# Universal clustering in some nonequilibrium systems

Renan Almeida

LPTHE - Sorbonne Université

almeida@lpthe.jussieu.fr

- Part 1: Liquid crystals
- Part 2: Growing interfaces

### Clusters & universality

Focus on 2D macroscopic systems with two local states

Collective motion of cells



Andersen et al., Nat. Phys. (2025)

Liquid crystals



Almeida, PRL (2023)

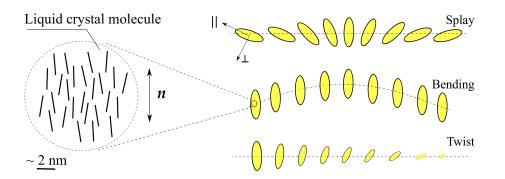
#### Part 1

Liquid crystals: (a) Experiment

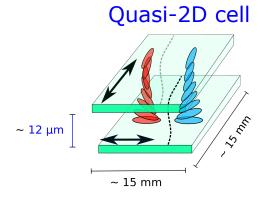
In collaboration with K. A. Takeuchi (U. Tokyo, Japan)

### Nematic phase

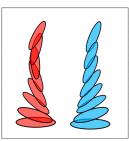
Fluid with orientational order (it stores elastic energy)



Twisted nematics





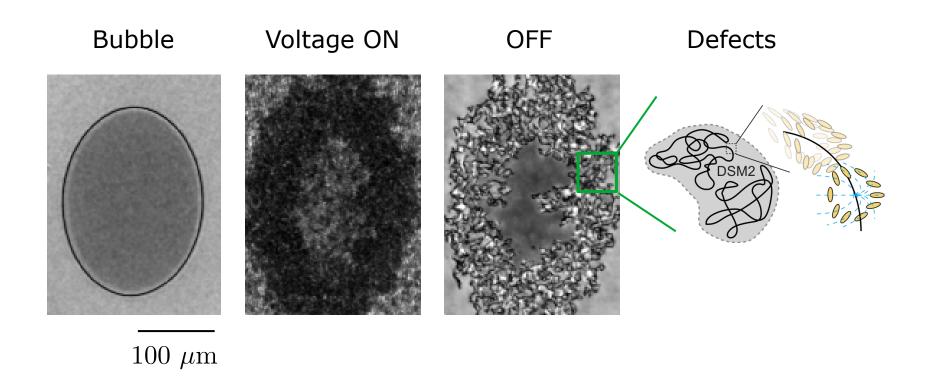


#### Optical microscopy



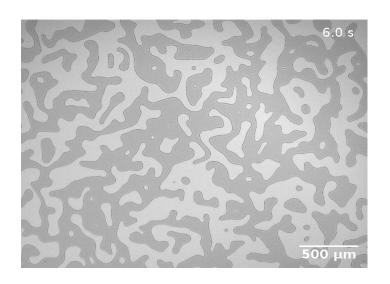
200 μm

### Disordered phase at high voltages



Nonequilibrium, nematic-disordered phase

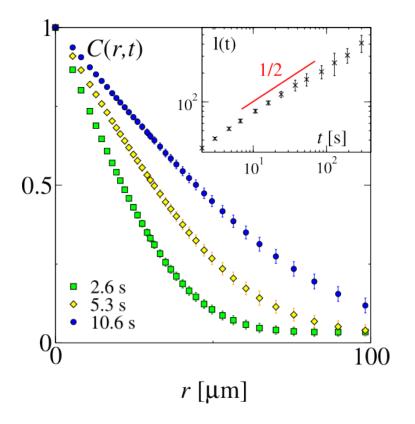
### Ordering after voltage removal

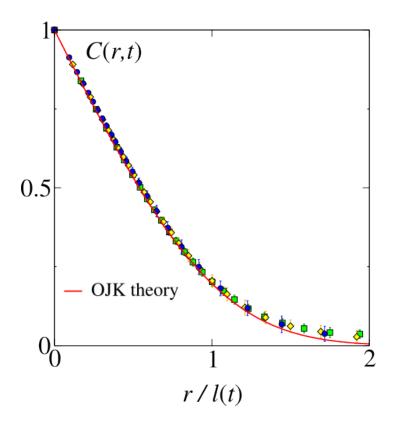


$$s(r,t) = egin{cases} +1 & \square & \text{pixel} \\ -1 & \blacksquare & \text{pixel} \end{cases}$$

