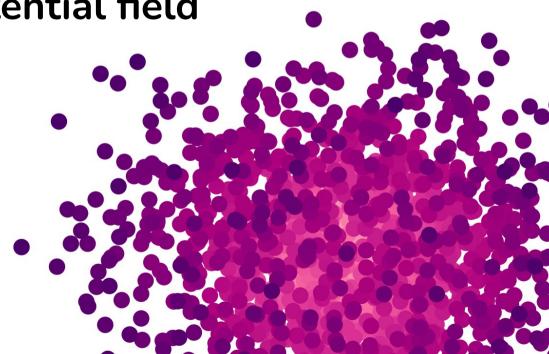
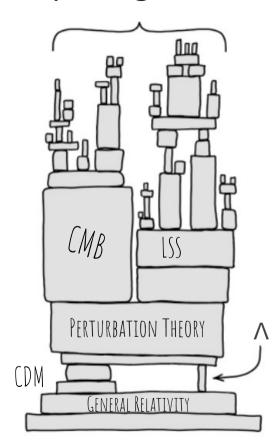
STRAWBERRY

Binding particles to haloes using the full potential field

Tamara R. G. Richardson

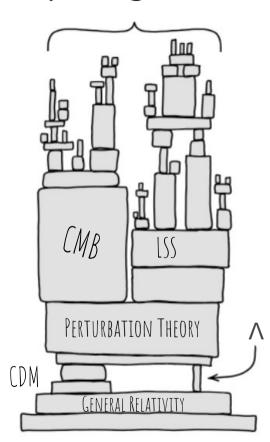


Everything we've been talking about this week

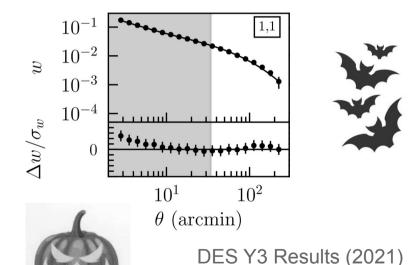


This is only a simplified view of the current state of the field

Everything we've been talking about this week



What we keep brushing away Small Scales



This is only a simplified view of the current state of the field

What's the issue?

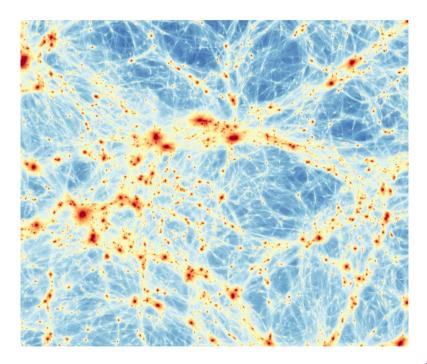
Perturbation theory breaks down

Highly non-linear

- Shell-crossing
- Virialisation

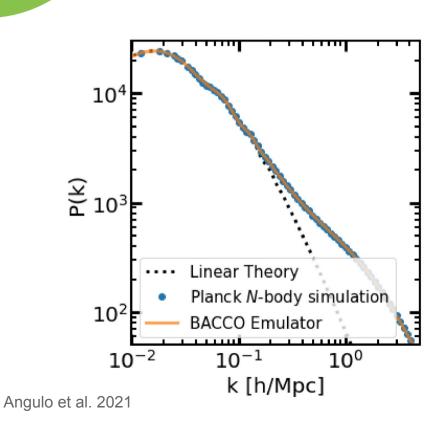
Too scary for this presentation

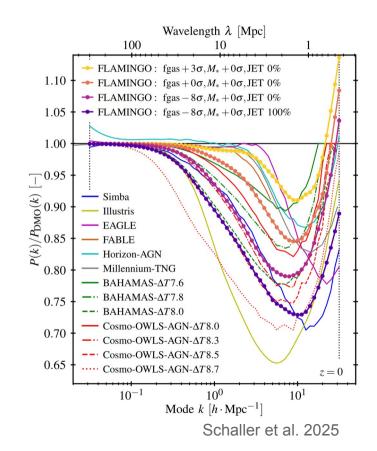
- Baryonic Feedback



BACCO simulation project (Angulo et al. 2021)

What that looks like for P(k)





5

How can we reach small scales

Emulators

Benefits:

- Fast
- Proven method
- Ready for use

Downsides:

- Limited by training sample
- You make the climate crisis worse

Main hurdle:

- Numerical design
- CPU/GPU time

Modelling non-linearity

Benefits:

- You get to do physics

Downsides:

- Slower
- Needs additional steps

Main hurdle:

- Theory

Haloes in brief

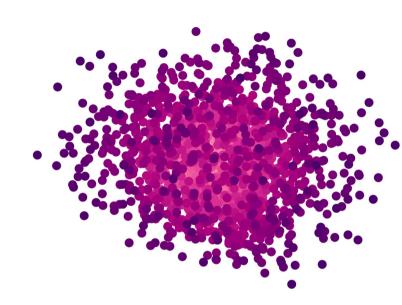
In theory, haloes are:

- > Overdense peaks
- > Gravitationally bound

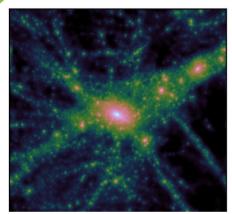
Why are they relevant?

