

JET CLASSIFICATION WITH PARTICLE TRANSFORMERS: A MULTICLASS LEARNING APPROACH

Andrés Duque Bran, Julien Donini, Samuel Calvet
LPCA, Clermont-Ferrand, France
December 1st, 2025

THE LHC AND THE ATLAS EXPERIMENT

- LHC is the largest particle accelerator and collides protons at 13.6 TeV.
- ATLAS is one of the 4 experiments at the LHC. It records particles from collisions to study fundamental physics and search for new phenomena.

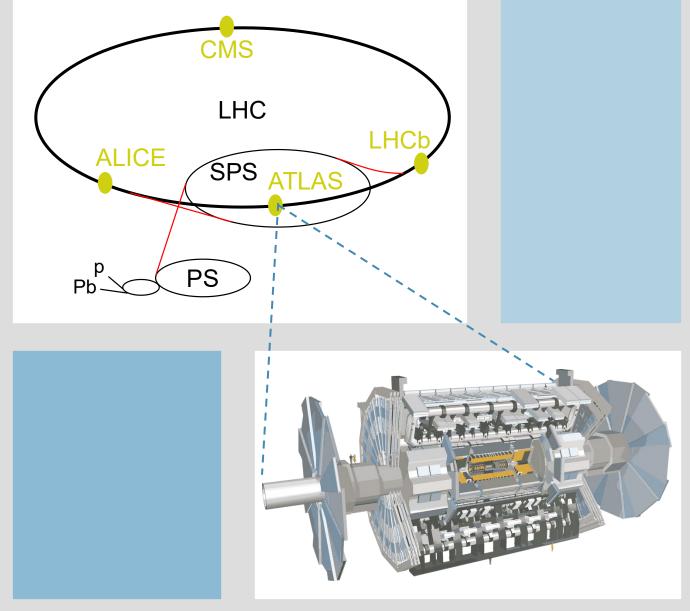
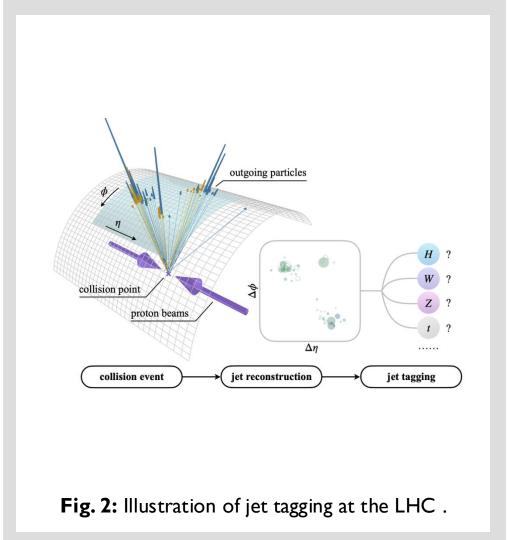


Fig. 1: Schematic view of the LHC complex and cut-away view of the ATLAS detector.

WHAT IS A JET?

- Quarks and gluons hadronize into sprays of particles after pp collisions.
- Jets are reconstructed from energy deposits and tracks in the detector.
- Bosons (W, Z, Higgs) can decay into quarks and at high energy their product form a jet.
- **Jet Tagging:** Identifying the origin of the jet.



THE PART ARCHITECTURE

- Built on Transformer attention blocks.
- Takes per-particle and interaction features as inputs.
- Uses Particle Multi-Head Attention, where interaction features are embedded directly into the attention mechanism.
- Unlike NLP Transformers, jets are unordered sets.

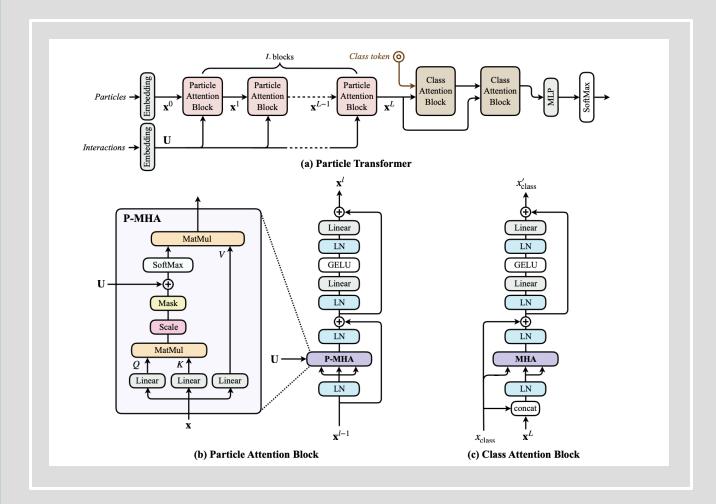


Fig. 3: The architecture of the **Part**icle **T**ransformer **(ParT)** [arXiv:2202.03772].

DATASET

• Simulated jets from proton-proton collisions at 13 TeV:

Events generated with **Pythia8** and ATLAS detector simulation.