### Dynamic scaling

- Correlator  $C(r,t) = \langle s(r',t)s(r'+r,t)\rangle \simeq f[r/l(t)]$
- Growth law  $C(l,t):=0.2 
  ightarrow l(t) \sim t^{1/z}, \quad z=2$





(b) Percolation

### Critical percolation & coarsening

PRL 98, 145701 (2007)

PHYSICAL REVIEW LETTERS

week ending 6 APRIL 2007

#### **Exact Results for Curvature-Driven Coarsening in Two Dimensions**

Jeferson J. Arenzon, <sup>1</sup> Alan J. Bray, <sup>2</sup> Leticia F. Cugliandolo, <sup>3</sup> and Alberto Sicilia <sup>3</sup>

<sup>1</sup>Instituto de Física, Universidade Federal do Rio Grande do Sul, CP 15051, 91501-970 Porto Alegre RS, Brazil

<sup>2</sup>School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom

<sup>3</sup>Université Pierre et Marie Curie-Paris VI, LPTHE UMR 7589, 4 Place Jussieu, 75252 Paris Cedex 05, France (Received 16 August 2006; published 3 April 2007)

PRL **109**, 195702 (2012)

PHYSICAL REVIEW LETTERS

week ending 9 NOVEMBER 2012

#### Fate of 2D Kinetic Ferromagnets and Critical Percolation Crossing Probabilities

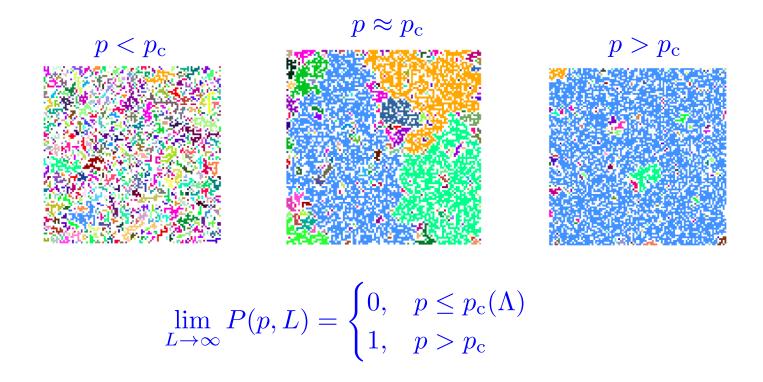
J. Olejarz, P. L. Krapivsky, and S. Redner

Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215, USA (Received 15 August 2012; published 7 November 2012)

### 2D percolation (a brief reminder)

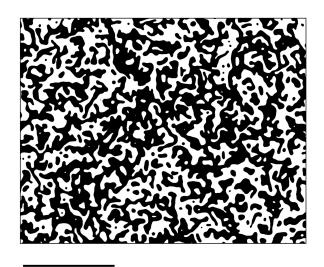
• Take a lattice  $\Lambda$  and occupy its sites with prob. p

