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   In this talk we shall discuss several examples of quantities that satisfy                           
p    positivity properties across different orders in perturbation theory

                                             


                                               


  

A ∼
∞

∑
L=0

gLA(L)
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Introduction



• Positivity of Integrated objects: Positivity properties of integrands have 
been investigated extensively, but at the level of integrated objects are far 
less studied.


• Uncover patterns in perturbative data: see if these hint at some deeper 
underlying structure.


• Input to Bootstraps: see if these properties can be used in numerical/
analytic bootstrap programs.
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Motivation



Completely monotone functions
• A  -function  , is called completely monotone (CM)  in a region 

  if it satisfies  


• In particular,                                             

                                                                             

                                     

     

                                                 .    


C∞ f(x)
R ⊂ ℝ

n = 0 ⟹ f(x) ≥ 0 ≡ positive,
n = 1 ⟹ f ′￼(x) ≤ 0 ≡ monotonically decreasing,
n = 2 ⟹ f ′￼′￼(x) ≥ 0 ≡ convex,

⋮

5Positivity properties of amplitudes  Prashanth Raman (MPP,Munich)

<latexit sha1_base64="JWS/Zr9LzEIZzCjoFlKGMMkLWto="></latexit>

(→ωx)
nf(x) ↑ 0 , for n ↑ 0 , ↓x ↔ R .



• Leads to typically boring graphs for the function and all its signed derivatives in 
the region 


                                                  


• Taylor coefficients around any point inside the region alternate in sign.


• Property does not depend on having a convergent Taylor series.

 

⋯
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f(x)

x

(−1)997 f (997)(x)

x



•  The property as defined crucially depends on the choice of variable  and 
the region. 


  Examples 


 is   CM  in 


    is  CM  in 

   


    (3)   are not CM on any (0,B).

(1)
1

x + α
R = (0,∞) .

(2) − log x R = (0,1) .

log x + A
x + 1

and
1

1 − x
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Properties of CM functions
If  are CM in R then for any   then                       
the following are also CM in R 


1. Convex Cone:                                  


2. Closed under products:                                                                                                         


3. Closed under signed derivatives:     

      

     Also closed under some compositions and limits.

f1(x) and f2(x) λi ≥ 0 i = 1,2

λ1 f1(x) + λ2 f2(x)

f1(x) f2(x)

(−∂x)n fi(x)
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f1(x)

f2(x)

Space of CM functions in R 



Multivariate version

• Definition generalizes readily to several variables.


• If   is Completely monotone (CM) on   if it satisfies  points in R                               


    


  Nontrivial examples are harder to construct but a simple yet important example  is


  is  CM  in    for   .

f(x1, ⋯, xn) R ⊂ ℝn ∀

(−∂x1
)m1⋯(−∂xn

)mn f(x1, ⋯, xn) ≥ 0 ∀mi = 0,1,2,⋯

1
(c1x1 + ⋯ + cnxn + d)α

R = ℝn
+ ci, d, α > 0
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(−1)LA(L)
Quantity 

 


angle dep. cusp 

anomalous 
dimension

−Γ(L)
cusp(x) x ∈ (0,1)

L=3 in QCD


L=4 in QED and SYM  

4 point coloumb 

branch amplitudes M(L)(u, v)

Scalar Feynman 

Integrals

MHV 6-particle BDS 

like reminder function ℰ(L)(u, v, w)

u, v > 0
u, v, w > 0
u + v + w < 1

(1 − u − v − w)2 − 4uvw ≥ 0

L=3

L=4

arbitrary  L−sT,R , m2
i ≥ 0I({sT,R, m2

i })

Region Loop order

⋮



Outline
•What?

•Why/How ?

- Elementary arguments from suitable representations.


- From causality and analyticity.


- From positive geometry.


•Applications

- S-matrix bootstrap. 


- Positive geometry.