- Large-R jets:
 - QCD
 - $W \rightarrow qq$
 - $Z \rightarrow qq$, bb, cc
 - top \rightarrow qqb
 - Higgs \rightarrow bb

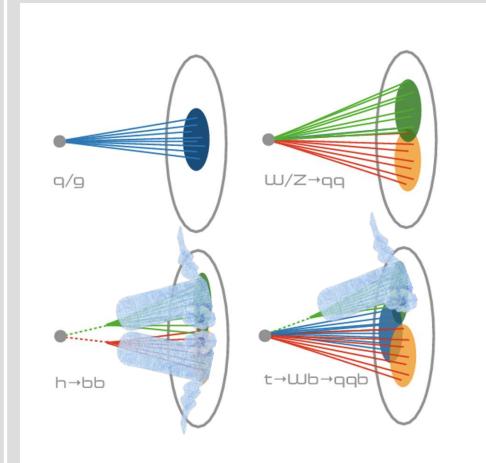


Fig. 4: Schematic representation of the types of jets present in the dataset.

MODEL SETUP

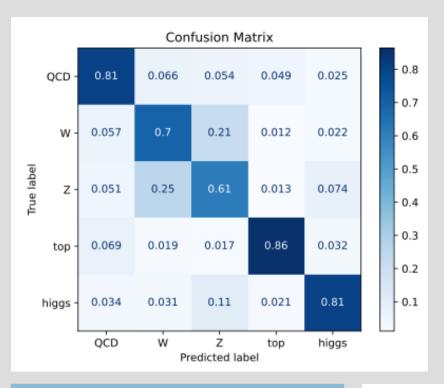
- Dataset:
 - 50M jets (90%/10% for train and validation)
 - 16M jets for prediction
- Features:
 - Per-particle: Kinematical and trajectory displacements
 - Pair-wise interaction: Angular differences.
- Max 80 constituents per jet.
- Events reweighted to flatten the p_T distribution per class

Class	Training+Validation	Prediction
QCD	15.5M	5.IM
W	8.6M	2.8M
Z	8.6M	2.8M
Тор	15.5M	5.IM
Higgs	1.7M	0.6M

Table 1: Distribution of number of samples per class for training and inference.

PART PERFORMANCE

- Top and Higgs jets are well distinguished by the model.
- Noticeable confusion between Z and W jets, and a smaller amount between Z and Higgs.



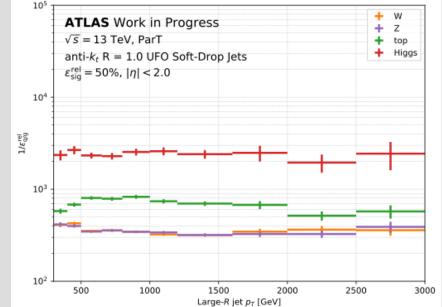


Fig. 5: Confusion matrix and QCD rejection vs p_T .

EFFECT OF IMPACT PARAMETERS

- Baseline features:
 - p_T , η , ϕ , E, ΔR .
- Additional features:
 - Track –Level: d_0 , $\overline{z_0}$.
- Addition of impact parameters significantly improves tagging performance for Higgs and top.

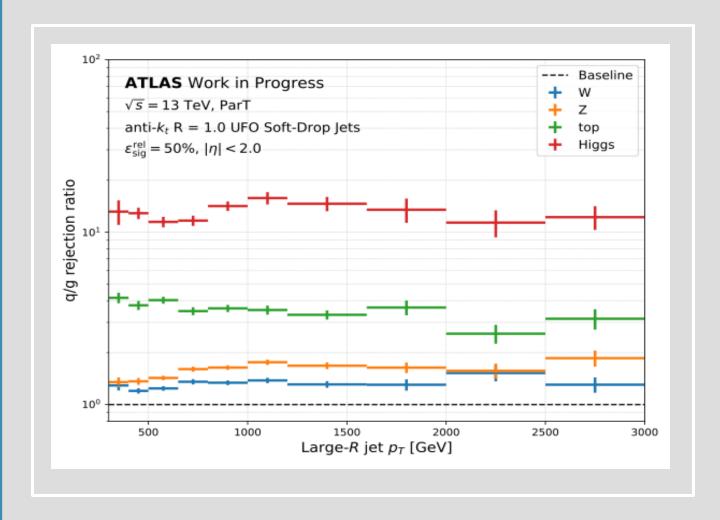


Fig. 6: QCD rejection ratio between baseline + additional and baseline features.

- ParT trained with IM, I0M, and 50M jets.
- Class proportions are kept for all samples.
- More statistics lead to lower losses and smoother convergence.

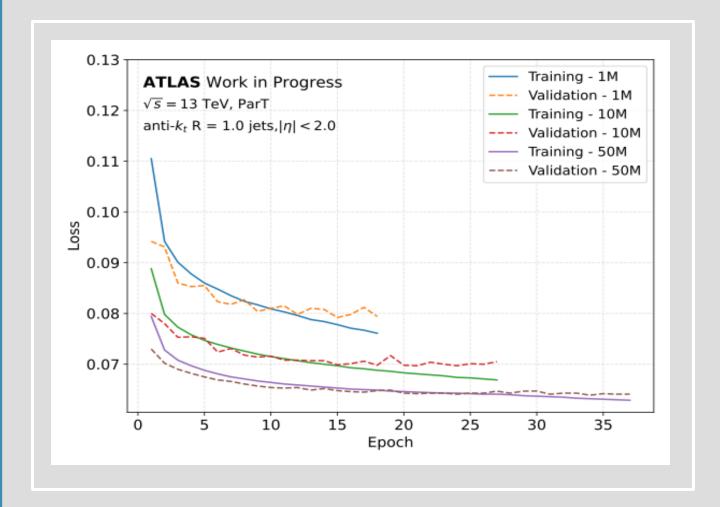
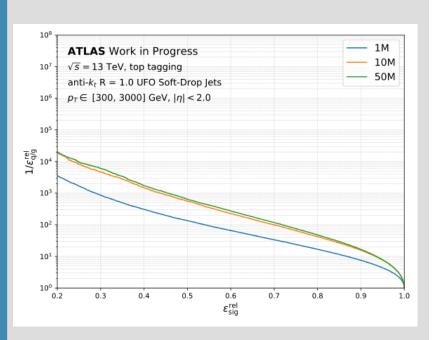


Fig. 7: Training and validation loss for ParT with different statistics.

