

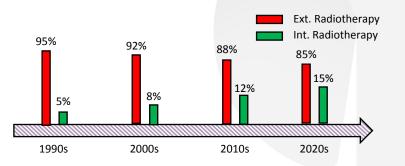
SPECT Imaging of ¹⁵⁵Tb and Evaluation of the Impact of ¹⁵⁶Tb Contamination Using GATE 10

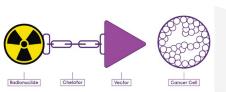
M. Hussein^{a,b}, M. Bouteculet^{a,b}, M.-A. Duval^{a,b}, S. Gnesin^c, S. Medici^c, L. Menard^{a,b}, D. Viertl^d, C.-O. Bacri^{a,b}, M.-A. Verdier^{a,b}.

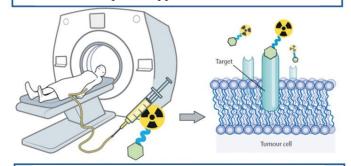
a: Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France.

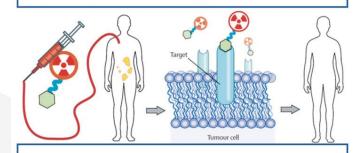
b:Université Paris Cité, IJCLab, F-91405, Orsay, France.

c: Department of Nuclear Medicine and Molecular Imaging, University Hospital of Lausanne, Lausanne, Switzerland.


d: Institute of Radiation Physics, University Hospital of Lausanne, Lausanne, Switzerland.


Vectorized Internal Radiotherapy and Theranostic Approach


- Vectorized Internal Radiotherapy (VIR) uses radionuclide isotopes bound to biological vectors to deliver radiation directly to tumors.
- Introduces high precision, personalized treatment and dedicated imaging instrumentation.
- Interested in theranostic (therapeutic + diagnostic) approach.
- Requires development of new VIR radio-pharmaceuticals.


The utilization of internal vs external radiotherapy by patients in Europe and US over time¹.

Therapeutic approach in medicine

Diagnostic phase for evaluating the fixation of the radiopharmaceutical with a radionuclide for imaging purposes

Therapeutic phase with injection of a radiopharmaceutical with a radionuclide for tumoricidal purposes

¹ DIrectory of RAdiotherapy Centres (DIRAC).

Terbium Isotopes

- Terbium (Tb): promising theranostic element with four isotopes¹.
- → Interest in 155 Tb- 161 Tb potential theranostic couple (~similar $t_{\overline{2}}^{1}$).
- Challenge: standard cyclotron production of ¹⁵⁵Tb induces coproduction of ¹⁵⁶Tb ($t^{\frac{1}{2}}$ = 5.35 d) emitting high energy γ -rays:
 - 155Tb SPECT images pollution.
 - Dosimeteric concerns.

Isotope	Diagnosis	Therapy	1/2 life
¹⁴⁹ Tb	? β+14.2%, γ	✓ (α)	4.12 h
¹⁵² Tb	✓ (β+)		17.48 h
¹⁵⁵ Tb	✓ (γ)		5.32 d
¹⁶¹ Tb	? Low energy γ	✓ (β-)	6.96 d

γ - rays energy (keV)				
¹⁵⁵ Tb	¹⁵⁶ Tb			
86.54 (32%) 105.3 (25.1%) 180.1 (7.5%) 262.3 (5.3%)	88 (18%) 199.2 (41%) 356.3 (13.6%) 534.3 (67%) 1065.1 (10.8%) 1154.1 (10.4%) 1222.4 (31%) 1421.7 (12%)			

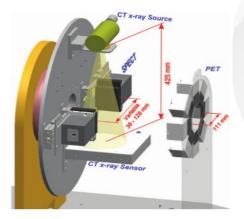
¹ Naskar N, Lahiri S. Theranostic Terbium Radioisotopes: Challenges in Production for Clinical Application. Front Med (Lausanne). 2021 May 31;8:675014.

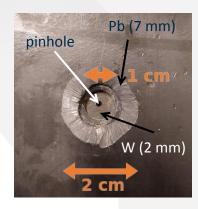
Objective and Methodology

• Evaluate by simulation the impact of contamination of ¹⁵⁶Tb on ¹⁵⁵Tb SPECT images in order to determine acceptable contamination limit.

