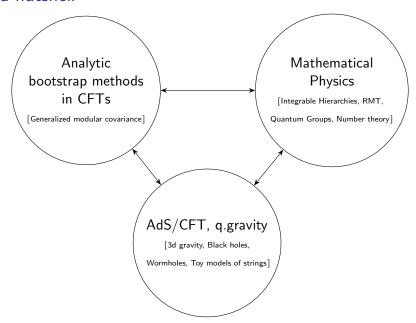
On Some Universal Results in 2D Conformal Field Theories

Ioannis Tsiares

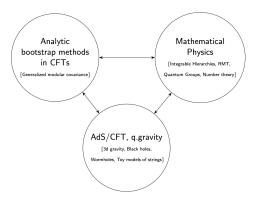
LPENS

FRIF Day, November 17th, 2025.

In a nutshell



Hopes and dreams

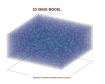


To understand the space of Conformal Field Theories using the **Conformal Bootstrap**, starting from two-dimensions and extending to higher dimensions.

In the process, learn something non-trivial about black holes and quantum gravity + learn some fun math!

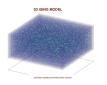
Conformal Field Theories

 QFTs with conformal symmetry. Fixed points of RG flow. Universality for different systems at criticality. Quantum gravity in AdS, ...



Conformal Field Theories

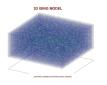
QFTs with conformal symmetry. Fixed points of RG flow.
 Universality for different systems at criticality. Quantum gravity in AdS, ...



Two dimensions are special.

Conformal Field Theories

 QFTs with conformal symmetry. Fixed points of RG flow. Universality for different systems at criticality. Quantum gravity in AdS, ...

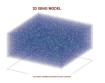


▶ Two dimensions are special. Virasoro algebra:

$$[L_m, L_n] = (m-n)L_{n+m} + \frac{c}{12}(n^3-n)\delta_{n+m,0}\mathbb{1}$$
, $m, n \in \mathbb{Z}$

Conformal Field Theories

 QFTs with conformal symmetry. Fixed points of RG flow. Universality for different systems at criticality. Quantum gravity in AdS, ...



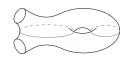
► Two dimensions are special. Virasoro algebra:

$$[L_m, L_n] = (m-n)L_{n+m} + \frac{c}{12}(n^3-n)\delta_{n+m,0}\mathbb{1}, \quad m, n \in \mathbb{Z}$$

Ubiquitous: 2d condensed matter systems, worldsheet string theory; number theory, random matrix theory, quantum groups, ...

Conformal Bootstrap Philosophy

We are usually interested in Euclidean correlation functions of local (primary) operators on (super) Riemann surfaces:



Using the power of the *Operator Product Expansion* (OPE), the basic **2d CFT data** at central charge *c* consist of:

- ▶ <u>Dynamic</u>: List of primary operators \mathcal{O}_i , along with scaling dimensions $\Delta_i = h_i + \overline{h}_i$ and spins $I_i = |h_i \overline{h}_i|$, and their OPE coefficients C_{ijk} .
- Kinematic: Virasoro conformal blocks.

Question: How are these CFT data constrained from consistency conditions (e.g. associativity of OPE)? Are there any universal features that we can derive *analytically*?

Conformal Bootstrap Philosophy

Generalized Modular Covariance on (super) Riemann surfaces:

Conformal Bootstrap Philosophy

Generalized Modular Covariance on (super) Riemann surfaces:

Sphere 4-pt:

$$\sum_{h_s, \overline{h_s}} C_{12s} \, C_{34s} \, \left| \mathcal{V}_s^{(4-pt)} (z) \right|^2 = \sum_{h_t, \overline{h_t}} C_{14t} \, C_{23t} \, \left| \mathcal{V}_t^{(4-pt)} (1-z) \right|^2 \, .$$

Torus 1-pt:

$$\sum_{h \, \bar{h}} C_{h_0 \, hh} \; |\mathcal{V}_s^{(torus \; 1-pt)}(-1/\tau)|^2 = \left(\tau^{h_0} \bar{\tau}^{\bar{h_0}}\right) \sum_{h \, \bar{h}} C_{h_0 \, hh} \; |\mathcal{V}_t^{(torus \; 1-pt)}(\tau)|^2 \; .$$