More statistics lead to **better background rejection** for **top** and **Higgs.**



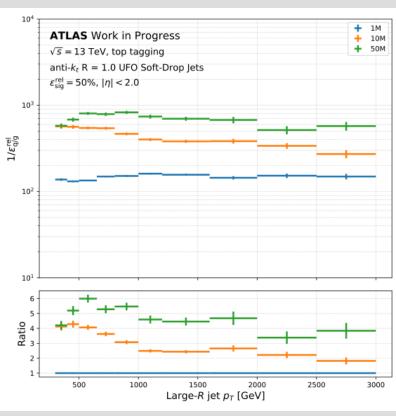
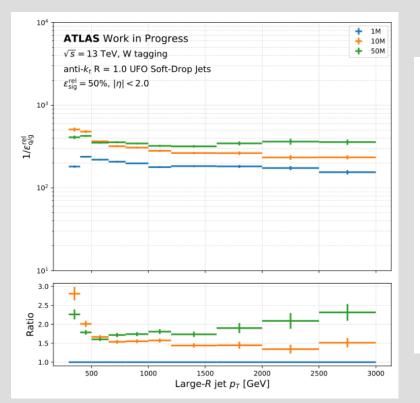


Fig. 8: QCD rejection vs signal efficiency and for all p_T spectra at 50% signal eff for top jets.

- Better rejection at **low signal efficiency** for 10M training.
- Performance stabilizes between 10M and 50M for $\bf W$ and $\bf Z$ jets at $\bf low$ $\bf p_T$.



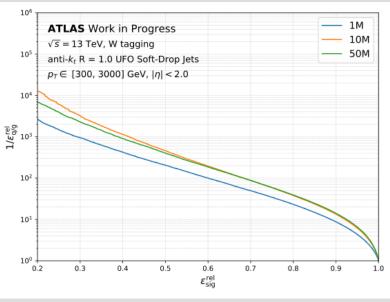


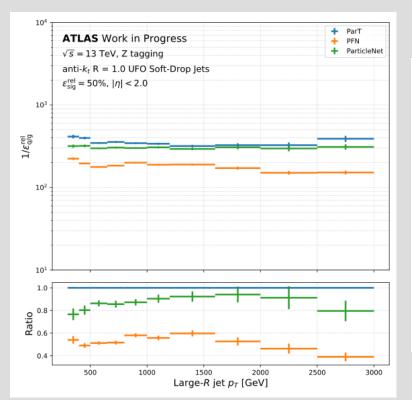
Fig. 9: QCD rejection vs signal efficiency and for all p_T spectra at 50% signal eff for **W jets**.

COMPARISON TO OTHER ARCHITECTURES

- Additional architectures evaluated:
 - **PFN:** Per-particle MLP followed by per-jet aggregation. Uses **only per-particle features**.
 - **ParticleNet:** GNN with dynamic k-NN, combining **pairwise interaction features** with per-particle inputs.
- Training stats are identical for all architectures.

COMPARISON TO OTHER ARCHITECTURES

- Same dataset and statistics for training.
- PFN: per-particle features
- ParT, ParticleNet: per-particle features + pairwise interaction information.
- Clear performance gain with pairwise interaction variables.



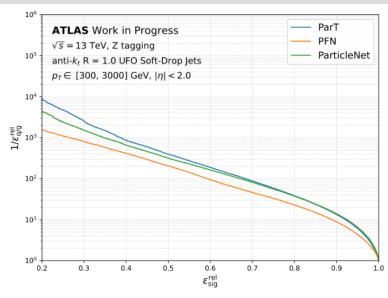


Fig. 10: QCD rejection vs signal efficiency and for all p_T spectra at 50% sig eff for **Z jets**.

COMPARISON VS OTHER MONTE CARLO GENERATORS

- The QCD background samples were replaced by different MC generators.
- Training statistics were kept identical across all generators for a fair comparison.

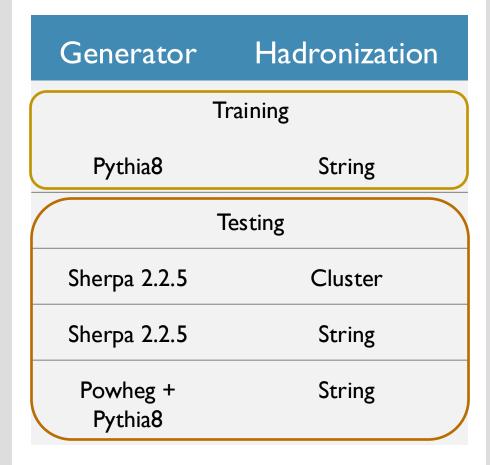
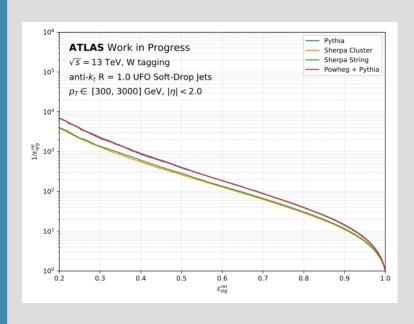


Table 2: Monte Carlo generators used for training and testing.