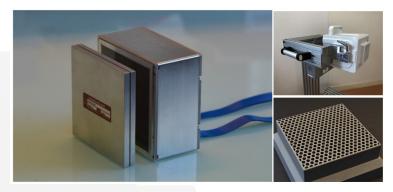
How?

- SPECT imaging Monte Carlo (MC) simulation of ¹⁵⁵Tb phantom contaminated with 0-10% ¹⁵⁶Tb of two cameras:
 - 1. ALBIRA (BRUKER).
 - 2. THIDOS (homemade high performance camera).


Experimental setup



SPECT Cameras


- ALBIRA¹ S108 small animal PET/SPECT/CT imaging system, at CHUV, Lausanne.
 - 2 rotating SPECT heads, 30 positions
 - 2 mm diameter tungten single pinhole collimator.
 - o 7 mm thick lead shielding.
 - o Intrinsic spatial resolution (FWHM): 1.5 mm.
 - Energy resolution (FWHM): 17% at 140 keV.

¹ Sánchez et al. Med. Phys, 40, No. 5, May 2013.

- **THIDOS**² is a medium-energy γ -camera developed at IJCLab for dosimetry control during internal radiotherapy.
 - Tungsten parallel-hole collimators:
 - > L=58.7 mm, d=1.8 mm, t=0.84 mm
 - o Optimized for 364 keV (¹³¹I).
 - Intrinsic spatial resolution (FWHM): 1.15 mm.
 - Energy resolution (FWHM): 8% at 356 keV.

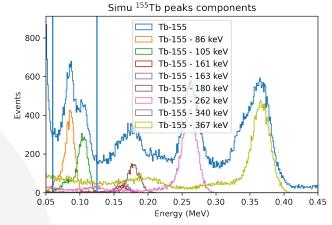
² Théo Bossis et al, A High-Resolution Portable Gamma-Camera for Estimation of Absorbed Dose in Molecular Radiotherapy.



- **Phantom**: NEMA NU 4-2008, a standard smallanimal imaging phantom designed for quantitative performance evaluation.¹
 - Includes rods (1–5 mm) for spatial resolution testing.

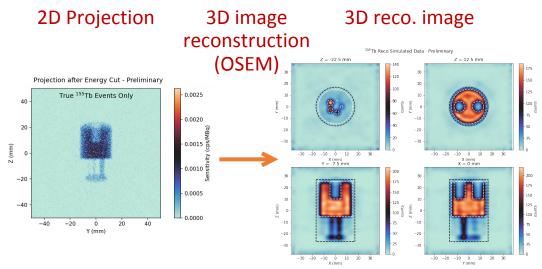
 Cold and uniform regions for contrast, uniformity, and SNR analysis.

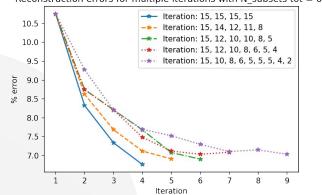
¹ NEMA Standards Publication NU 4-2008 Performance Measurements of Small Animal Positron Emission Tomographs National Electrical Manufacturers Association 1300 N. 17th Street, Suite 1752 Rosslyn, VA 22209.


GATE 10 Simulation

- Reproducing phantom, camera parts and movement, phantom and all sources (isotopes and contaminants → dissemble rays contribution).
- Used PHID source (Photon from Ion Decay).
 - ➤ PHID files of ¹⁵⁴Tb, ¹⁵⁵Tb, ¹⁵⁶Tb, ¹⁶¹Tb and ¹³⁹Ce (atomic relaxation and isomeric transition) were created.

- Used (add_dynamic_parametrisation) for cameras rotation and translation.
- Used actors:
 - o Digitizer Hits Collection Actor for "hits".
 - Digitizer Adder Actor for "singles".
 - Digitizer Spatial Blurring Actor.
 - Digitizer Blurring Actor.
 - Digitizer Energy Windows Actor.
 - Digitizer Projection Actor.




Tomographic Reconstruction

- Tomographic SPECT reconstruction performed using CASTOR platform.¹
- Data converted from GATE 10 form to CASTOR form, starting from projections or singles.
- Ordered Subset Expectation Maximization (OSEM) algorithm,
 a Faster MLEM variant used for reconstruction.
- Camera geometry defined and correction added.
- CASToR parameters were optimized.
 - 16 iterations, subsets decreases gradually.
 - PSF function and standard deviation: Gaussian (3.5, 3.5, 3) mm.
 - Convolution (Sieve): apply convolver forward, backward and at the end of each iteration.