Define a cluster as a connected region of neighboring occupied sites

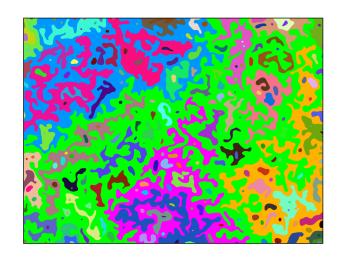


P(p): Prob. of there being a percolating (infinite) cluster

# Labeling



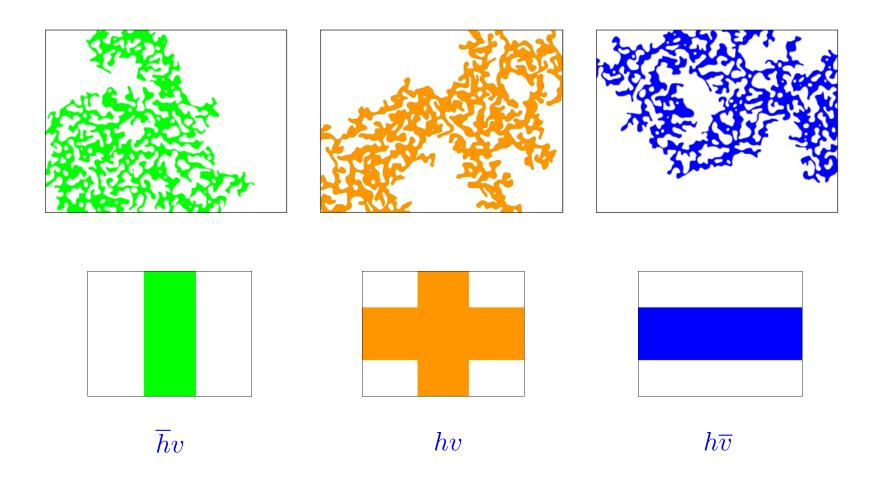
1 mm



before after

### Types of crossing a rectangle

• Different samples at  $t=2.8~\mathrm{s}$ . Only largest cluster is shown



### Crossing probabilities

Cardy, J. Phys. A: Math. Gen. **25** L201 (1992) Smirnov, C. R. A. Sci. Paris, t. **333**, p. 239 (2001)

$$\mathcal{F}_{\overline{h}v}(r) = \frac{\eta(r)}{\Gamma(1/3)\Gamma(2/3)} \, _{3}F_{2}(1, 1, 4/3; 5/3, 2, \eta)$$

• Horizontal crossing  $\mathcal{F}_{h\overline{v}}(1/\sqrt{2})$ 

$$\mathcal{F}_{h\overline{v}}(1/r) = \mathcal{F}_{\overline{h}v}(r)$$

Dual-spanning

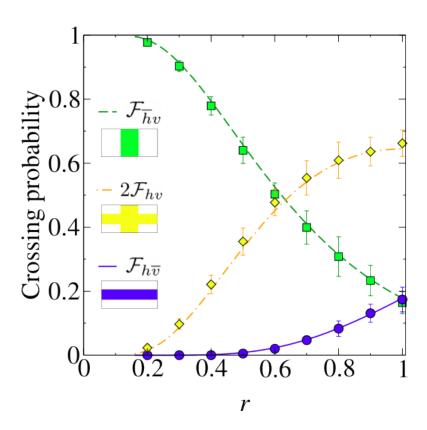
$$2\mathcal{F}_{hv}(r) = 1 - \mathcal{F}_{\overline{h}v}(r) - \mathcal{F}_{h\overline{v}}(r)$$

$$\eta:=\left(\frac{1-k}{1+k}\right)^2, \quad r:=\frac{2K(k^2)}{K(1-k^2)}, \quad K(\cdot): \text{ Complete elliptic int. of } \mathbf{1}^{\text{st}} \text{ kind }$$

rectangle aspect ratio r := height / width

# Crossing probabilities

Almeida, Phys. Rev. Lett. 131, 268101 (2023)