-Numerical Bootstrap of Feynman integrals 


Positivity properties of amplitudes  Prashanth Raman (MPP, Munich)



Elementary arguments from suitable representation 
• The expectation value of a Wilson loop with a cusp is UV divergent                                               

.                                      


                                                              


•  is also related to:


 - IR divergences in scattering of massive W-bosons in coulomb branch of  N=4 SYM.

 

- anomalous dimension in correlators with high spin composite operators.

 

- quark-anti quark potential on the sphere etc.


⟨Wc⟩ ∼
1
ϵ

Γcusp(ϕ)

Γcusp
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[Polyakov 80’].

ϕ

x = eiϕ



  


  - Some proofs are by using elementary arguments, for example
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  Claim:    and   is a CM for  Γcusp(x) = ∑
L≥1

ΓL
cusp(x)g2L (−1)L+1Γ(L)

cusp(x) x ∈ (0,1) .

QCD, L=1

QCD, L=2

QCD, L=3

QED, L=4

0.15 0.2 0.25 0.30.5

0.6

0.7

0.8

0.9

1

0.2 0.4 0.6 0.8 1.0 x

0.5

1.0

1.5

2.0

Γcusp
(L) (x)

Γcusp
∞ (L)

Complete monotonicity of angle dependent cusp anomalous dimension

   Γ(1)
cusp(x) =

1 − x
1 + x

(−log x)

Checked up to L=3 in QCD and


L=4 in N=4 SYM and in QED.



Hausdorff theorem and Stieltjes functions

• [Hausdorff-Bernstien-Widder Thm] A function  is completely 
monotone for  if and only if it can representable as 





• A nice subclass of CM functions are when  is itself CM called Stieltjes 
functions 


                      




     A complex property unlike CM which is a real property.

f(x1, ⋯, xn)
R = ℝn

+

f(x1, ⋯, xn) = ∫ℝn
+

dy e−x1y1−⋯−xnyn μ(y1, ⋯, yn)

≥0

μ(y)

f(x1, ⋯, xn) = ∫ℝn
+

dz
1

(x1 + z1)(x2 + z2) . . . (xn + zn)
ν(z1, ⋯, zn)

≥0



• CM property is closely related to dispersion, Källen-Lehmann/spectral  and 
Mandelstram representations.


• Consider, a function that satisfies an unsubtracted dispersion relation


                                              


                                                    .       (For )


•  is

            - Stieltjes if  ,  Stronger (can follow from Unitarity/Optical theorem)


          - CM for , if  .   Weaker  

A(s) = ∫
∞

4m2

ds′￼

1
s′￼− s

Disc A(s′￼)

A(x) = ∫
∞

0
dt e−tx ∫

∞

4m2

ds′￼ e−ts′￼ Disc A(s′￼)

μ(t)

x = − s

A(x)
Disc A(s′￼) ≥ 0

x > 0 μ(t) ≥ 0
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From Analyticity/ Causality 



Coulomb branch amplitudes in N=4 SYM.
• The 4-pt Coloumb branch amplitudes admits a particularly simple looking 

Mandelstram representation [Caron-Huot, Henn 13’]                                                         


   with a double spectral function .


•  is                                                            

-  Stieltjes for       (L=1)


- CM for ,  if   (L=2)  

 - Remarkably the CM property also seems to hold at finite coupling.                                         
.                                                                             [Alday, Armanini,Häring, Zhiboedov; 25] 

ρ(ξ, η)
M(u, v)

ρ(ξ, η) ≥ 0

u, v > 0 ∫Δ
dξdη ρ(ξ, η) e−ξp−ηq ≥ 0 ∀ p, q ≥ 0
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M(u, v) = ∫Δ
dξdη

ρ(ξ, η)
(ξ + u)(η + v) ξ + η = 1

η

ξ
Δ ≡

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

[Mahoux, Martin 64’


Correia, Sever, Zhiboedov 20’]

https://inspirehep.net/authors/2750927


 From Positive geometries (oversimplified)

• The positive geometry program associates a putative positive geometry to 
certain theories and directly computes scattering amplitudes from the 
geometry. [Arkani-Hamed, Trnka 12’, Arkani-Hamed, Bai,He,Yam 17’,…]


• Many radical features:

- Locality and unitary are emergent.