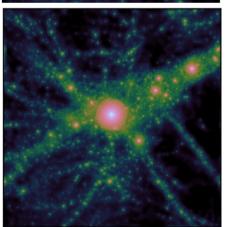
- > Halo Mass Function
- > Galaxy-Halo connection
- > Halo Model for non-linear P(k)
- > Mass modeling / Scaling relations

Detailed studies require simulations



Example: The halo model





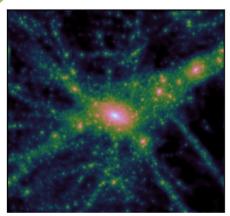
$$P_{\rm nl}(k) = P_{\rm 1h}(k) + P_{\rm 2h}(k)$$

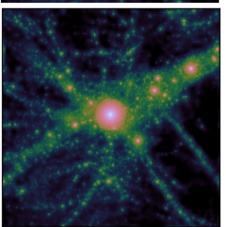
$$P_{1h}(k) = \int_0^\infty W^2(M, k) n(M) dM$$

$$W(M,k) = \frac{1}{\rho_{\rm m}} \int_0^{r_{\rm v}} 4\pi r^2 \frac{\sin(kr)}{kr} \rho(M,r) dr$$

$$P_{2h}(k) = P_{lin}(k) \left[\int_0^\infty b(M)W(M,k)n(M)dM \right]^2$$

Example: The halo model





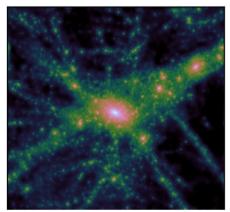
$$P_{\rm nl}(k) = P_{\rm 1h}(k) + P_{\rm 2h}(k)$$

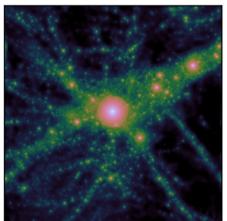
$$P_{1h}(k) = \int_0^\infty W^2(M, k) n(M) dM$$

$$W(M,k) = \frac{1}{\rho_{\rm m}} \int_0^{r_{\rm v}} 4\pi r^2 \frac{\sin(kr)}{kr} \rho(M,r) dr$$

$$P_{2h}(k) = P_{lin}(k) \left[\int_0^\infty b(M) W(M, k) n(M) dM \right]^2$$

Not an attack on HMCode just an example



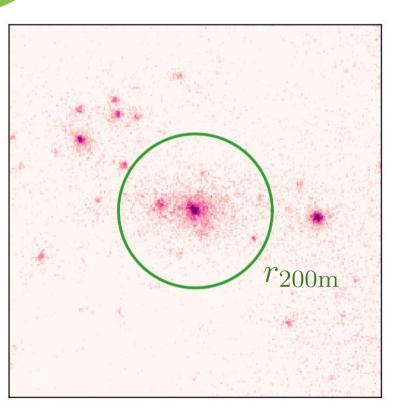


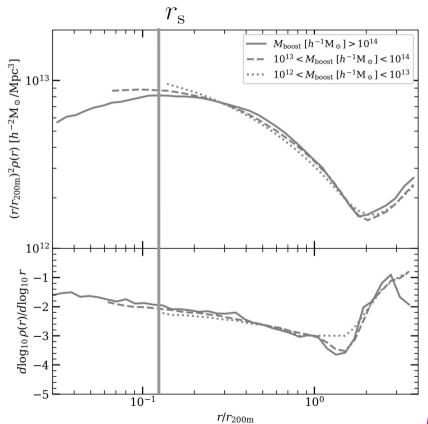
HMCode 2020 (Mead et al. 2020)

Halo model Requires:

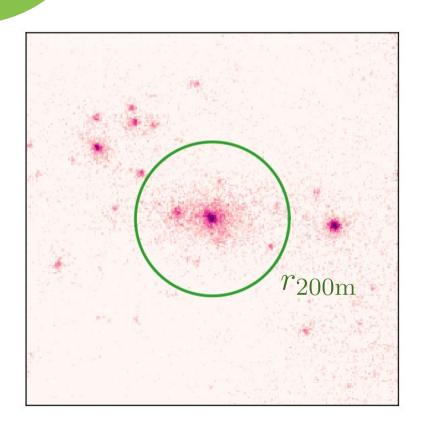
- Linear P(k) => CAMB
- Halo mass function => Sheth & Tormen (1999)
- Halo bias => Sheth & Tormen (1999)
- Halo profile => NFW (1997)
- c-M_{vir} relation => Duffy et al. (2008)

Haloes as two numbers





Detection of haloes



Usually, choose a boundary (SO)

$$r_{\Delta \mathrm{m}}$$

$$\langle \rho(\langle r_{\Delta m}) \rangle = \Delta \rho_{m}$$

or some numerical parameter (FoF)

$$b = 0.2$$

to define the edge of haloes.

Other density based methods are available

Beyond Density

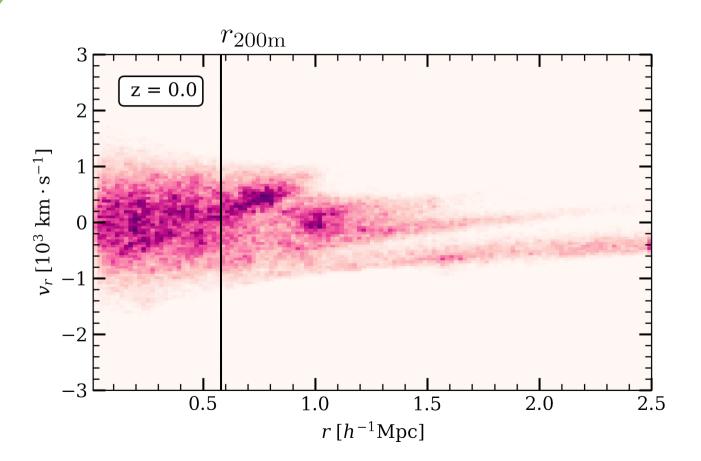
In phase space and in energy space, haloes are more distinct from their environment.