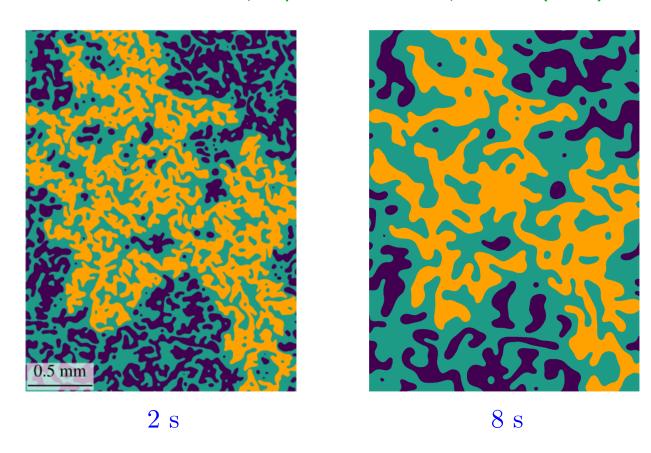


### (c) Geometry

In collaboration with J. J. Arenzon (UFRGS, Brazil)

### Large clusters look fractal

Almeida & Arenzon, Phys. Rev. Lett. 134, 178101 (2025)



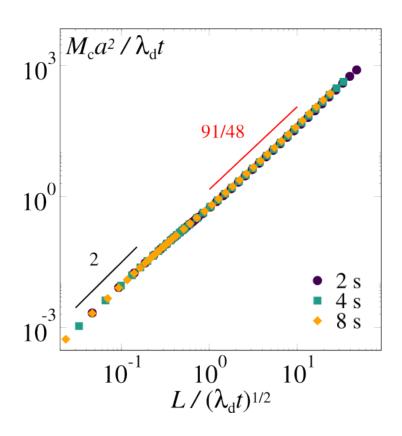
### Fractal dimension $(d_F)$

$$A(L,t) := M_c(L,t)a^2 \sim L^{\mathbf{d_F}}$$

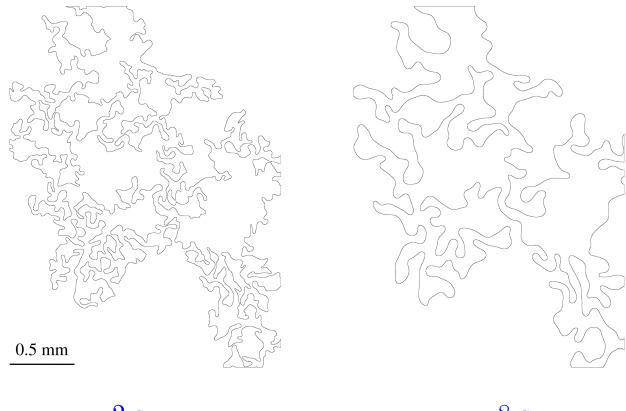
 $d_F = rac{91}{48}$  Critical percolation

 $M_c,a$  Mass of a cluster, pixel size

L Size of a square cut

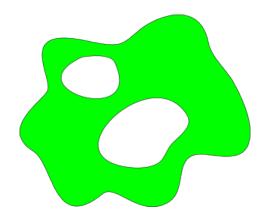


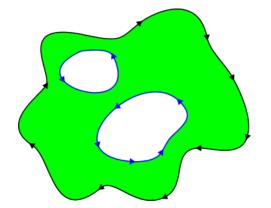
### How winding are the boundaries?