- Amplitudes (for tree level) and loop Integrands (for loop level) are associated 
with differential forms.

• Examples:        

   All loop, all multiplicity         ——  Planar N = 4 SYM,   theory,  ABJM.                                              
.  up to 1-loop, All multiplicity  ——   Scalar theories with colour  

                                               

Tr(Φ3)
Φp
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• For tree level amplitudes have an interpretation as a volume of the dual 
polytope.   [Hodges 13’,…]   


• For loop level integrands this is a conjecture and the “dual amplituhedron” is 
yet to be found. [Arkani-Hamed, Hodges, Trnka  14’]


• Integrands are dual volumes  positivity inside the geometry. 


• Positivity of integrand  Integrated results ?

    Non-trivial but empirical evidence exists. [Dixon, Hippel, Mcleod, Trnka 17’]           

⟹

→
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Integrands as volumes and Positivity 



CM in projective space
   Let, V be a finite dimensional vector space 


      A cone is defined a subset that satisfies  .


       A dual cone  where  .


    


   A function real valued function   is CM on C if for all points in C and  


                                                  


       where  is the directional derivative. 

∙

C = {λx ∈ C | ∀ λ > 0, x ∈ C}

C* = {y ∈ V* |⟨y, x⟩ ≥ 0 ∀ x ∈ C} ⟨y, x⟩ = ∑
i

xi yi

∙ f : C → ℝ

(−1)kDv1
Dv2

⋯Dvk
f(x) ≥ 0 ∀ v1, ⋯vk ∈ C

Dv = v . ∇
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Choquet’s theorem
• Let, f be a real valued function then f is CM on an open cone C, then  is CM iff 

                         with  supported on the dual cone. 


• When  which is a Laplace transform.


• If =1 then the integral just computes the volume  of .


- Happens whenever the positive geometry is a polytope [Arkani-Hamed,Bai,Lam 17’] 


  Integrands are CM (not just positive) and admit representations as dual volumes.               
.                                                                                                                 [Henn, PR;24’]


• Thus, every CM function in projective space is naturally a (generalised) dual volume. 

f(x)

f(x) = ∫C*
e−⟨y,x⟩μ(y) μ(y) ≥ 0

C = ℝn
+ then C* = ℝn

+

μ(y) C*
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6-particle BDS-like MHV Reminder function

 -6-particle MHV normalised IR finite amplitude in N=4 SYM,   


 - Bootstrapped to high loop orders [ Lance’s talk today]


  -Evidence for positivity up to L = 4 inside tree amplituhedron  [Arkani-Hamed, Hodges, Trnka  14’,Dixon, Hippel, Mcleod, Trnka; 17’] 

                                             

                                                   


    Claim:  is CM for kinematics inside .

                                                                                   [Henn, PR; 24’] 

ℰ(u, v, w) = ∑
L≥1

( gYM

16π2 )
L

ℰ(L)(u, v, w)

PMHV : {u, v, w > 0, u + v + w < 1,
(u + v + w − 1)2 < 4uvw }

(−1)L ℰ(L)(u, v, w) PMHV

21Positivity properties of amplitudes  Prashanth Raman (MPP,Munich)

L=4

L=3

L=2

L=1

AdS

0.05 0.1 0.15 0.2 u0

5

10

15

ℰ(L) (u, u, u)
ℰ(L)  14 ,

1
4 ,

1
4 

- Proof up to L = 2.


- Numerical checks for L= 3, 4.


- Strong coupling result from AdS/CFT for  slice  is  CM.

