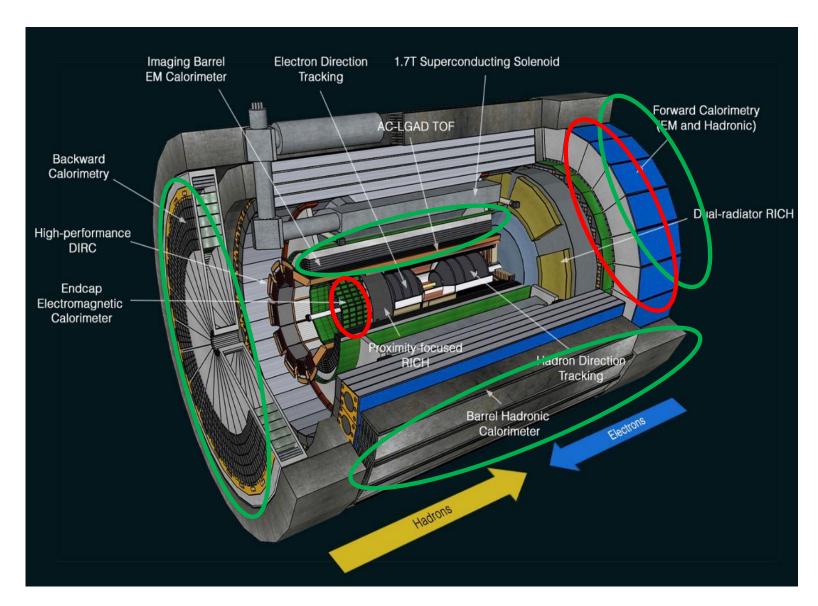

EIC 2025 21

ROC Chips Standard Structure



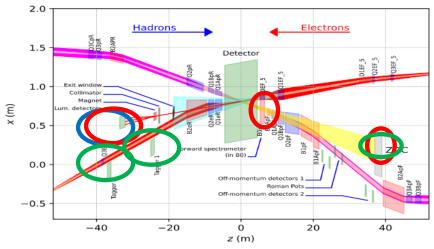
22

- H2GCROC (for SiPM readout) is an HL-LHC colored ASICs (external L1 trigger)


ASIC Fabrication Overview

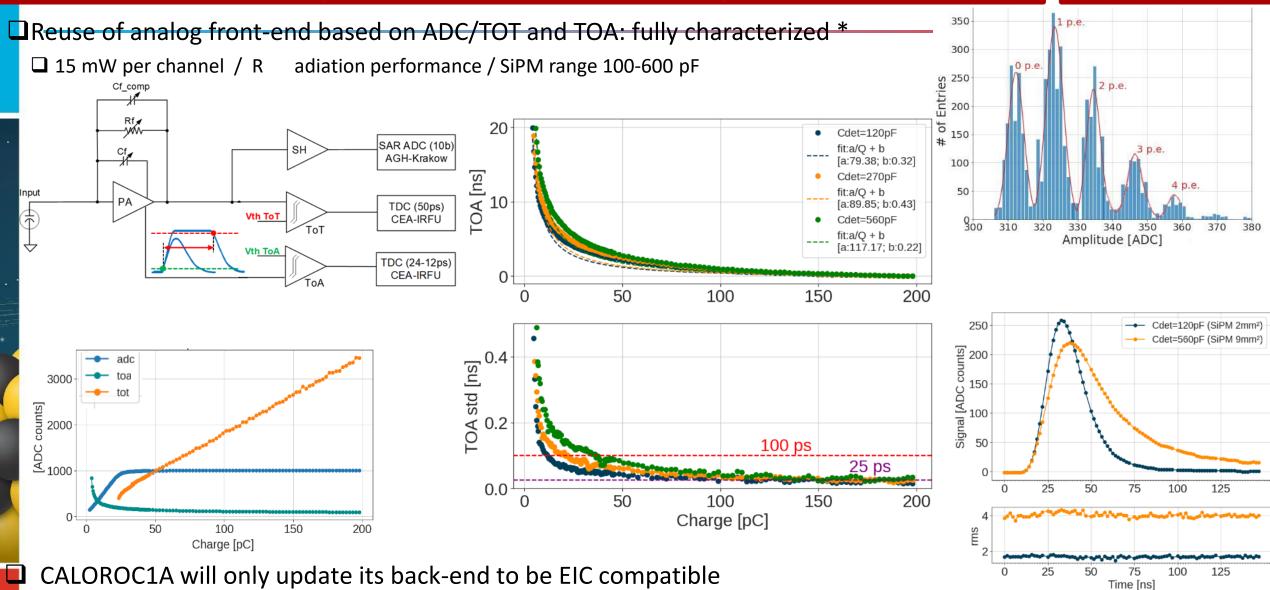
- ASIC to fit within Reticle, or port design to a different technology node (e.g. 130 nm to 65 nm) EICROC?
- A mask set may consist of 40 50 masks (to build layers of metal, oxide, implantation, etc.) to make an ASIC
- Wafer tests for process QA/QC