 Famously, [Cardy,'86] used this philosophy to derive a universal spectral density at high energies (i.e. Bekenstein-Hawking entropy of BTZ black holes)

$$\mathbb{1} \text{ } = \mathbb{1} \text{ } \Rightarrow \rho_{\mathsf{spec.}}(h, \overline{h}) \approx \left| \mathsf{e}^{4\pi \sqrt{\frac{(c-1)h}{2^4}}} \right|^2, \ h, \overline{h} \gg c.$$

 Famously, [Cardy,'86] used this philosophy to derive a universal spectral density at high energies (i.e. Bekenstein-Hawking entropy of BTZ black holes)

$$\mathbb{1} \left[\bigcirc \right] = \mathbb{1} \left[\bigcirc \right] \Rightarrow \rho_{\text{spec.}}(h, \overline{h}) \approx \left| e^{4\pi \sqrt{\frac{(c-1)h}{24}}} \right|^2, \ h, \overline{h} \gg c.$$

In [S. Collier, A.Maloney, H.Maxfield, I.T.'19] using

 Famously, [Cardy,'86] used this philosophy to derive a universal spectral density at high energies (i.e. Bekenstein-Hawking entropy of BTZ black holes)

$$\mathbb{1} \left[\bigcirc \right] = \mathbb{1} \left[\bigcirc \right] \Rightarrow \rho_{\text{spec.}}(h, \overline{h}) \approx \left| e^{4\pi \sqrt{\frac{(c-1)h}{24}}} \right|^2, \ h, \overline{h} \gg c.$$

▶ In [S. Collier, A.Maloney, H.Maxfield, I.T.'19] using

we showed analogous **universal** result for heavy OPE coeff's at finite c (i.e. universal dynamics in BTZ backgrounds)

$$\Rightarrow \rho_{\mathsf{OPE}^2}(h_i,\overline{h_i},h_j,\overline{h_j},h_k,\overline{h_k}) \approx C_0(P_i,P_j,P_k)C_0(\bar{P}_i,\bar{P}_j,\bar{P}_k)$$
 where $C_0(P_i,P_j,P_k) = \frac{\Gamma_b(2Q)\,\Pi_{\pm\pm\pm}\,\Gamma_b(\frac{Q}{2}\pm iP_j\pm iP_j\pm iP_k)}{\sqrt{2}\Gamma_b(Q)^3\,\Pi_{\alpha\in\{i,j,k\}}\,\Gamma_b(Q+2iP_\alpha)\Gamma_b(Q-2iP_\alpha)}$ (c.f. Liouville CFT!)

 Famously, [Cardy,'86] used this philosophy to derive a universal spectral density at high energies (i.e. Bekenstein-Hawking entropy of BTZ black holes)

$$\mathbb{1} \left[\bigcirc \right] = \mathbb{1} \left[\bigcirc \right] \Rightarrow \rho_{\text{spec.}}(h, \overline{h}) \approx \left| e^{4\pi \sqrt{\frac{(c-1)h}{24}}} \right|^2, \ h, \overline{h} \gg c.$$

▶ In [S. Collier, A.Maloney, H.Maxfield, I.T.'19] using

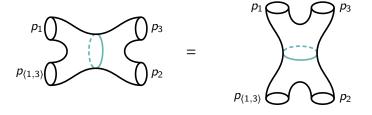
we showed analogous **universal** result for heavy OPE coeff's at finite c (i.e. universal dynamics in BTZ backgrounds)

$$\Rightarrow \rho_{\mathsf{OPE}^2}(h_i, \overline{h_i}, h_j, \overline{h_j}, h_k, \overline{h_k}) \approx C_0(P_i, P_j, P_k) C_0(\bar{P}_i, \bar{P}_j, \bar{P}_k)$$
where $C_0(P_i, P_j, P_k) = \frac{\Gamma_b(2Q) \prod_{\pm \pm \pm} \Gamma_b(\frac{Q}{2} \pm i P_j \pm i P_j \pm i P_k)}{\sqrt{2}\Gamma_b(Q)^3 \prod_{\alpha \in \{i, i, k\}} \Gamma_b(Q + 2i P_\alpha) \Gamma_b(Q - 2i P_\alpha)}}$ (c.f. Liouville CFT!)

Also analogous results in 2d BCFTs in [T.Numasawa, I.T.'22].

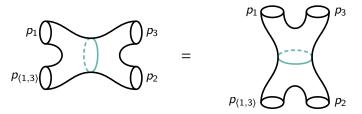
Sometimes one is able to find a 2D CFT explicitly!