- Better rejection for samples including Pythia8.
- Comparable performance within 20% at higher p_T for all classes.



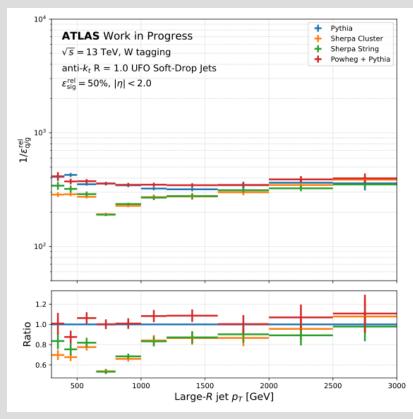
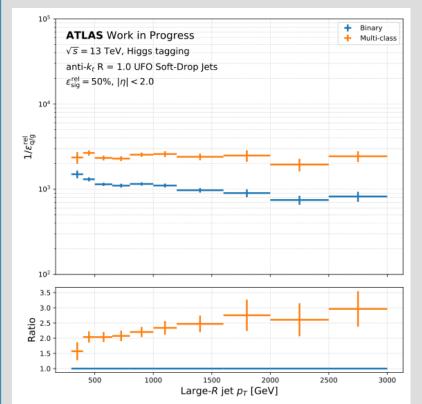


Fig. I I: QCD rejection vs signal efficiency and for all p_T spectra at 50% sig eff for **W jets**.

- A separate binary ParT model was trained for each signal:
 - QCD vs W, QCD vs Z, QCD vs top, QCD vs Higgs.
- Training and test statistics comparable.
- Multiclass slightly outperforms the binary model.



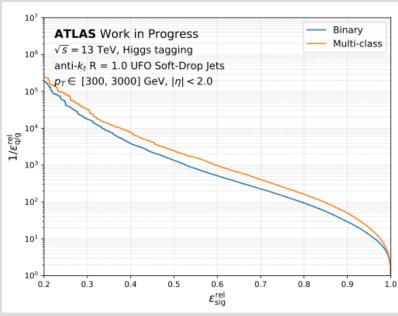


Fig. 12: QCD rejection vs signal efficiency and for all p_T spectra at 50% sig eff for Higgs jets.

CONCLUSION

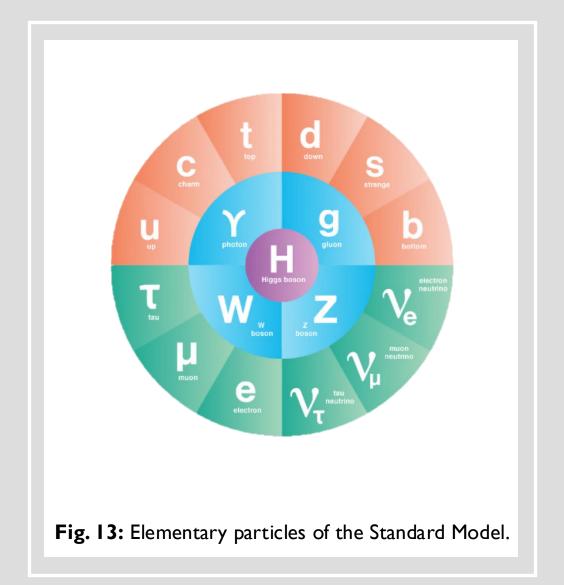
- ParT evaluated across inputs, stats, architectures, MC generators, and binary vs multiclass.
- Impact parameters \rightarrow clear gain, strongest for Higgs.
- More training stats \rightarrow better performance, especially for top and Higgs.
- ParT > PFN, and comparable to ParticleNet thanks to relational features.
- Stable across MC generators with Pythia8.
- Multiclass > binary → one unified model works best.

THANK YOU

BACKUP

THE STANDARD MODEL

- The Standard Model describes elementary particles and forces.
- Fundamental particles:
 - Quarks
 - Leptons
- Force carriers
 - Vector bosons
 - Scalar bosons



INPUT FEATURES

- Kinematical:
 - p_T , η , ϕ , E, ΔR .
- Impact parameters:
 - Track –Level: d_0 , z_0 .

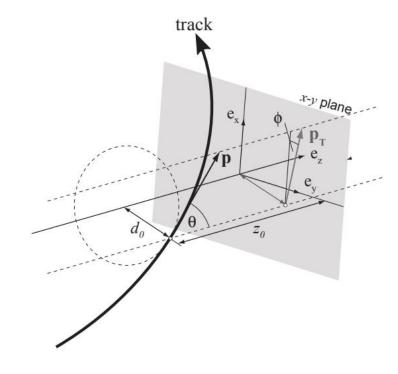


Fig. 14: Track coordinates Diagram. [ATL-PHYS-PUB-2017-014]

EFFECT OF IMPACT PARAMETERS

Baseline features:

 p_T , η , ϕ , E, ΔR .

New features:

Track –Level: d_0 , z_0 .

Charge of constituents not used for training.