Calorimetry at ePIC


13 Calorimeters:

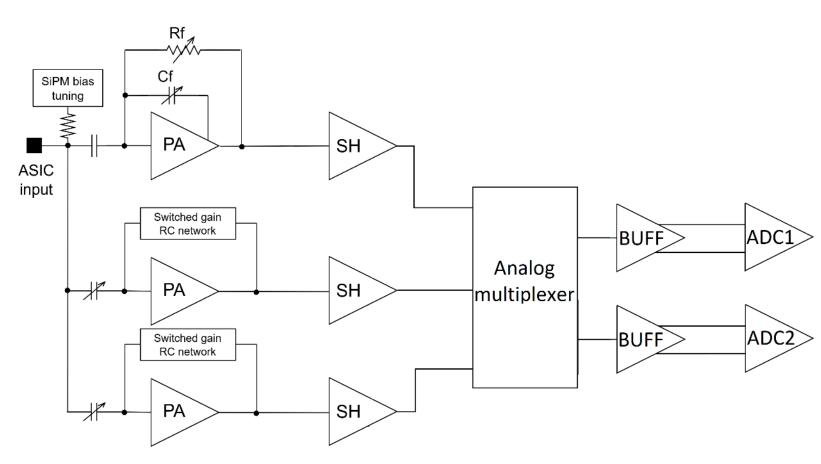
7 x SiPM – CALOROC

5 x SiPM – Discrete


1 x SiPM – Commercial fADC250

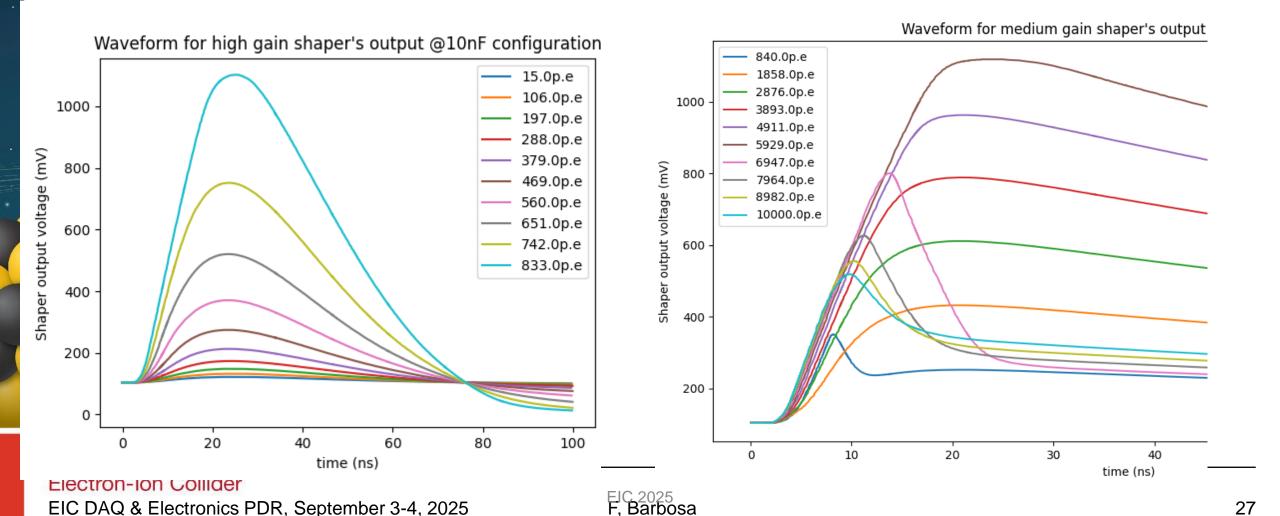
From J. Landgraf (IDR review)

CALOROC1A (H2GCROC-Based)



CALOROC1A will only update its back-end to be EIC compatible

CALOROC1B: Channel Architecture [P. Dumas]


