

# Status Report

12/09/2025

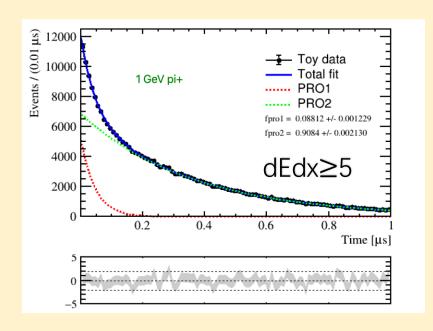


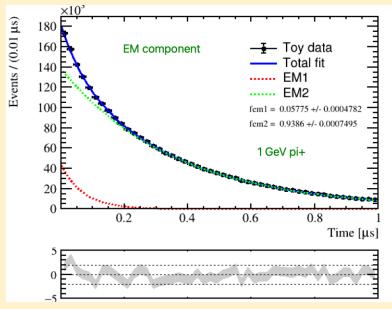
## The simulation setting for proton

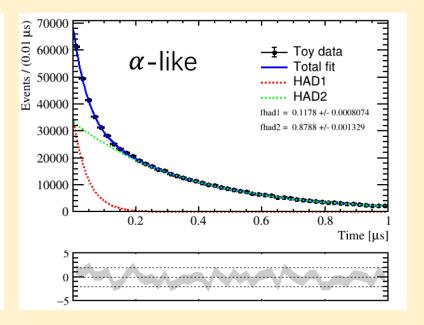
- The settings that not same as the previous version ( $\gamma$ -,  $\alpha$ -, p-like)
  - $\gamma$ -like: 0.070 us (6%) + 0.360 us (94%)
  - $\alpha$ -like: 0.046 us (12%) + 0.360 us (88%)
  - p-like: 0.046 us (9%) + 0.360 us (91%)

|             | e+/e-  | р              | pi     | n              | alpha  |
|-------------|--------|----------------|--------|----------------|--------|
| dE/dx < = 5 | γ-like | γ-like         | γ-like | γ-like         | γ-like |
| dE/dx>5     | γ-like | <i>p</i> -like | α-like | <i>p</i> -like | α-like |

#### Simulation side


- Re-write the physics process =>"DynamicScintillation"
  - Keep the same logic on photon generation as offical library (G4Scintillation)
  - Set time constant and yield based on particle type and dEdx in the step
    - => Not update the material table (old method)
    - => Set parameter directly to the scintillation process (checked step-by-step)
    - => No multi-thread issue anymore since not need to share updating material table among different thread
    - => No memory usage issue since no need to re-generate the scintillation process after update material table

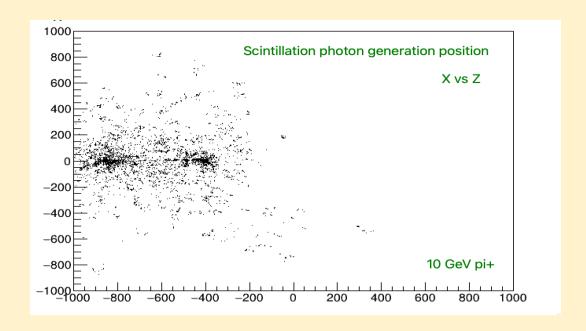

```
[SCINT-DBG] evt 0 trk 5962434 pdg 11 mat BGO dedx 13.193659 | tau(ns)=(70.000000,360.000000,0.000000) yield(%)=(600.000000,9400.000000,0.000000) [SCINT-DBG] evt 0 trk 5962434 pdg 11 mat BGO dedx 29.913581 | tau(ns)=(70.000000,360.000000,0.000000) yield(%)=(600.000000,9400.000000,0.000000) [SCINT-DBG] evt 0 trk 5962434 pdg 11 mat BGO dedx 0.000000 | tau(ns)=(70.000000,360.000000,0.000000) yield(%)=(600.000000,9400.000000,0.000000) [SCINT-DBG] evt 0 trk 5375858 pdg 2212 mat BGO dedx 11.091879 | tau(ns)=(46.000000,360.000000,0.000000) yield(%)=(900.000000,9100.000000,0.000000) [SCINT-DBG] evt 0 trk 5375858 pdg 2212 mat BGO dedx 11.894536 | tau(ns)=(46.000000,360.000000,0.000000) yield(%)=(900.000000,9100.000000,0.000000) [SCINT-DBG] evt 0 trk 5375858 pdg 2212 mat BGO dedx 13.825347 | tau(ns)=(46.000000,360.000000,0.000000) yield(%)=(900.000000,9100.000000,0.000000)
```


```
ActionInitialization.hh
DetectorConstruction.hh
DetectorMessenger.hh
DynamicScintillation.hh
HistoManaaer.hh
PrimaryGeneratorAction.hh
PrimaryGeneratorMessenger.hh
RunAction.hh
Run.hh
SteppingAction.hh
SteppingMessenger.hh
SteppingVerbose.hh
TrackInformation.hh
TrackingAction.hh
UseDynamicScintillation.hh
Utils.hh
ActionInitialization.cc
DetectorConstruction.cc
DetectorMessenger.cc
DynamicScintillation.cc
HistoManager.cc
PrimaryGeneratorAction.cc
PrimaryGeneratorMessenger.cc
RunAction.cc
Run.cc
SteppingAction.cc
SteppingMessenger.cc
SteppingVerbose.cc
TrackInformation.cc
TrackingAction.cc
UseDynamicScintillation.cc
Utils.cc
```