They can be extracted using these features

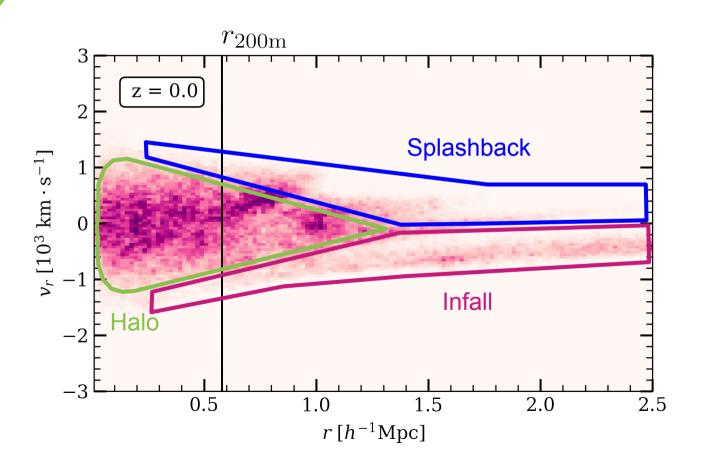
Halo 'finders' (characterisers) that do not use density to detect haloes

- ORIGAMI (Falck et al. 2012)
- SPARTA (Diemer 2017-2020)
- OASIS (García et al. 2023, Salazar et al. 2025, Shields et al. 2025)
- STRAWBERRY (Stücker et al. 2021, Richardson et al. 2025)

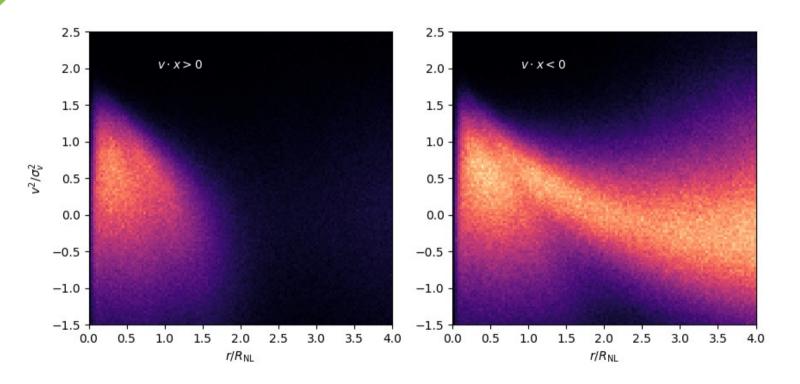
Haloes in radial phase space



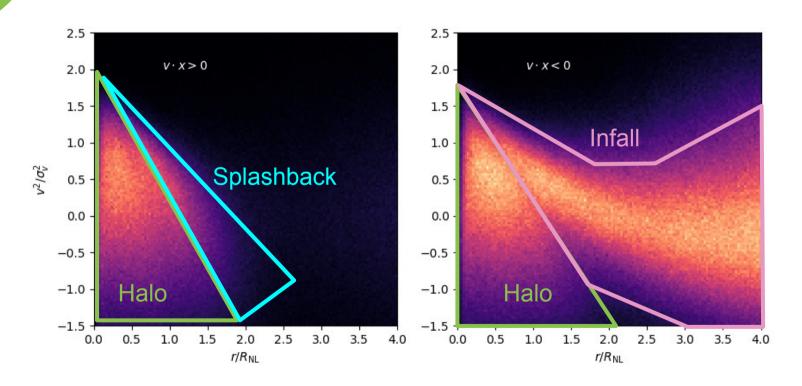
Haloes in radial phase space



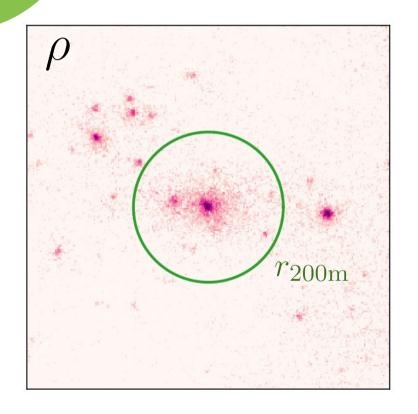
Haloes in Energy space

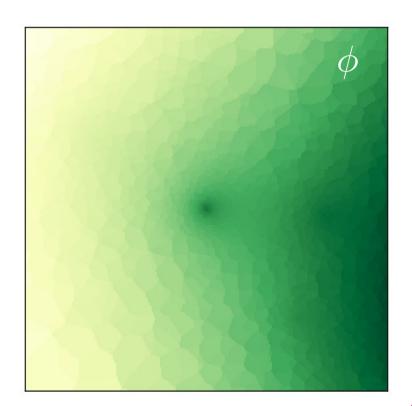


Haloes in Energy space

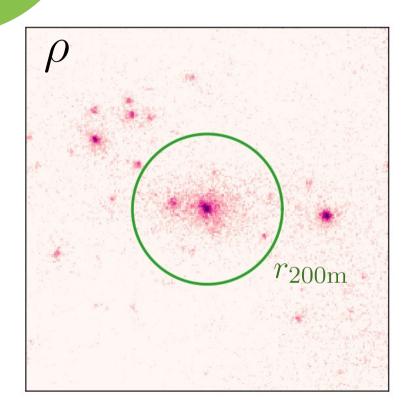


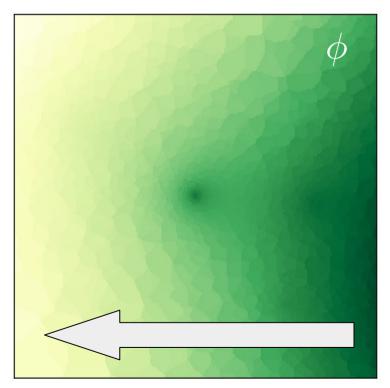
Lets use the potential??