- New dynamic frontend with switched gain:
 - ☐ 1 high gain preamplifier
 - ☐ 2x low power preamplifier
 - 1 analog multiplexer
- Reuse CMS-H2GCROC ADCs and TDCs:
 - ☐ 10-bit 40 MHz ADC (Krakow)
 - ☐ 25 ps TDC (Saclay)
- Shared CALOROCs backend
- Common specifications:
 - ☐ SiPM from 500 pF to 2.5 10 nF
 - □ ~ 10-15 mW/channel
 - CMS HL-LHC Radiation level 200 Mrad

CALOROC1B: Charge and Time Simulations

- Waveform for HG on the left + gain switching on the right:
 - ☐ Example with Cd of 10 nF

CALOROC1B: SiPM vs SNR

- The SiPM configuration has a direct impact on the SNR
 - ☐ SNR for 1p.e is proportional to Q/C (larger SiPM cap decrease SNR)
 - ☐ Gain of 1.8e5 electrons per p.e (table below)
- CALOROC1b will be able to readout SiPM in the range ~ 500 pF to 10 nF
 - ☐ Timing measurements will focus on the MIP (~15pe)

Operation modes	1 SiPM of 530pF Caloroc1B	1 SiPM of 2.5nF Caloroc1B	4 SiPM of 2.5nF Caloroc1B	1 SiPM of 530pF Caloroc1A
Cin	530pF	2.5nF	10nF	560pF
Dynamic range in charge (Noise - Max)	2.6fC-190pC	12fC-770pC	48fC-3.1nC	20fC-320pC
Input time constant (occupancy related)	100ns	500ns	500ns	10ns
Jitter @ MIP (≈400fC)	35ps	110ps	470ps	400ps
SNR @ 1p.e (≈30fC@gain=1.8e5)	10	2.4	0.6	1.44

Electron-Ion Collider

EIC DAQ & Electronics PDR, September 3-4, 2025

EIC 2025 F, Barbsine 1: S14160-3010PS 3x3mm (530pF) / S14160-6010PS 6x6mm (2.5nF 28

CALOROC: Fast Commands

Commands to interact dynamically with the ASIC

- ☐ 8 bits commands synchronized with incoming 315.2 MHz clock MSB first
- ☐ Only idle needed others have a known latency
- ☐ Detailed in the datasheet

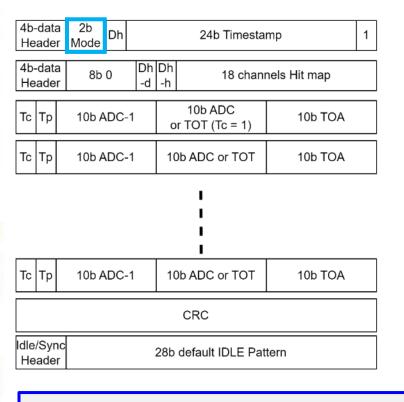
Fast commands	Value	Description
Idle	00110110	Default command inside
ChipSync	11010010	Reset FSM, buffers and counters
BCR	00011101	Reset timestamp counter to a default value
EBR	11010001	Empty readout buffers
PING	10011001	Ping status and counters
LinkResetROCD	10011010	Transmission of synchronization patterns
ROC-Serializer-Reset	10011100	Reset serializer link module only
L1A	01001011	External trigger (all channels)
CalPulseInt	00101101	800 ns internal calibration pulse
CalPulseExt	01111000	100 ns external calibration pulse
SC_0	01011010	I2C over fast command - send '0'
SC_1	01011100	I2C over fast command - send '1'
SC_Valid_Reset	10001011	Valid or reset (2 consecutives) current transaction
EIC DAQ & Electronics	PDR, Septe	mber 3-4, 2025 F, Barbosa

Default command

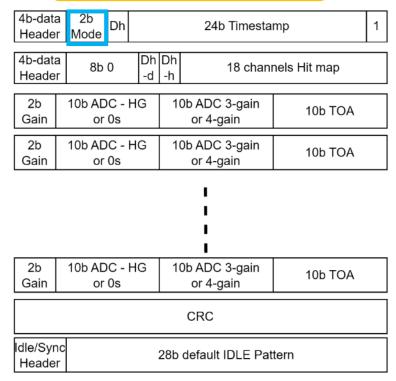
Resets and synchronization

Serial links recovery

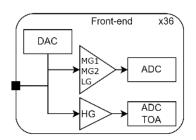
Calibration and pseudo-heartbeat

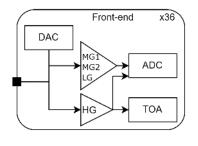

Slow control (I2C) over fast commands

CALOROC: Readout Frames



For charge measurements, CALOROC-A based on ADC/TOT, CALOROC-B only ADCs



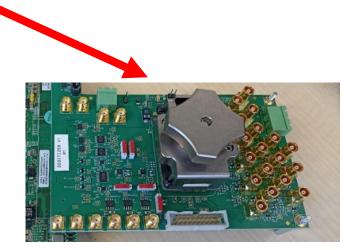

caloro(B – 2 ADCs or 1 ADC (4 gains)