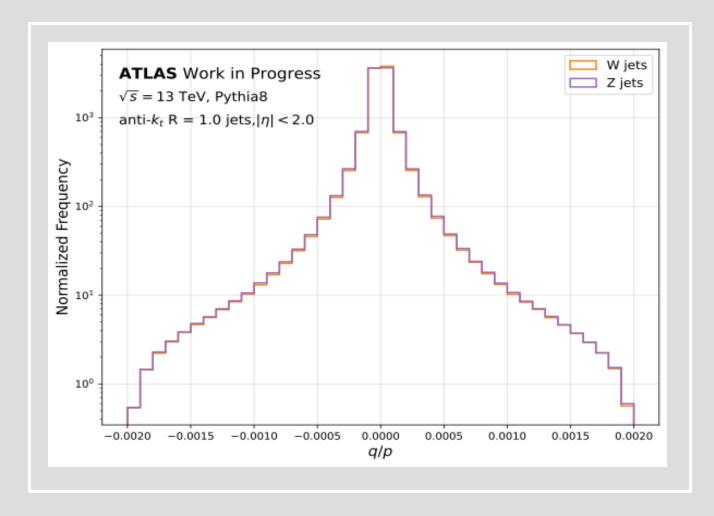


Fig. 15: Charge per constituent distribution from W and Z jets.

TRAINING DETAILS

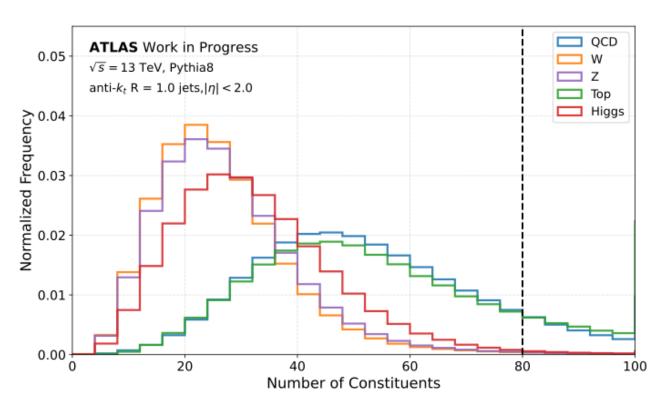


Fig. 16: Distribution of number of constituents per class.

p_T DISTRIBUTION REWEIGHTING

Jet p_T is reweighted before training to ensure that all classes share a similar p_T distribution, preventing the model from learning kinematic biases instead of physics features.

• This reweighting stabilizes training and improves generalization, ensuring that performance differences across classes are not driven by mismatched p_T spectra.

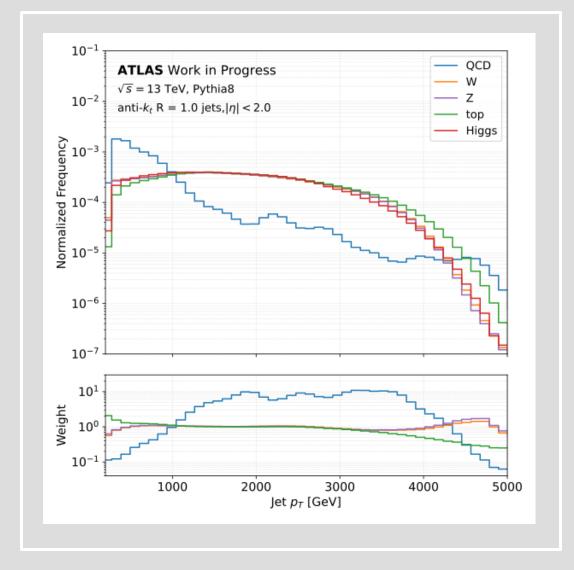


Fig. 17: p_T distribution per jet and weights applied during training.

THE PFN ARCHITECTURE

- **Permutation-invariant** architecture that processes jets as unordered sets of particles.
- Uses a per-particle embedding network followed by a sum to aggregate information.
- A final classifier network learns global jet features from the aggregated representation for tagging tasks.

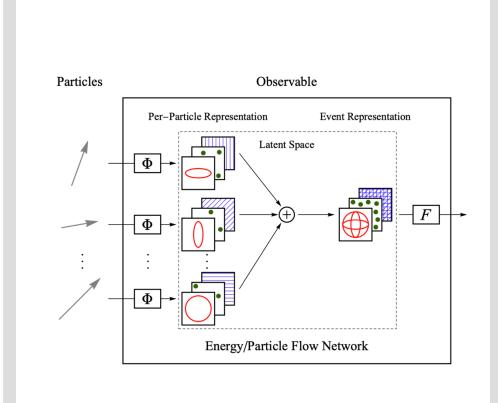
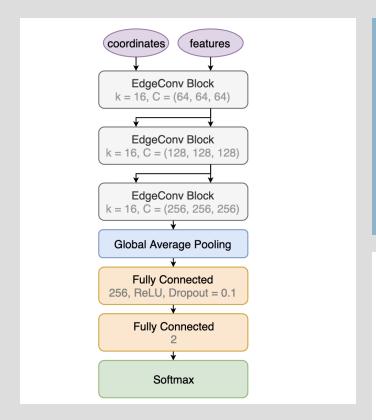


Fig. 18: The architecture of Particle Flow Network (PFN) [arXiv:1810.05165].

THE PARTICLENET ARCHITECTURE

- **Dynamic Graph CNN:** builds and updates a particle graph using nearestneighbor relations.
- EdgeConv blocks: learn geometric and relational features between constituents.
- **Hierarchical aggregation:** combines local and global information into a jet-level representation.