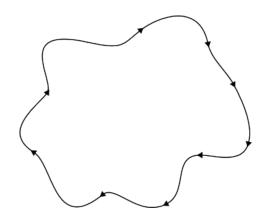


2 s 8 s

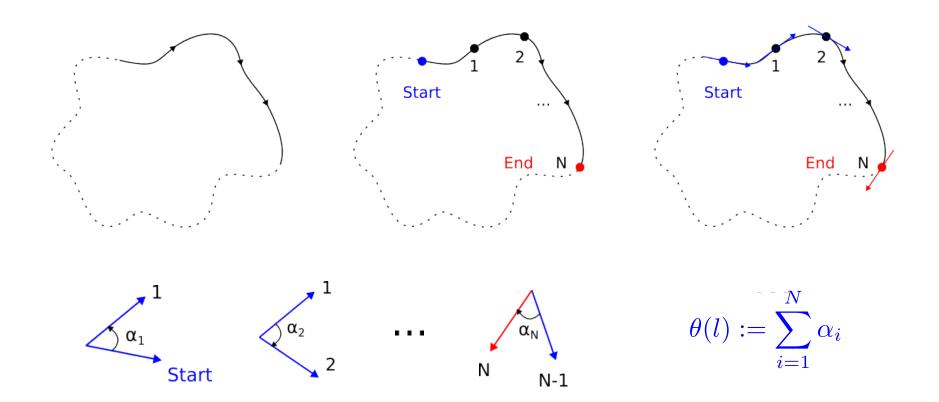
# Oriented path







### Winding angle



 $\alpha_i$ : Local turning angle

*l*: Curvilinear length of the path

### Winding angle variance

Duplantier & Saleur PRL 60, 2343 (1988)

Wieland & Wilson PRE **68**, 056101 (2003)

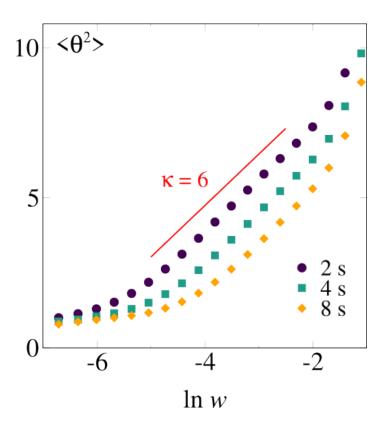
For curves with conformal invariance (empirical law)

$$\langle \theta^2(l) \rangle_{\rm c} = \text{cst.} + \frac{4k}{8+k} \ln(l); \qquad k \in \mathbb{R}, k \le 8$$

l: length along the path

k = 6 for percolation hulls

### Boundaries have conformal invariance



*p*: total length of the loop

w=l/p: Normal distance

- Exp. confirmation: System self-tunes to critical percolation
- Large clusters are fractal, but morphed into regular structures
- Boundaries have conformal invariance



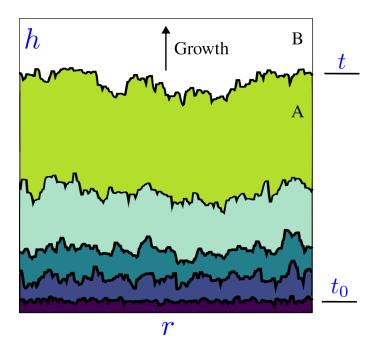
#### Part 2

### Growing interfaces

Theoretical work in collaboration with L. Cugliandolo (LPTHE, Paris)

### Concept in 1D

Phase A grows at the expense of phase B. Local interactions



• Growth equation (symmetries):  $\partial_t h(r,t) = v_0 + \mathcal{F}\{(\nabla h)\} + \eta(r,t)$ 

### **Growth equation**

$$\partial_t h(r,t) = v_0 + \nu \nabla^2 h + \frac{\lambda}{2} (\nabla h)^2 + \eta(r,t)$$

 $v_0$ : growth velocity

 $\nabla^2 h$ : elastic contribution

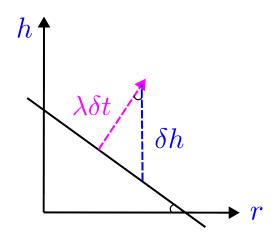
 $(\nabla h)^2$ : lateral growth

 $\eta(r,t)$ : Gaussian noise

$$\overline{\eta(r,t)} = 0$$

$$\overline{\eta(r,t)\eta(r',t')} = 2D\delta^d(r-r')\delta(t-t')$$

 $\nu, \lambda, D$ : parameters



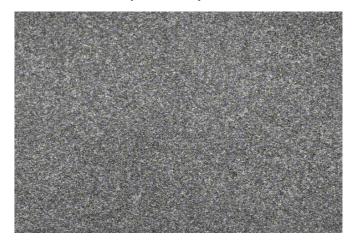
$$\delta h \approx \lambda \delta t \left[ 1 + \frac{1}{2} (\nabla h)^2 \right]$$