Lets use the potential??





Large scale gradients!

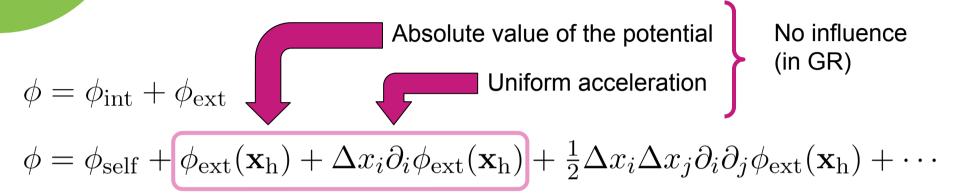
$$\phi = \phi_{\rm int} + \phi_{\rm ext}$$

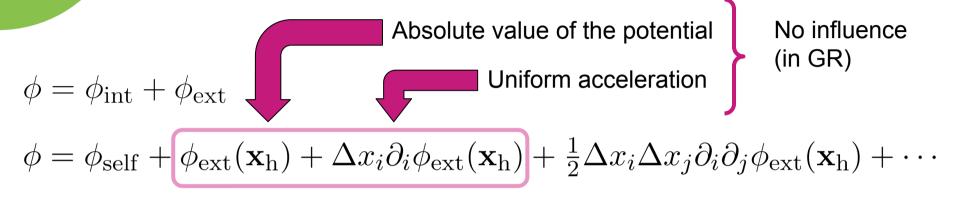
$$\phi = \phi_{\rm int} + \phi_{\rm ext}$$

$$\phi = \phi_{\text{self}} + \phi_{\text{ext}}(\mathbf{x}_{\text{h}}) + \Delta x_i \partial_i \phi_{\text{ext}}(\mathbf{x}_{\text{h}}) + \frac{1}{2} \Delta x_i \Delta x_j \partial_i \partial_j \phi_{\text{ext}}(\mathbf{x}_{\text{h}}) + \cdots$$

$$\phi = \phi_{\rm int} + \phi_{\rm ext}$$

$$\phi = \phi_{\text{self}} + \phi_{\text{ext}}(\mathbf{x}_{\text{h}}) + \Delta x_i \partial_i \phi_{\text{ext}}(\mathbf{x}_{\text{h}}) + \frac{1}{2} \Delta x_i \Delta x_j \partial_i \partial_j \phi_{\text{ext}}(\mathbf{x}_{\text{h}}) + \cdots$$



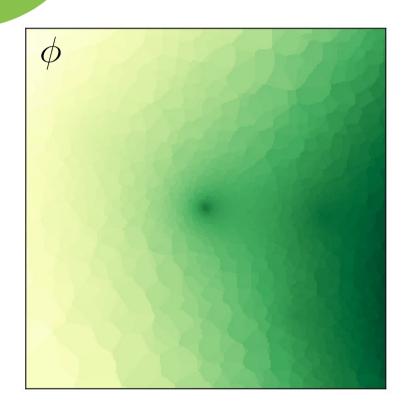


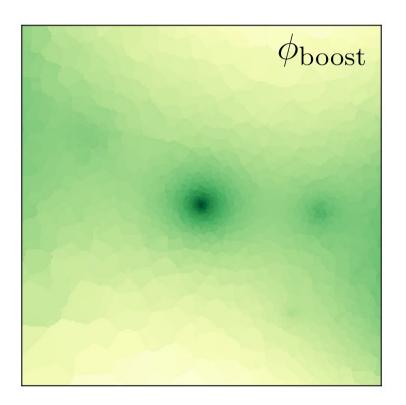
$$\phi_{\text{boost}} = \phi_{\text{self}} + \phi_{\text{ext}} - (\mathbf{x} - \mathbf{x}_{\text{h}}) \cdot \nabla \phi_{\text{ext}}$$

$$\phi_{\text{boost}} = \phi + (\mathbf{x} - \mathbf{x}_{\text{h}}) \cdot \mathbf{a}_{\text{ext}}$$

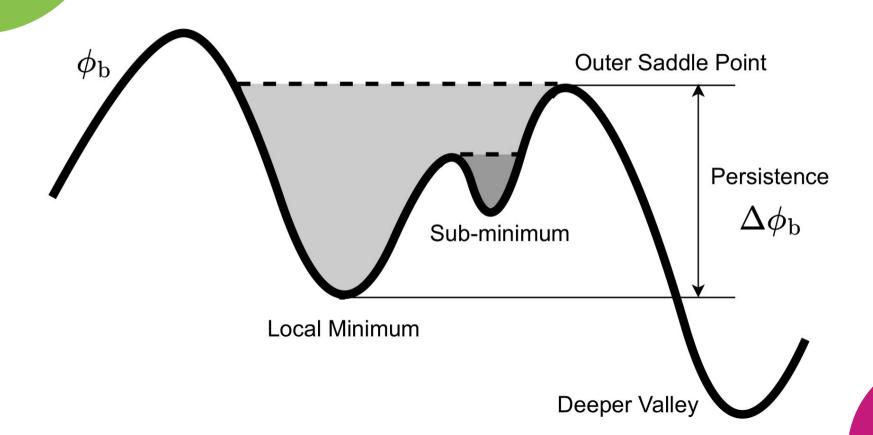
Internal dynamics are completely equivalent!