#### Validation on the simulation

- $\tau$ s are fixed, fractions are float
  - $\gamma$ -like: 0.070 us (6%) + 0.360 us (94%)
  - $\alpha$ -like: 0.046 us (12%) + 0.360 us (88%)
  - p-like: 0.046 us (9%) + 0.360 us (91%)








### The start position of Scintillation

• 
$$n_{PE} = n_{PE}^{h} \cdot a + n_{init}$$
  
•  $n_{init} = n_{PE}[1 - a(1 - f_{em})]$ 

- Gun position (0,0,-1.001m)
- Gun direction (0,0,1)
- For the resolution vs size
  - 1. Take a size cut:  $z \le z_0$
  - 2. Extract correlation a by  $f_{EM}^{z \le z_0}$  and  $n_{ph}^{z \le z_0} + n_{ph}^{z > z_0}$  (set with an uncertainty from resolution)
  - 3. Extract energy resolution from multiple samples
- Time consuming part: time fit with different  $z_0$



|                           | High granularity Si/W ECAL and scintillator based HCAL | Fiber-based<br>dual-readout<br>calorimeter | Hybrid crystal<br>and dual-readout<br>calorimeter |
|---------------------------|--------------------------------------------------------|--------------------------------------------|---------------------------------------------------|
| N. of longitudinal layers | > 40                                                   | 1                                          | 3-5                                               |
| ECAL cell cross-section   | $25-100  \text{mm}^2$                                  | 2–144 mm <sup>2</sup>                      | 100 mm <sup>2</sup>                               |
| HCAL cell cross-section   | $100-900  \text{mm}^2$                                 | 2-144 11111                                | 400–2500 mm <sup>2</sup>                          |
| EM energy resolution      | $15 - 25\%/\sqrt{E}$                                   | $10 - 15\%/\sqrt{E}$                       |                                                   |
| HAD energy resolution     | $45 - 55\%/\sqrt{E}$                                   | $25-30\%/\sqrt{E}$                         | $\approx 25 - 30\%/\sqrt{E}$                      |
|                           |                                                        |                                            |                                                   |

Baseline resolution of IDEA



## Doing and to-do

- Scaning the energy resolution vs  $z_0$  with samples (pi+, 1-20 GeV)
  - Scanning step on  $z_0$  is set to be 0.02 m from -0.8 m to 0m (z size: [0.2, 1] m)
  - Fitting (to get  $f_{EM}$ ) is ongoing, expected to be finished in ~1 week.
  - Code for extracting energy resolution is ready (~0.5 day)
- Will check the resolution vs  $x_0$ ,  $y_0$ 
  - $\pm x_0(y_0)$  in [0.1, 0.6], with step 0.05 m