# KPZ growth in 1D (experimental examples)

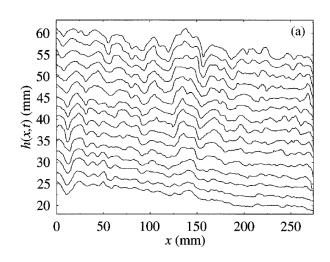
Flame fronts in papers

Maunuksela et al. PRL **79**, 1515 (1997)

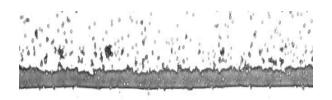
Liquid crystals



Takeuchi et al. PRL **104**, 230601 (2010)

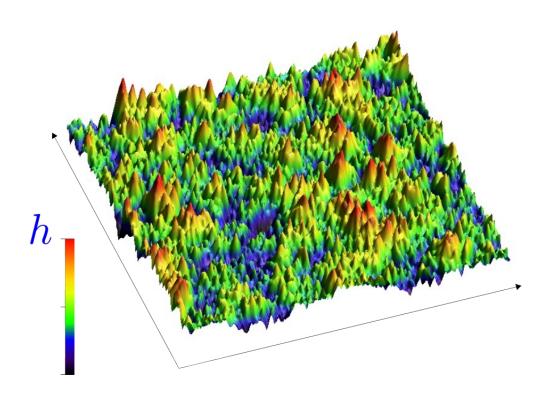


Colloids in evaporating drops



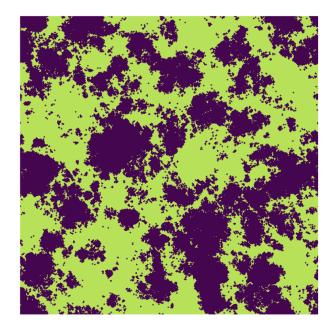
Yunker et al. PRL 110, 035501 (2013)

# KPZ growth in 2D



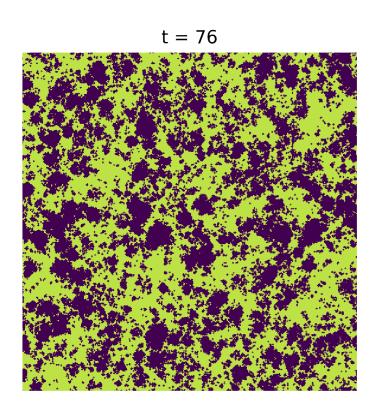
#### Clusters

Projection of connected regions above/below the mean height



• Key observable:  $s(r,t) = \mathrm{sign}[h(r,t) - \langle h(r,t) \rangle]$   $s(r,t) = \begin{cases} +1 & \blacksquare \\ -1 & \blacksquare \end{cases}$ 

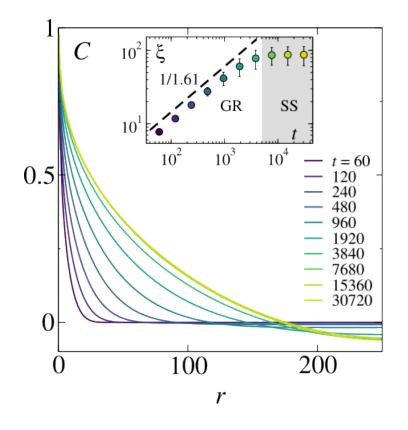
### Time evolution (KPZ model)