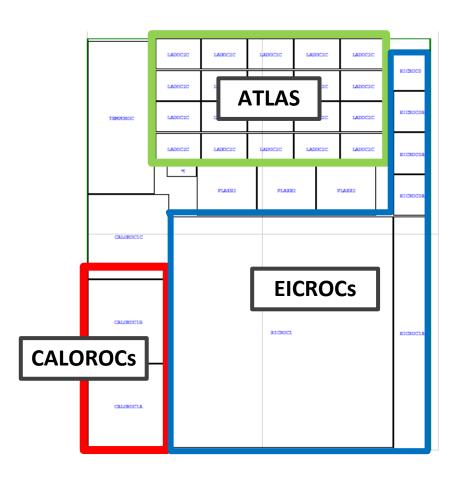
CALOROCB (2 ADCs)

CALOROCB (1 ADCs)

In characterization mode, forced TcTp, ADC, TOT, TOA for all channels

EIC DAQ & Electronics PDR, September 3-4, 2025


EIC 2025 F, Barbosa Example with N = 5


Summary 1/2

- ☐ Technical design work finished
 - ☐ Delays due to administrative issues
 - ☐ Moving to the preparation of datasheet / Packaging / testboards
- ☐ CALOROC substrate (x1000) ordered for the packaging
 - ☐ We expect 160 caloroc / version

- Characterization board design in progress (first schematic done)
 - Socket ordered

EIC 2025 31

CALOROC integration and power supply consideration

CALO-A (Preamp)

- ☐ On the board, CALOROC will need a maximum of 3 power supplies:
 - ☐ Analog / Digital + 1 dedicated for CALOROC-A (Preamp)
 - ☐ (Not shown here: LED power and HV)