Bang! And the gradient is gone!





Defining haloes as potential wells



Goal: Turn this into a 'halo finder'

STRAWBERRY

STRucture Assignment With BoostEd RefeRence frame in cYthon

Goal: Turn this into a 'halo finder' binding check

STRAWBERRY

STRucture Assignment With BoostEd RefeRence frame in cYthon

To find a halo

$$\phi_{\text{boost}} = \phi + (\mathbf{x} - \mathbf{x}_{\text{h}}) \cdot \mathbf{a}_{\text{ext}}$$

Advantages:

- > Physically motivated binding check
- > Accounts for environment (Tides, Torques, etc...)

Disadvantages:

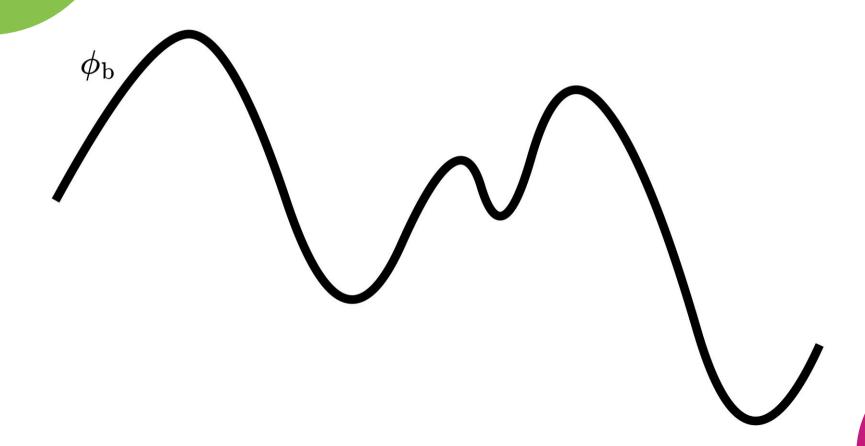
- > Internal-External split -> III defined
- > Local quantity -> Need an inital seed to start

