

ID de Contribution: 69

Type: Non spécifié

Neural Simulation Based Inference for Constraining Higgs self-coupling with HH->bbyy at ATLAS experiment

lundi 1 décembre 2025 09:55 (25 minutes)

The ATLAS experiment has published measurement of Higgs trilinear self-coupling with LHC Run 2 + partial Run 3 data, reaching a range of $-1.7 < \kappa_\lambda < 6.6$; but the core algorithm for statistical inference is a $m_{\gamma\gamma}$ histogram-based fit, which is not optimal given the κ_λ is non-linear to the signal strength. Motivated by the drawback of histogram analysis, we present an improved algorithm – Neural Simulation Based Inference (NSBI) to study the constraint on κ_λ . The NSBI method depends on multi-dimensional, minimal-biased estimation of the likelihood ratio for signal and background components, by training a set of classification neural networks. This works can serve as input to an analysis with full Run 2 + Run 3 LHC data.

Co-auteurs: ROUSSEAU, David; FAYARD, Louis

Orateurs: ROUSSEAU, David; FAYARD, Louis; LIU, Zirui (IJCLab)

Classification de Session: Standard Model