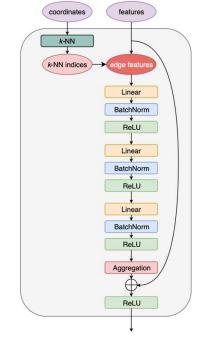
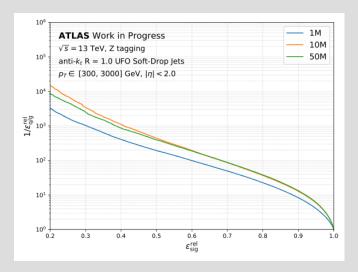


Fig. 19: The architecture of ParticleNet.

- Performance stabilizes between 10M and 50M for $\bf W$ and $\bf Z$ at $\bf low$ p_T .
- Better rejection at **low signal efficiency** for 10M training.



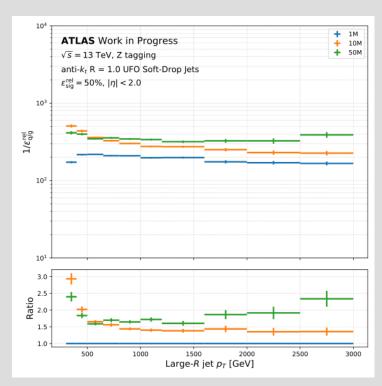
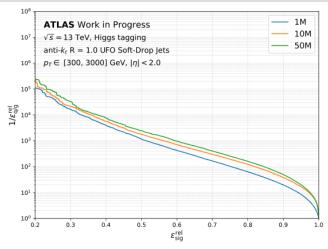
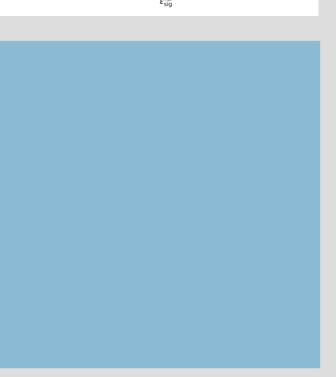


Fig. 20: QCD rejection vs signal efficiency and for all p_T spectra at 50% sig eff for **Z jets**.

More statistics lead to **better background rejection** for **top** and **Higgs.**





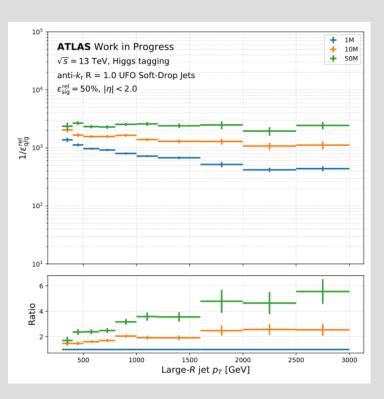
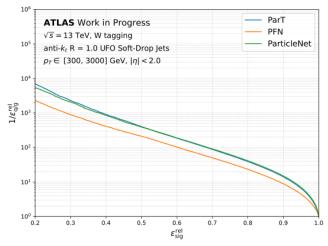
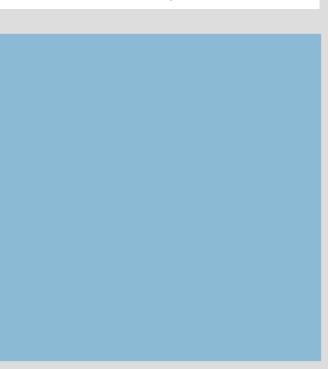


Fig. 21: QCD rejection vs signal efficiency and for all p_T spectra at 50% sig eff for **Higgs jets**.

COMPARISON TO OTHER ARCHITECTURES

- All models trained on the same dataset and statistics.
- PFN uses only per-particle features, while ParT and ParticleNet also use pairwise interaction information.
- Adding pairwise relations leads to a big performance gain: ParT and ParticleNet clearly outperform PFN.





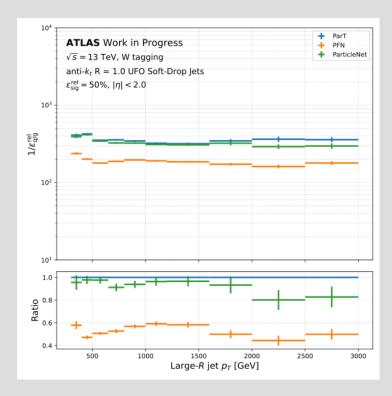
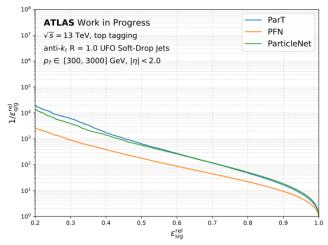


Fig. 22: QCD rejection vs signal efficiency and for all p_T spectra at 50% sig eff for **W jets**.

COMPARISON TO OTHER ARCHITECTURES

- All models trained on the same dataset and statistics.
- PFN uses only per-particle features, while ParT and ParticleNet also use pairwise interaction information.
- Adding pairwise relations leads to a big performance gain: ParT and ParticleNet clearly outperform PFN.