[Alday,Giotto,Maldacena ; 09’, Basso, Sever, Vieira; 14’, Basso,Dixon, Papathansiou; 20]

u = v = w



Scalar Feynman Intgerals 

• Let us consider the Feynman parametrization for a scalar Feynman graph G with L-loops 
in D-dimensions, in the Feynman parametrization


- Key point: U does not depend on external kinematics and only F depends on 
 but dependence is linear !
{−sT,R, m2

i }
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<latexit sha1_base64="Z9wIVq/Y4lrBw91NArxWoU9sk84="></latexit>

I(x) =
!(

∑
i ωi → LD/2)∏

i !(ωi)

∫

ωi→0

∏
i dεiε

εi↑1
i

GL(1)

U(ε)
∑

i εi↑(L+1)D/2

F (ε, x)
∑

i εi↑LD/2

where, U and F are the Symanzik graph polynomials and .x = {−sT,R, m2
i }



- The region   is called the Euclidean region.


-  Finite Scalar Feynman integrals (without numerators)   satisfy


  CM for .  [Henn, PR; 24]

 


   Stieltjes for .   [To appear Ditsch,Henn, PR]


- Both statements can be proved by arguing the same for the integrand and 
using the convexity properties of the space of CM, Stiletjes functions. 

𝔼 = {x |F(α, x) > 0 ∀ α > 0}

I(x)

∙ x ∈ 𝔼

∙ 0 < ∑
i

νi −
LD
2

≤ 1
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Applications 

24



Martin inequalities for pion amplitudes
                                                                                    
• Consider, a 2-2 amplitude of identical massive scalars

<latexit sha1_base64="ICBiixvmy+/z7yxUaY6C8W7bQy0="></latexit>

M(s, t) = c(t) +
1

ω

∫ →

4m2

(
s2

s↑2(s↑ → s)
+

u2

s↑2(s↑ → u)

)
A(s↑, t)

- Result 1:  


-  Result  2:  Rigorous inequalities for partial waves.


- Result 3: -100< M(4/3,4/3,4/3)< 16.

M(s, t, u) > M(4m2/3,4m2/3,4m2/3)

<latexit sha1_base64="psCQeyESxr9zJL9OvVYwRWBYkas="></latexit>

dn

dsn
M(s, t) > 0 for fixed t and 2m2 → t/2 ↑ s ↑ 4m2

dispersion + unitarity  implies the following 

+2 more relations due to crossing 

[Martin 64’, Martin and Cheung 67’]



Numerically Bootstrapping Feynman Integrals  

- Feynman Integrals satisfy first order linear differential equations
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        - Using IBPs  one can usually choose a CM basis 

- Higher derivatives can be obtained recursively using the DE 

[To appear with Sara Ditsch and Johannes Henn]



Preparing the CM Bootstrap  
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- With the ’s being defined as 


                                  


                                 


- The CM condition now is given by 


                                Linear constraints on 


       Linear Program: Maximize/Minimize  subject to          


                                           for  .


 


Qn

Q0 = 𝕀, Q1 = − A

Qn = − ∂xQn−1 + Qn−1 . Q1

Qn(x) . f(x) ≥ 0 ∀ n ≥ 0 → f(x)

fi(x)
fi0(x)

x=x0

Qn(x) . f(x) ≥ 0 0 ≤ n ≤ n0

 can be usually be       

chosen to be some  

single scale ints /tadpoles

fi0



Simple Example: The Massive Bubble Integral in D=2 
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1. Obtain DE:


2. Compute Derivatives  
recursively 


3. Linear Program: 
fix first Integral

-4 -2 2 4
x

-1

1

2

3

f1(x)

f2(x)

Lower bound n=5
Upper bound n=5

Exact

1 2 3

x=-2 x=0

-Region 2 has very strong constraints with rapid convergence.



Padé approximations
- The Padé approximation (PA) is simple and useful alternative to polynomial 
approximation of analytic functions. 


• Suppose, we are given a Taylor expansion of a function convergent in ,       




- Find a rational function  with numerator degree N and denominator degree M 
that agrees with the truncated Taylor expansion   i.e.,       

, 


- Very useful for applications, but still not understood why they work for generic functions.