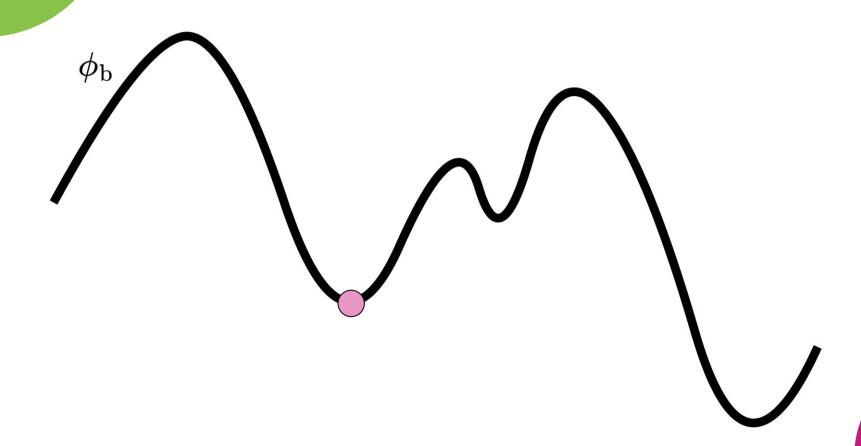
Need to rely on a seed catalogue

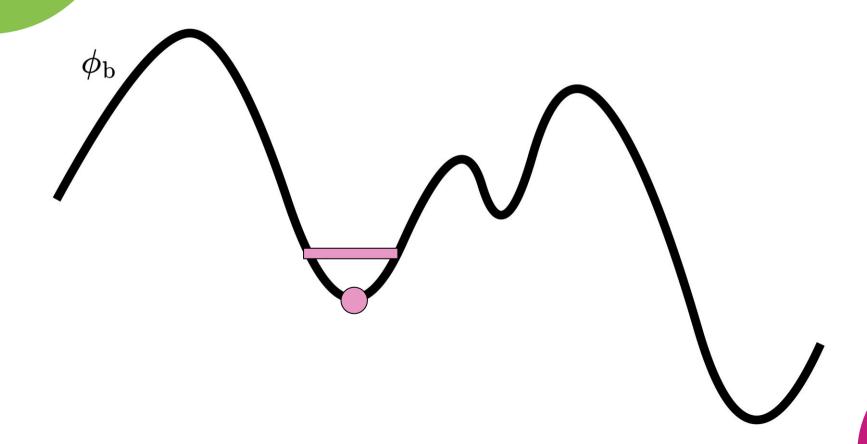
Four-step roadmap

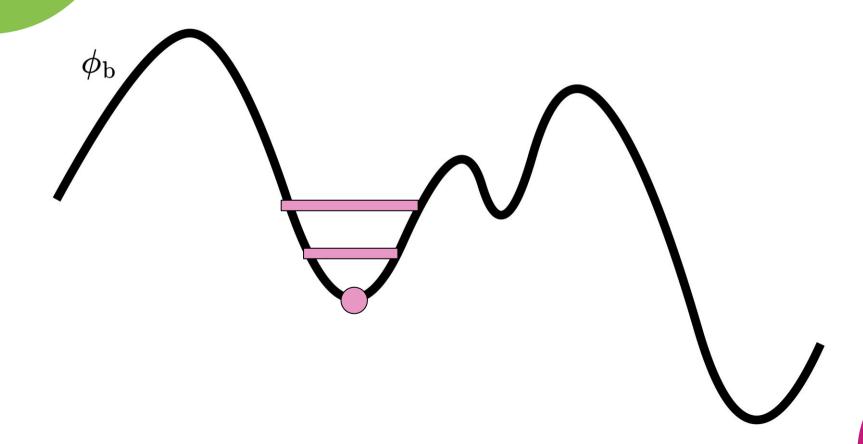
$$\phi_{\text{boost}} = \phi + (\mathbf{x} - \mathbf{x}_{\text{h}}) \cdot \mathbf{a}_{\text{ext}}$$

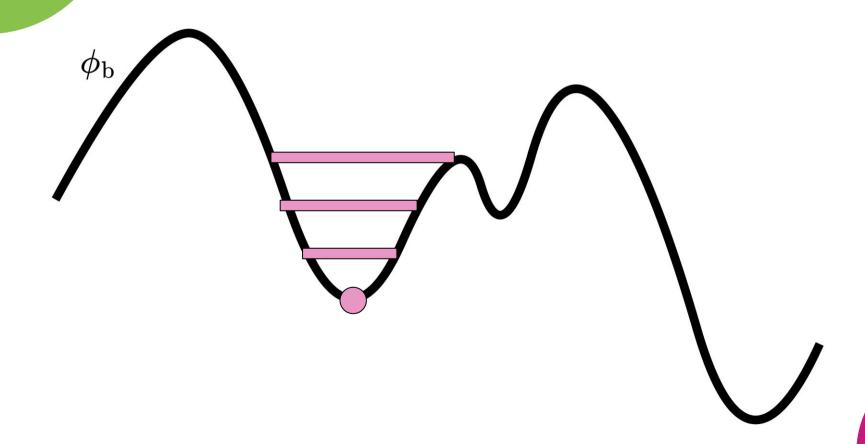
- 1. First guess (FoF Halo)
- 2. Switch to accelerated frame
- 3. Fill potential well
- 4. Unbind particles