Analyticity + **Degenerate representations** + Crossing Symmetry.



Sometimes one is able to find a 2D CFT explicitly!

Analyticity + **Degenerate representations** + Crossing Symmetry.



In [B.Mühlmann, V.Narovlansky, I.T.'25] we found a new $\mathcal{N}=1$ 2d CFT at $c_s \leq 1$ called:

$\mathcal{N} = 1$ timelike Liouville theory.

We provided explicit expressions for the structure constants in the Neveu–Schwarz and Ramond sectors that solve the bootstrap equations.

Question: How can we extract more examples of *fine-grained* information from the bootstrap?

Question: How can we extract more examples of fine-grained information from the bootstrap?

Let's return to the case of the four-point functions:

$$\sum_{h_s,\overline{h_s}} C_{\text{s-channel}}^2 \ |\mathcal{V}_s(z)|^2 = \sum_{h_t,\overline{h_t}} C_{\text{t-channel}}^2 \ |\mathcal{V}_t(1-z)|^2$$

Question: How can we extract more examples of fine-grained information from the bootstrap?

Let's return to the case of the four-point functions:

$$\sum_{h_s, \overline{h_s}} C_{\text{s-channel}}^2 \ |\mathcal{V}_s(z)|^2 = \sum_{h_t, \overline{h_t}} C_{\text{t-channel}}^2 \ |\mathcal{V}_t(1-z)|^2$$

Idea: Strip-off Virasoro blocks completely using the fusion kernel:

$$\mathcal{V}_s(z) = \oint_{t'} \mathbf{F}_{s,t'} \ \mathcal{V}_{t'}(1-z)$$

Question: How can we extract more examples of fine-grained information from the bootstrap?

Let's return to the case of the four-point functions:

$$\sum_{h_s,\overline{h_s}} C_{\text{s-channel}}^2 \ \left| \mathcal{V}_s(z) \right|^2 = \sum_{h_t,\overline{h_t}} C_{\text{t-channel}}^2 \ \left| \mathcal{V}_t(1-z) \right|^2$$

Idea: Strip-off Virasoro blocks completely using the fusion kernel:

$$\mathcal{V}_s(z) = \oint_{t'} \mathbf{F}_{s,t'} \ \mathcal{V}_{t'}(1-z)$$

One then gets

$$\rho_{\text{t-channel}}(h, \overline{h}) = \oint_{h', \overline{h'}} \mathbf{F}_{h, h'} \mathbf{F}_{\overline{h}, \overline{h'}} \ \rho_{\text{s-channel}}(h', \overline{h'})$$

where ρ is an appropriate distribution.

$$\rho_{\text{t-channel}}(h,\overline{h}) = \oint_{h',\overline{h'}} \mathbf{F}_{h,h'} \mathbf{F}_{\overline{h},\overline{h'}} \ \rho_{\text{s-channel}}(h',\overline{h'})$$

- Surprisingly, even though the Virasoro blocks are not known in closed form, F is known exactly! Related to rep.theory of a particular quantum group.
- Intricate connections with 3D TQFT called Virasoro TQFT, wormholes and ensemble average of CFTs, towards understanding the fine-grained BTZ black hole spectrum.

Related questions that I'd like answers to

- What is the space of consistent 2d CFTs and how far we can go without imposing extra symmetries beyond Virasoro?
- How is chaos and ETH (as inspired by black hole physics) consistent with Generalized Modular Covariance in 2d CFTs?
- Is there a consistent quantum theory of pure 3d gravity?
- How can we obtain analytic bootstrap functionals with spin in 2d CFTs? Related with the crossing kernels? Higher-d?
- Can we apply bootstrap techniques in toy models of string theory with low-d target space? Can we chart that space using the bootstrap?

Related questions that I'd like answers to

- What is the space of consistent 2d CFTs and how far we can go without imposing extra symmetries beyond Virasoro?
- How is chaos and ETH (as inspired by black hole physics) consistent with Generalized Modular Covariance in 2d CFTs?
- Is there a consistent quantum theory of pure 3d gravity?
- How can we obtain analytic bootstrap functionals with spin in 2d CFTs? Related with the crossing kernels? Higher-d?
- Can we apply bootstrap techniques in toy models of string theory with low-d target space? Can we chart that space using the bootstrap?

Thank you!