												_							
			Dig	gitals	side		MAPPING	G CALOROC_	1 BGA	400 (TOP V	IEW)		Α	nalo	g si	de			
1	2	3	4	5	6	7	8	9		11	12	13	14	15	16	17	18	19	20
SDA	RSTB_I2C	HARD_RSTB	SOFT_RSTB	ERROR	CK_320_N	CK_320_P	FCMD_P	FCMD_N	AD 4>	CHIP_R	AGND	AVDD	AGND	AGND	AGND	AGND	AGND	AGND	AGND
SCL	GND	GND	GND	GND	GND	VHI10<0>	VHI10<1>	FLAG_AF	ADD<4>	VREF_ADC	AGND	AVDD	AGND	IN<0>	AGND	IN<1>	AGND	NC	VDDA_PAD
DAC_ALDO	GND	GND	GND	GND	GND	NC	NC	FLAG_AF		VCM_ADC	AGND	AVDD	AGND	IN<2>	AGND	IN<3>	AGND	NC	VDDA_PAD
NC	GND	GND	DVDD	DVDD	DVDD	DVDD	DVDD	DVDD	D' <mark>D</mark> D	AVDD	AVDD	AVDD	AGND	IN<4>	AGND	IN<5>	AGND	NC	VDDA_PAD
NC	GND	GND	DVDD	DVDD	DVDD	DVDD	DVDD	DVDD	DVDD	AVDD	AVDD	AVDD	AGND	IN<6>	AGND	IN<7>	AGND	NC	VDDA_PAD
OUT_TSPFF	GND	GND	DVDD	DVDD	DVDD	DVDD	DVDD	DVDD	D) D	AVDD	AVDD	AVDD	AGND	IN<8>	AGND	IN<9>	AGND	AGND	AGND
SIPM_CALIB	NC	GND	DVDD	DVDD	DVDD	GND	GND	GND	A(D	AGND	AGND	AGND	AGND	IN<10>	AGND	IN<11>	AGND	NC	VREF_SK_LP
NC	NC	GND	DVDD	DVDD	DVDD	GND	GND	GND	ACND	AGND	AGND	AGND	AGND	IN<12>	AGND	IN<13>	AGND	AGND	AGND
STROBE_EXT	NC	GND	DVDD	DVDD	DVDD	GND	GND	GND	A(D	AGND	AGND	AGND	AGND	IN<14>	AGND	IN<15>	AGND	NC	VREF_NOINV_SK
EFUSE	NC	GND	DVDD	VDD_PLL	VDD_PLL	AGND_PLL	GND	GND	ACD	AGND	AGND	AGND	AGND	IN<16>	AGND	IN<17>	AGND	NC	VREFINV_VBM3PA
TRIG_P	NC	GND	DVDD	VDD_SC	VDD_SC	AGND_PLL	GND	GND	ACMD	AGND	AGND	AGND	AGND	IN<18>	AGND	IN<19>	AGND	NC	VREFTOA_VBIPA
TRIG_N	NC	GND	DVDD	DVDD	DVDD	GND	GND	GND	A(D	AGND	AGND	AGND	AGND	IN<20>	AGND	IN<21>	AGND	NC	VREFTOT_VBMPA
DAQ2_P	NC	GND	DVDD	DVDD	DVDD	GND	GND	GND	AGND.	AGND	AGND	AGND	AGND	IN<22>	AGND	IN<23>	AGND	NC	VBG_1V
DAQ2_N	PLL_LOCK	GND	DVDD	VDD_SC	VDD_SC	GND	GND	GND	ACTID	AGND	AGND	AGND	AGND	IN<24>	AGND	IN<25>	AGND	NC	PROBEPA_VBOPA
DAQ3_P	GND	GND	DVDD	DVDD	DVDD	DVDD	DVDD	DVDD	D) D	AVDD	AVDD	AVDD	AGND	IN<26>	AGND	IN<27>	AGND	NC	INCTEST
DAQ3_N	GND	GND	DVDD	DVDD	DVDD	DVDD	DVDD	DVDD	DVDD	AVDD	AVDD	AVDD	AGND	IN<28>	AGND	IN<29>	AGND	NC	VDDA_PAD
ADD<3>	GND	GND	DVDD	DVDD	DVDD	DVDD	DVDD	DVDD	DyD	AVDD	AVDD	AVDD	AGND	IN<30>	AGND	IN<31>	AGND	NC	VDDA_PAD
ADD<2>	GND	GND	GND	GND	GND	NC	NC	NC		VCM_ADC	AGND	AVDD	AGND	IN<32>	AGND	IN<33>	AGND	NC	VDDA_PAD
ADD<1>	GND	GND	GND	GND	GND	NC	VHI10<2>	NC	NC	VREF_ADC	AGND	AVDD	AGND	IN<34>	AGND	IN<35>	AGND	NC	VDDA_PAD
ADD<0>	PROBE_TOT_PA	PROBE_TOA	PROBE_DC2	PROBE_DC1	PROBE_INV	VNEG	VHI10<3>	PROBE_NOINV	TRIG	TRIG1_EXT	AGND	AVDD	AGND	AGND	AGND	AGND	AGND	AGND	AGND

	GROUND BGA	ALIM BGA
	AGND	AVDD
Analog	AGND	AVDD
side	AGND	AVDD
3146	AGND	AVDD_PAD
	AGND	AVDD_PAD
_	GND PLL	VDD_PLL
	GND	DVDD
Digital	GND	DVDD
Ü	GND	DVDD
side	GND	DVDD
	GND	DVDD
		VDD_SC

Board power	Nominal value	ASIC power	Max ratings
Analog power	1.2 Volts	AVDD, VDD_PLL	8 mW / chn
Preamp power	2.5 or 1.2 Volts (CALO-A or CALO-B)	AVDD_PAD	2 mW / chn
Digital power	1.2 Volts	DVDD	5 mW / cnn

Values will be refined after first measurements

IPDR 2024 - CALOROC Related Comments

- 1) For the ASICs, we recommend a strong monitoring of the progress towards finalization of the designs and the decision making between options (e.g., CALOROC v1A or v1B)
- => Selection based on the characterization and on SiPM capacitance
- For the EICROC/CALOROC designs, there is a worry that human resources for digital design may be limited in the key institutes. This must be monitored closely. Can
- => Permanent position open at OMEGA in 2025 (possible to stabilize our fixed-term position)
- 3) For the CALOROC and SALSA, it was unclear how the 40/50 MHz sampling would translate into the 100MHz BX regime and the time-tagging of the hits. This should be clarified and documented.
- => CALOROC is working at 39.4 MHz to be compatible with LpGBT. Time reconstruction will be handle in the backend. A new fast command has been added to keep the synchronization with the back-end.