¹ CASToR: a generic data organization and processing code framework for multi-modal and multi-dimensional tomographic reconstruction, Thibaut Merlin et al., 2018.

Quantification

• To quantify the reconstructed images, multiple factors were calculated:

Integral uniformity [%]:

$$IU = \frac{\sigma_N}{\overline{N}}$$

 σ_N : Standard deviation of voxels values in ROI.

 \overline{N} : Sum of counts in ROI averaged by # of voxels.

• Signal to noise ratio:

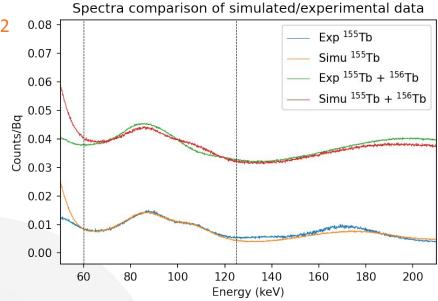
$$SNR = \frac{|N_s - N_n|}{N_n}$$

 $N_s\!\!:$ # of counts considered as signal in ROI.

 N_n : # of counts considered as noise in ROI.

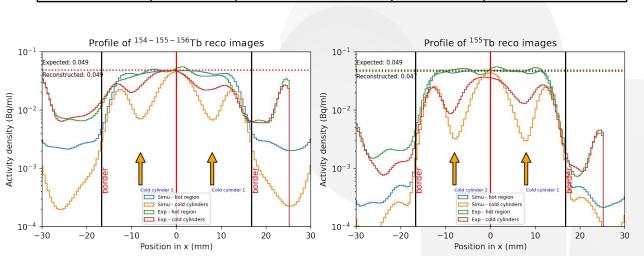
• Contrast factor of the cold cylinders [%]:

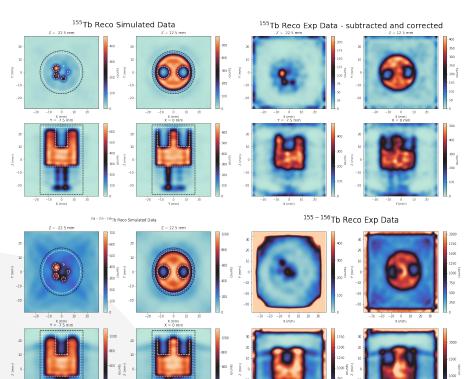
$$Q_{cold} = \left[1 - \frac{\bar{S}_{cold}}{\bar{S}_{Phantom}}\right]$$


 \overline{S}_{cold} : average counts in the cold cylinder. $\overline{S}_{Phantom}$: average counts in the ROI of the phantom.

Simulation Validation: Spectra

- Two measurments performed to validate ALBIRA simulation at CHUV, Lausanne, Switzerland:
 - Pure ¹⁵⁵Tb measurement (6 MBg + 12 MBg ¹³⁹CeO).
 - Contaminated ¹⁵⁵Tb (28.7 MBq) with ¹⁵⁶Tb (2.5 MBq) measurement (+ 1.2 MBq ¹⁵⁴Tb).
- Experimental observations :
 - 79.8% 156Tb detected counts in [60, 125] keV for 8% activity contamination.
- Simulation validation:
 - Good agreement between spectra in [60, 125] keV window.