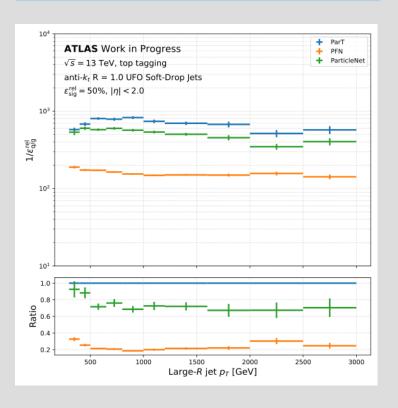
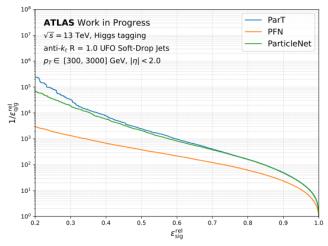
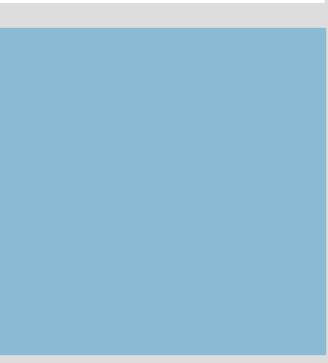


Fig. 23: QCD rejection vs signal efficiency and for all p_T spectra at 50% sig eff for **top jets**.

COMPARISON TO OTHER ARCHITECTURES

- All models trained on the same dataset and statistics.
- PFN uses only per-particle features, while ParT and ParticleNet also use pairwise interaction information.
- Adding pairwise relations leads to a big performance gain: ParT and ParticleNet clearly outperform PFN.





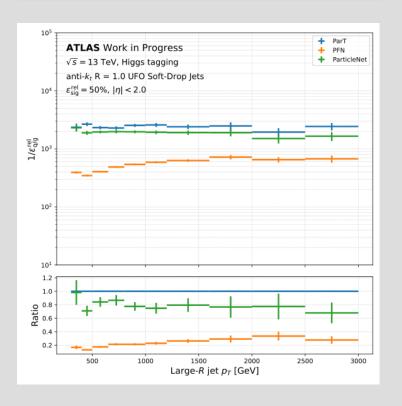
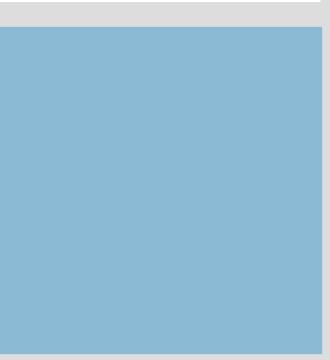


Fig. 24: QCD rejection vs signal efficiency and for all p_T spectra at 50% sig eff for **Higgs jets**.

- Better rejection for samples including Pythia8.
- Comparable performance at higher p_T .





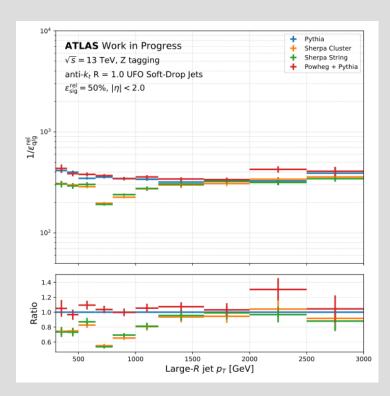
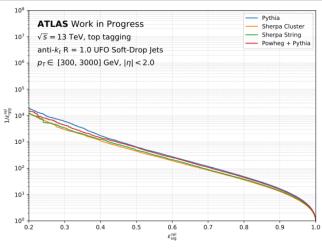
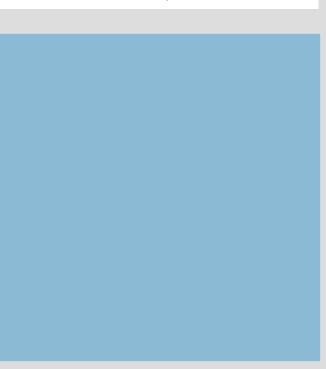


Fig. 25: QCD rejection vs signal efficiency and for all p_T spectra at 50% sig eff for **Z jets**.

- Better rejection for samples including Pythia8.
- Comparable performance at higher p_T .





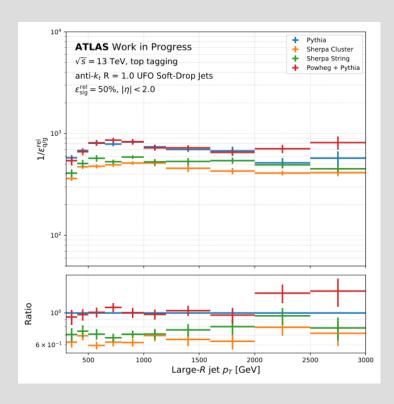
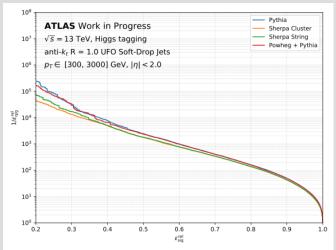
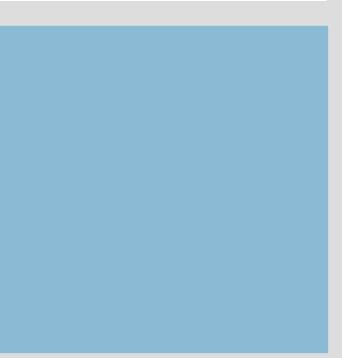


Fig. 26: QCD rejection vs signal efficiency and for all p_T spectra at 50% sig eff for **top jets**.