                                                            

|z | ≤ R

f(z) = a0 + a1(z − x0) + a2(z − x0)2 + ⋯an(z − x0)K

PN
M(z; x0)

N + M ≤ K
PN

M(z; x0) ≡
PN(z)
QM(z)

= f(z) + O (xN+M+1)
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Stieltjes functions and Padé approximations
- The Padé approximants of Stieltjes functions:

- Convergence on the real axis:  


- Convergence in the cut plane: The Padé approximants  and  both converge in 
the cut plane to the function 


- Error bounds:   For any  and   


                   


 where,  and c is a constant.


                                                     

PN−1
N (x; x0) ≤ f(x) ≤ PN

N (x; x0), x ≥ x0 .
PN−1

N (x; x0) PN
N (x; x0)

f(z) .

z ∈ 𝒟+ ∀ J ≥ − 1,M ≥ 1 ,

| f(z) − PM+J
M (z; x0) | < c

(z − x0)
ρ

J+1
ρ + z − x0 − ρ

ρ + z − x0 + ρ

2M
,

ρ = R + x0 − Δ
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Re z

Im z

!
→
↑R

Rmax

D+(!)

𝒟+



Stieltjes bootstrap 
                                                                                                         .            


     Idea: Combine results from CM bootstrap with Padé, (guaranteed to   
w                                                                   work well for Stieltjes functions)

-Step 1: Select a starting point: In the subset of the Euclidean region where CM bootstrap works very well.


 -Step 2: Compute the basis integrals at the starting point: Using the CM bootstrap.


 -Step 3: Compute the Taylor expansion: To a given order with the required precision.


 -Step 4: Construct the Padé approximants and store them. 

 -Step 5: Evaluate the Padé approximants. 

- As a proof of principle we can apply it Sunset/Banana integrals, which are Stieltjes in D=2.                                                     
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One-loop massive bubble example 2.0
-Comparison between Padé approximants    and 
the actual function for real and complex points.                                  

P9
10(z; − 0.1), P10

10(z; − 0.1)
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Example without using DE 
- The interplay between Padé and Stieltjes functions does not depend on the knowledge 
of a DE, provided we can obtain the Taylor coefficients using another method.

- We can do this for L-loop banana type integrals using representation as a Bessel 
integral valid in the Euclidean region I.e., for   and computing the Bessel 
moments numerically. [Groote,Korner, Pivovarov 05’; Vanhove 14’]


    


x ≥ − (L + 1)2
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Numerical bootstrap of Feynman Integrals using Positivity 
• Scalar Feynman integrals  satisfy two surprising positivity properties in 


A. Complete monotonicity:  In the Euclidean region                  .                                                                    
.                                                                                                       


B. Stieltjes property: If    then,                                      


                                                                                                                                                                  


•  Using A + Diff Eqn.  Fix value of the FI in the Euclidean region.                                         .            
.                 Using B     Fix value of the  FI in Euclidean + physical regions.                        


•  Example: 20-loop equal mass Banana/sunset integrals 


                                                

                        

I(x) x ∈ {−SI, m2
i }

(−∂x)n I(x) ≥ 0 ∀ n ≥ 0

0 < ∑  prop powers − (num of loops) D
2 ≤ 1

I(x) = ∫
1/R

0
dt

1
1 + t x

μ(t)⏟
≥0

⟹
⟹

Prashanth Raman (MPP, Munich)          

# of digits 

to which we        

get agreement 

z Upper bound Lower bound  Actual value

103

104

105 1.52272 × 1013 1.52272 × 1013 1.52272 × 1013
1.53489 × 10131.53489 × 1013 1.53489 × 1013

1.53585 × 1013 1.53585 × 1013 1.53585 × 1013

# of digits  
 agreement 
Between  
the Padé  



Conclusion and Outlook

• We looked a novel kind of positivity properties on a function and all it derivatives 
called complete monotonicity and Stieltjes property which several physical 
quantities and building blocks (like generic scalar Feynman integrals) satisfy in the 
``Euclidean region”.


• We discussed why these functions are natural from the perspective of volumes and 
in the positive geometry program and also saw it can be used for efficiently for 
numerical bootstrap.


• These properties also holds seems to hold in the coupling for some exact 
observables (admit Fredholm determinants) [Talk to Maximilian Haensch]
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