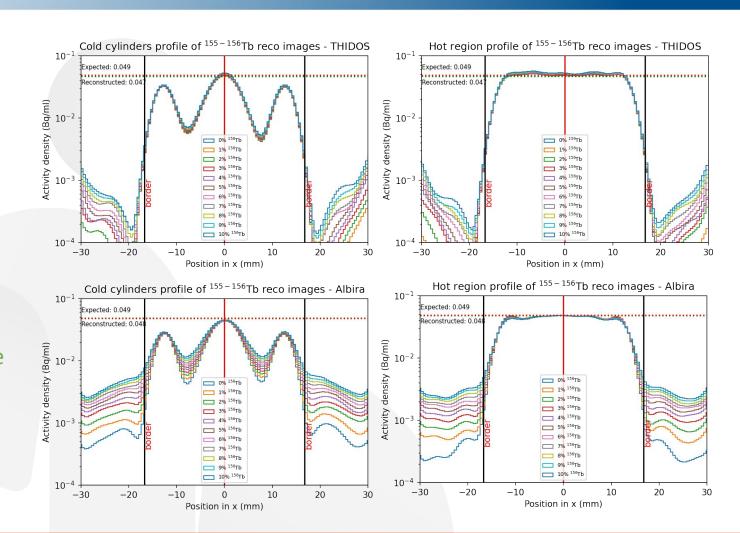



Simulation Validation: Reconstructed images

- Experimental observations: Reconstructed images strongly impacted by ¹⁵⁶Tb contamination.
- Simulation validation: Some discrepancies between experiment and simulation are under investigations.

Quant. factor	¹⁵⁵ Tb exp	¹⁵⁵ Tb +8% ¹⁵⁶ Tb exp	¹⁵⁵ Tb simu	¹⁵⁵ Tb+8% ¹⁵⁶ Tb simu
SNR	50.86	7.12	103.9	15.86
IU (%)	8.39	7.54	4.49	4.08
Q _{cold} (%)	84.48	63.19	89.73	83.93

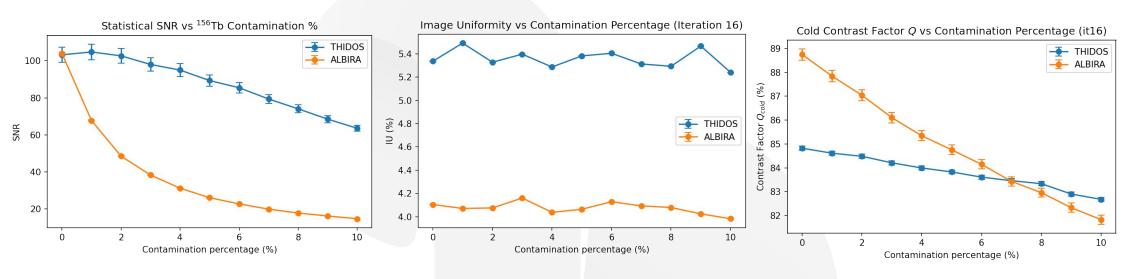
Results



Images Profiles

• At 8% ¹⁵⁶Tb \rightarrow ALBIRA = 72%, THIDOS = 30% of detected counts from ¹⁵⁶Tb.

- → Contamination limit strongly depends on collimator/shielding.
- → Better collimation improves image quality but it is a trade-off with sensitivity.



Images Quantification

- At 10% contamination \rightarrow SNR drops 40% for THIDOS vs >80% for ALBIRA.
 - > For a low energy configuration: contamination limit must be < 2% to limit SNR reduction < 50%.
- Better ALBIRA IU (only 1% difference) → effect of THIDOS collimator?
- Q_{cold} for ALBIRA decreases faster than THIDOS as contamination (%) increases.

Summary and Perspectives

- Simulations of the ALBIRA and THIDOS cameras were performed.
- ALBIRA was validated with two experiments: (i) a pure ¹⁵⁵Tb measurement (6 MBq), and (ii) a contaminated ¹⁵⁵Tb measurement (28.7 MBq) containing ¹⁵⁶Tb.
- Contamination acceptable limit depends on instrumentation, not only isotope ratio.
 - For a low energy configuration: contamination limit must be < 2% to limit SNR reduction < 50%.
- THIDOS significantly reduced contamination with dedicated collimation and shielding.
- 155Tb imaging feasible; 156Tb contamination overwhelms images with current SPECT cameras.
- Next steps:
 - ➤ Optimize THIDOS collimation for ¹⁵⁵Tb imaging contaminated with ¹⁵⁶Tb.
 - ➤ Evaluate impact of ¹⁵⁶Tb contamination on dosimetry.
 - Study subtraction method for contamination removal.

Thank You

Thank to PRISMAP¹ European project and CNRS MITI, this project was financed by them.

Thanks to C. Duchemin^a, N. van der Meulen^b, Z. Talip^b

- 1: This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101008571 (PRISMAP)
- a: MEDICIS, CERN.
- b: Paul Scherrer Institute PSI.