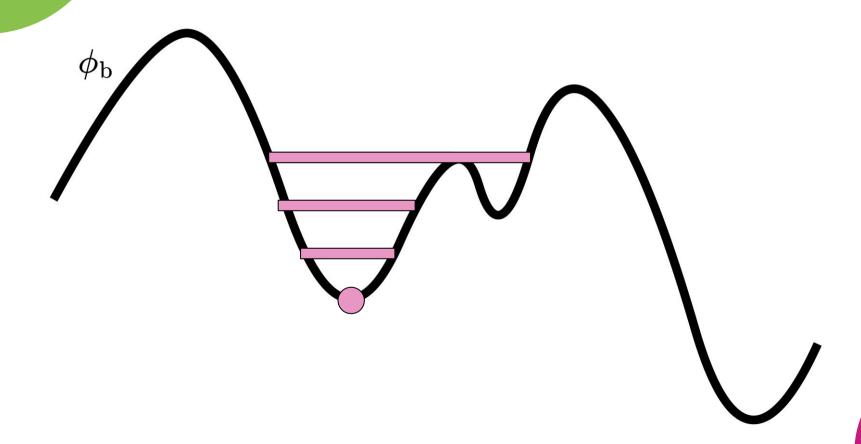




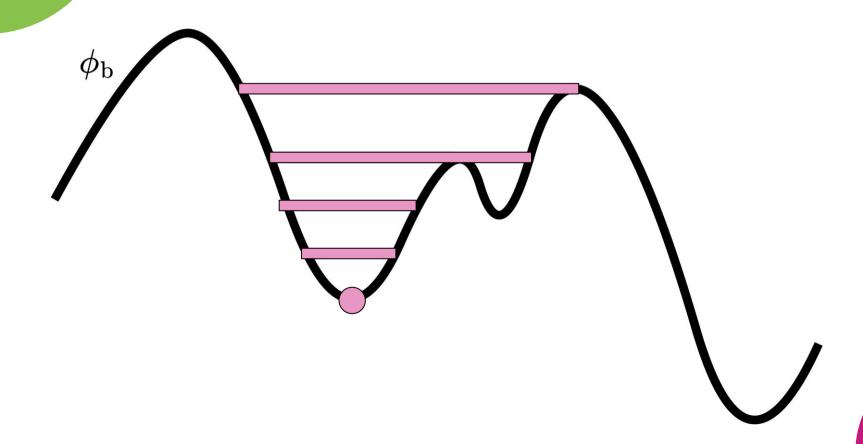




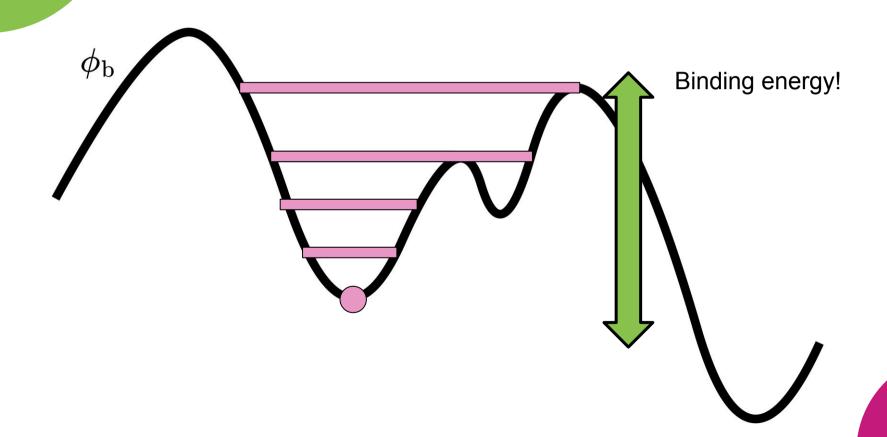


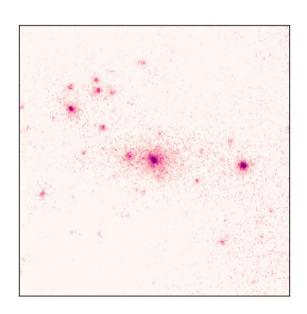


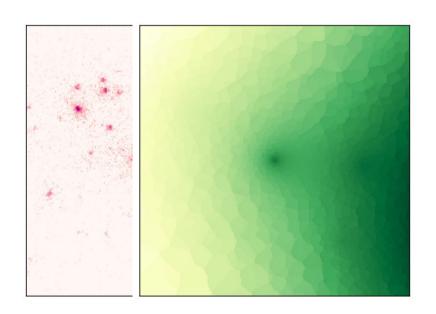
Introducing Strawberry

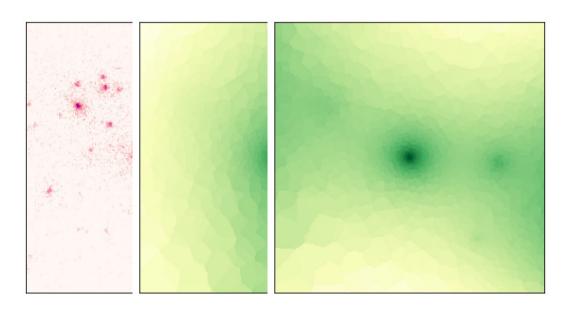


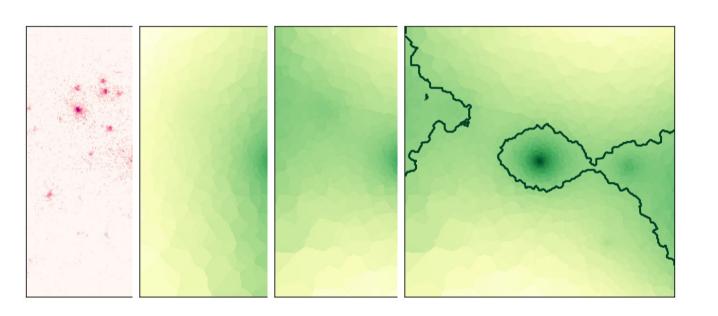
Introducing Strawberry

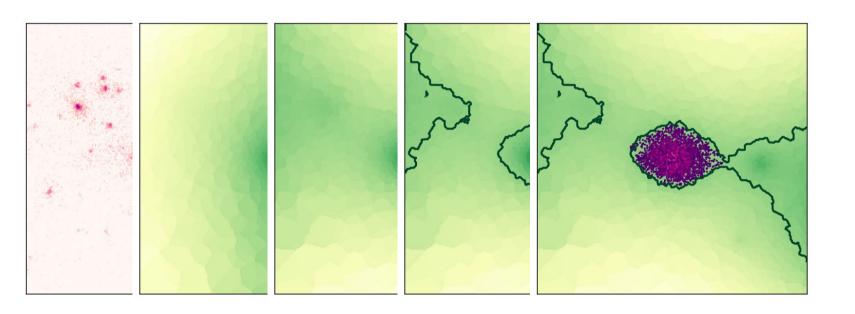


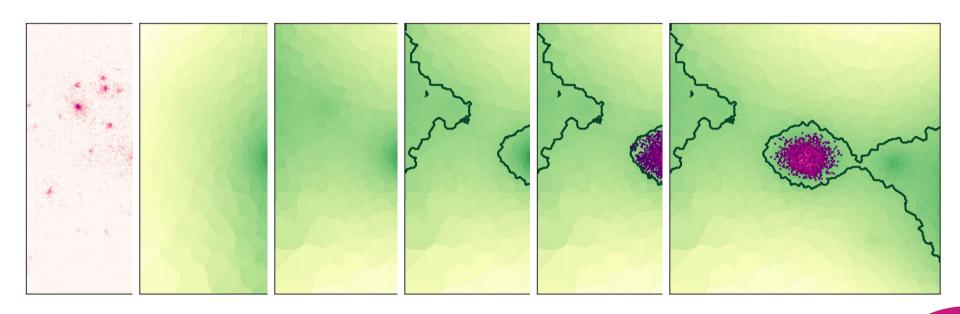




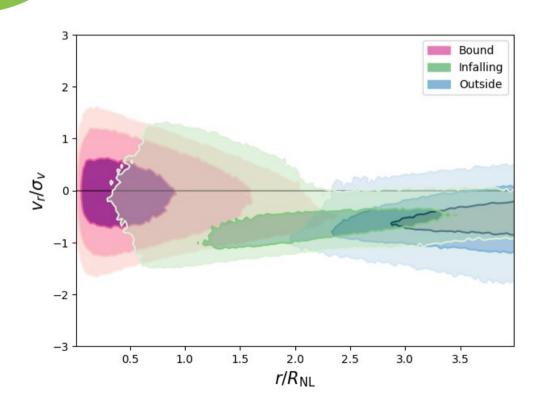








(Almost) Perfect Preening



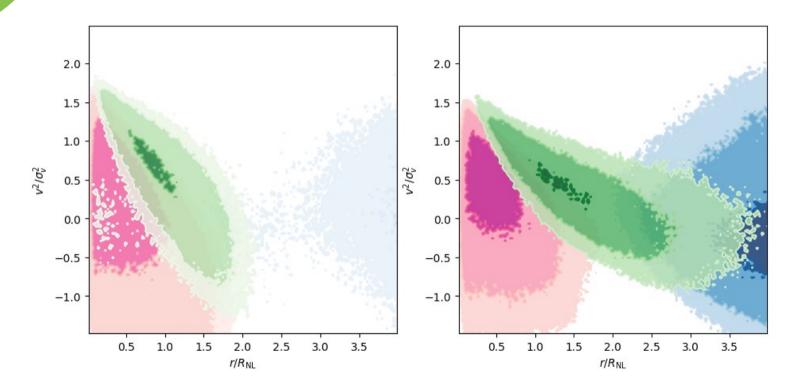
Selection using the potential:

Leaves us with **bound** population.

Removes infalling and splashback particles.

Separates particles outside of the potential

Where do you bind?



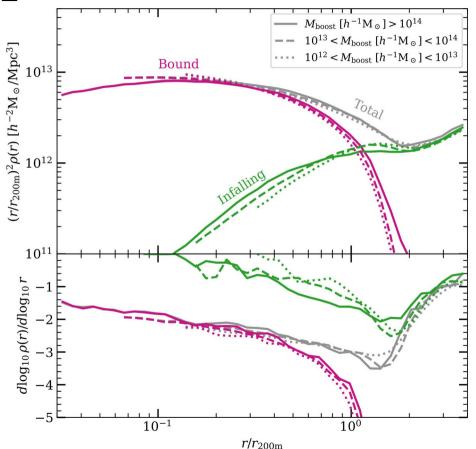
~ K-r Mass definition (Garcia et al. 2023, Salazar et al. 2024)

Finally, an edge

The selection create an exponential cut-off in the halo profile beyond the virial radius.

Consistent with:

Diemer et al. 2022 Garcia et al. 2023 Salazar et al. 2024



Summary