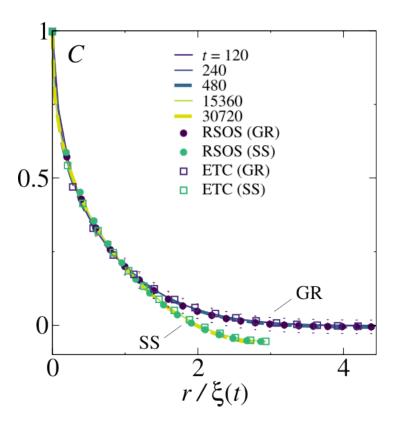


$$s(r,t) = \begin{cases} +1 & \blacksquare & \text{pixel} \\ -1 & \blacksquare & \text{pixel} \end{cases}$$

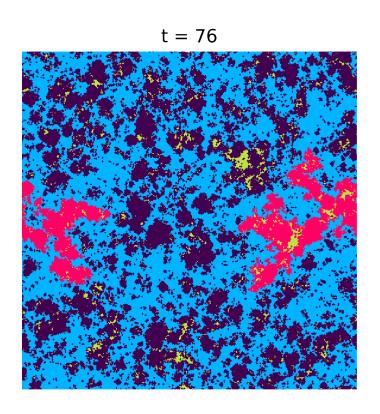
### Dynamic scaling & universality

- Correlator  $C(r,t) = \langle s(r',t)s(r'+r,t)\rangle \simeq f[r/\xi(t)]$
- Growth law  $C(\xi,t):=0.2 o \xi(t) \sim t^{1/z}, \quad z\approx 1.61$





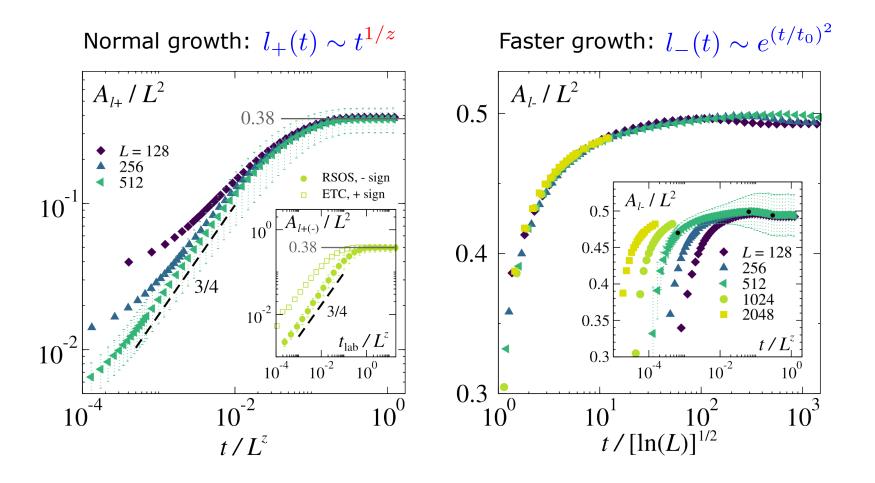
### Configurations w/ largest clusters detected



$$s(r,t) = \begin{cases} +1 & \quad \text{pixel} \quad \text{Largest cluster} \\ -1 & \quad \text{pixel} \quad \text{Largest cluster} \end{cases}$$

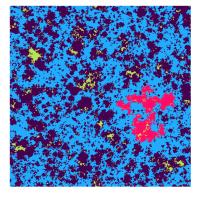
### A new lengthscale in KPZ dynamics

• Area of the largest cluster (ensemble-averaged)  $A_{l+(-)}(L,t)$ 



### Conclusions (part 2)

- We uncovered new (universal) aspects of growing interfaces
- Asymmetry: Giant cluster detected for the first time
- Symmetry recovered if KPZ nonlinearity is off (not shown)



#### Thanks!

Renan Almeida

LPTHE - Sorbonne Université

almeida@lpthe.jussieu.fr