• Better rejection for samples including Pythia8.





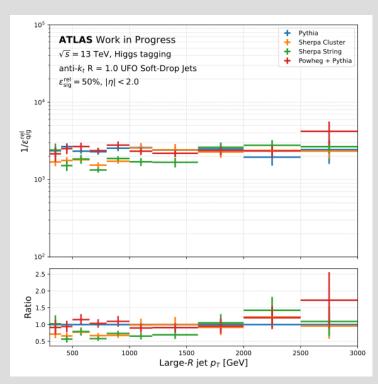
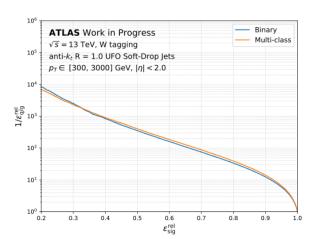
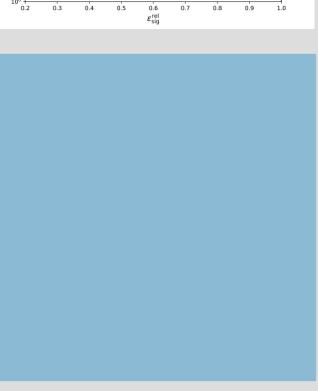


Fig. 27: QCD rejection vs signal efficiency and for all p_T spectra at 50% sig eff for **Higgs jets**.

- A separate binary ParT model was trained for each signal:
 - QCD vs W, QCD vs Z, QCD vs top, QCD vs Higgs.
- Training and test statistics were kept the same as in the multiclass setup → results are directly comparable.
- Background rejection curves show that binary and multiclass have similar performance.
- The multiclass model is consistently slightly better across all jet types.





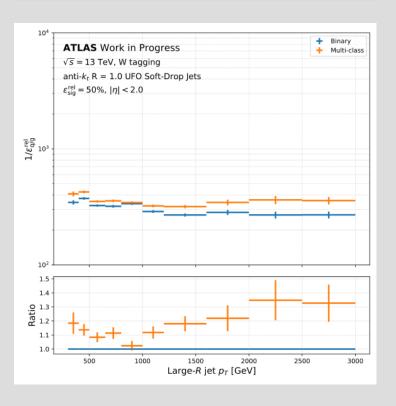
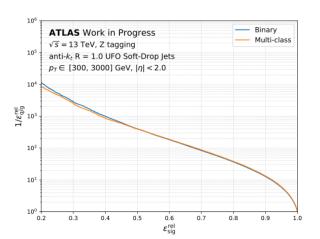
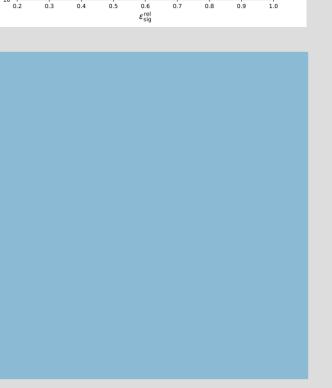


Fig. 28: QCD rejection vs signal efficiency and for all p_T spectra at 50% sig eff for **W jets**.

- A separate binary ParT model was trained for each signal:
 - QCD vs W, QCD vs Z, QCD vs top, QCD vs Higgs.
- Training and test statistics were kept the same as in the multiclass setup → results are directly comparable.
- Background rejection curves show that binary and multiclass have similar performance.
- The multiclass model is consistently slightly better across all jet types.





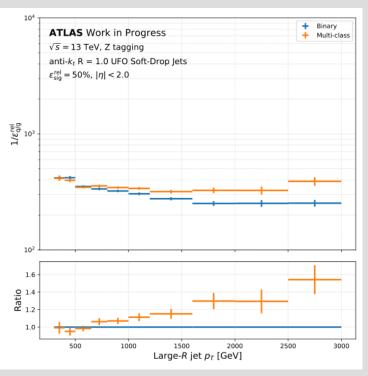
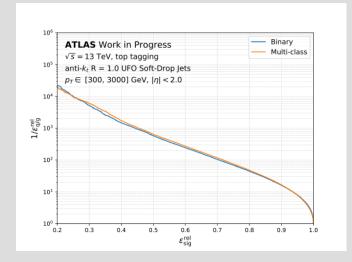


Fig. 29: QCD rejection vs signal efficiency and for all p_T spectra at 50% sig eff for **Z jets**.

- A separate binary ParT model was trained for each signal:
 - QCD vs W, QCD vs Z, QCD vs top, QCD vs Higgs.
- Training and test statistics were kept the same as in the multiclass setup → results are directly comparable.
- Background rejection curves show that binary and multiclass have similar performance.
- The multiclass model is consistently slightly better across all jet types.



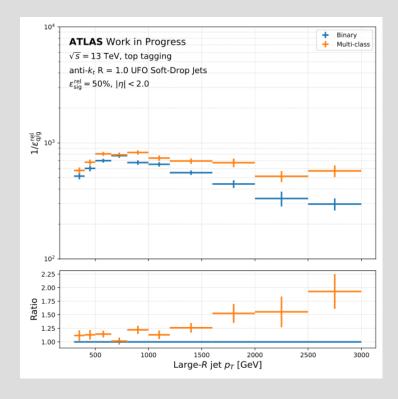


Fig. 30: QCD rejection vs signal efficiency and for all p_T spectra at 50% sig eff for **top jets**.