The boosted potential framework provides a **physically motivated framework** to perform a **binding check**.

Boosted haloes are virialised and have edges.

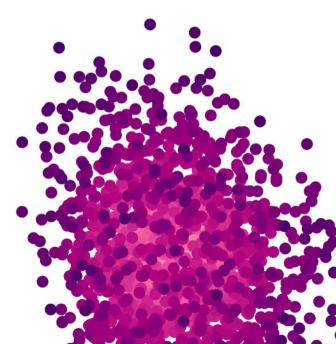
Future prospects:

- Characterisation of halo properties (in progress)
- Link to observation (still needs work)

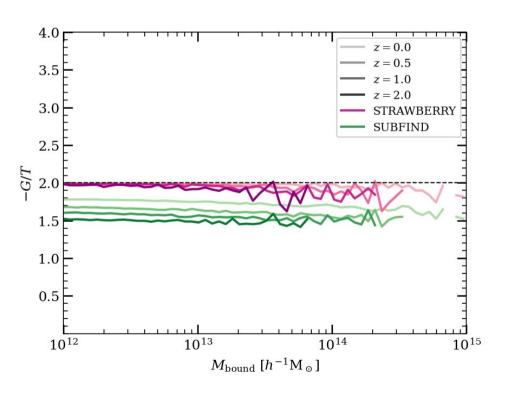
STRAWBERRY test version is out now!

github.com/trg-richardson/strawberry

arXiv:2509.11993



Boosted Haloes are Virialised!



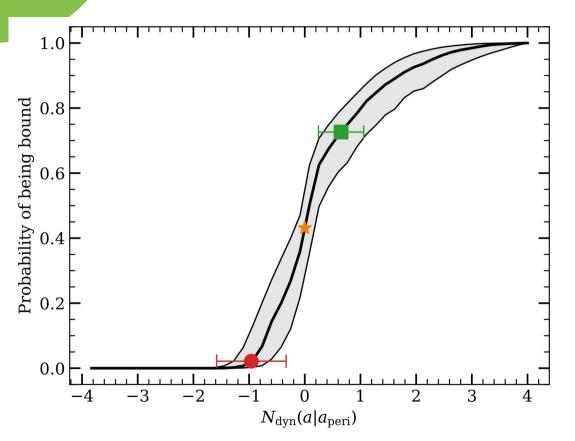
$$\frac{-G}{T} = \frac{-\langle \mathbf{x} \cdot \mathbf{a} \rangle}{0.5 \langle \mathbf{v} \cdot \mathbf{v} \rangle} \sim 2$$

Discrepancy attributed to "external pressure"

Removing bound particles Including unbound particles

(e.g. Shaw et al. 2006, Poole et al. 2006, and Davis et al. 2011)

When do you bind?



$$T(z|z_{\rm LMM}) = \frac{\sqrt{2}}{\pi} \int_{z_{\rm LMM}}^z \frac{\sqrt{\Delta_{\rm vir}(z)}}{z+1} dz$$
 Jiang et al. 2016

Median binding time is the first pericentric passage.

After 1st **apocentre**, ~80% of particles are bound.

~ Orbit based mass definitions

Time scaling

