

Positivity properties of scattering amplitudes

Prashanth Raman (Max Planck Institute, Munich)

Obsevables in Gauge theory and Gravity, IPhT Saclay

December 12 2025

Based on **[hep-th 2407.05755]** with **Johannes Henn**,

+

[hep-th 2509.02239] with **Elia Mazzucchelli**

and

work in progress with Sara Ditsch and Johannes Henn

universe+ is a cooperation of

Funded by
the European Union

European Research Council
Established by the European Commission

Funded by the European Union (ERC, UNIVERSE PLUS, 101118787). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Council Executive Agency. Neither the European Union nor the granting authority can be held responsible for them.

Introduction

In this talk we shall discuss several examples of quantities that satisfy positivity properties across different orders in perturbation theory

$$A \sim \sum_{L=0}^{\infty} g^L A^{(L)}$$

Motivation

- **Positivity of Integrated objects:** Positivity properties of integrands have been investigated extensively, but at the level of integrated objects are far less studied.
- **Uncover patterns in perturbative data:** see if these hint at some deeper underlying structure.
- **Input to Bootstraps:** see if these properties can be used in numerical/analytic bootstrap programs.

Completely monotone functions

- A C^∞ -function $f(x)$, is called completely monotone (CM) in a region $R \subset \mathbb{R}$ if it satisfies

$$(-\partial_x)^n f(x) \geq 0, \quad \text{for } n \geq 0, \quad \forall x \in R.$$

- In particular,

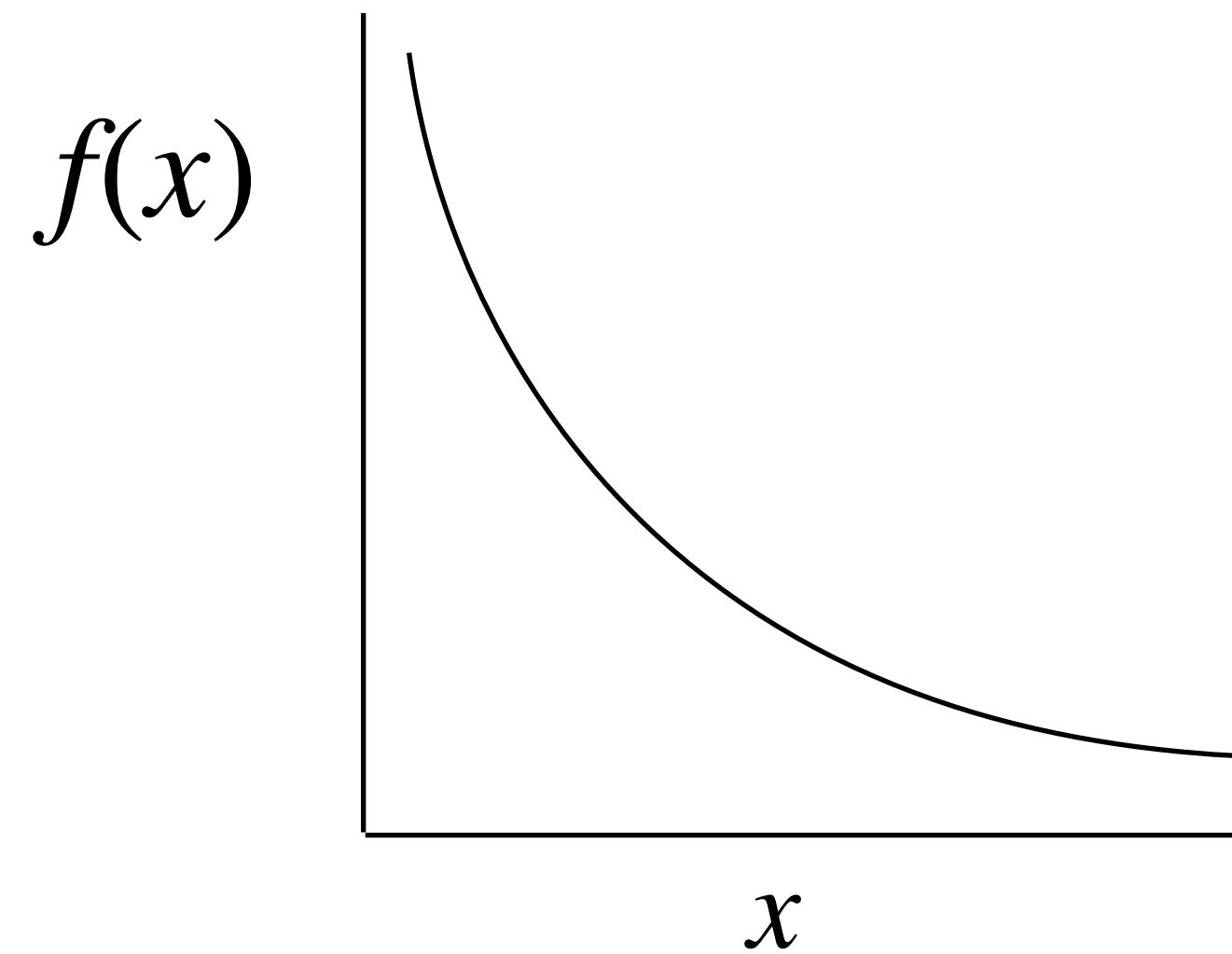
$$n = 0 \implies f(x) \geq 0 \equiv \text{positive,}$$

$$n = 1 \implies f'(x) \leq 0 \equiv \text{monotonically decreasing,}$$

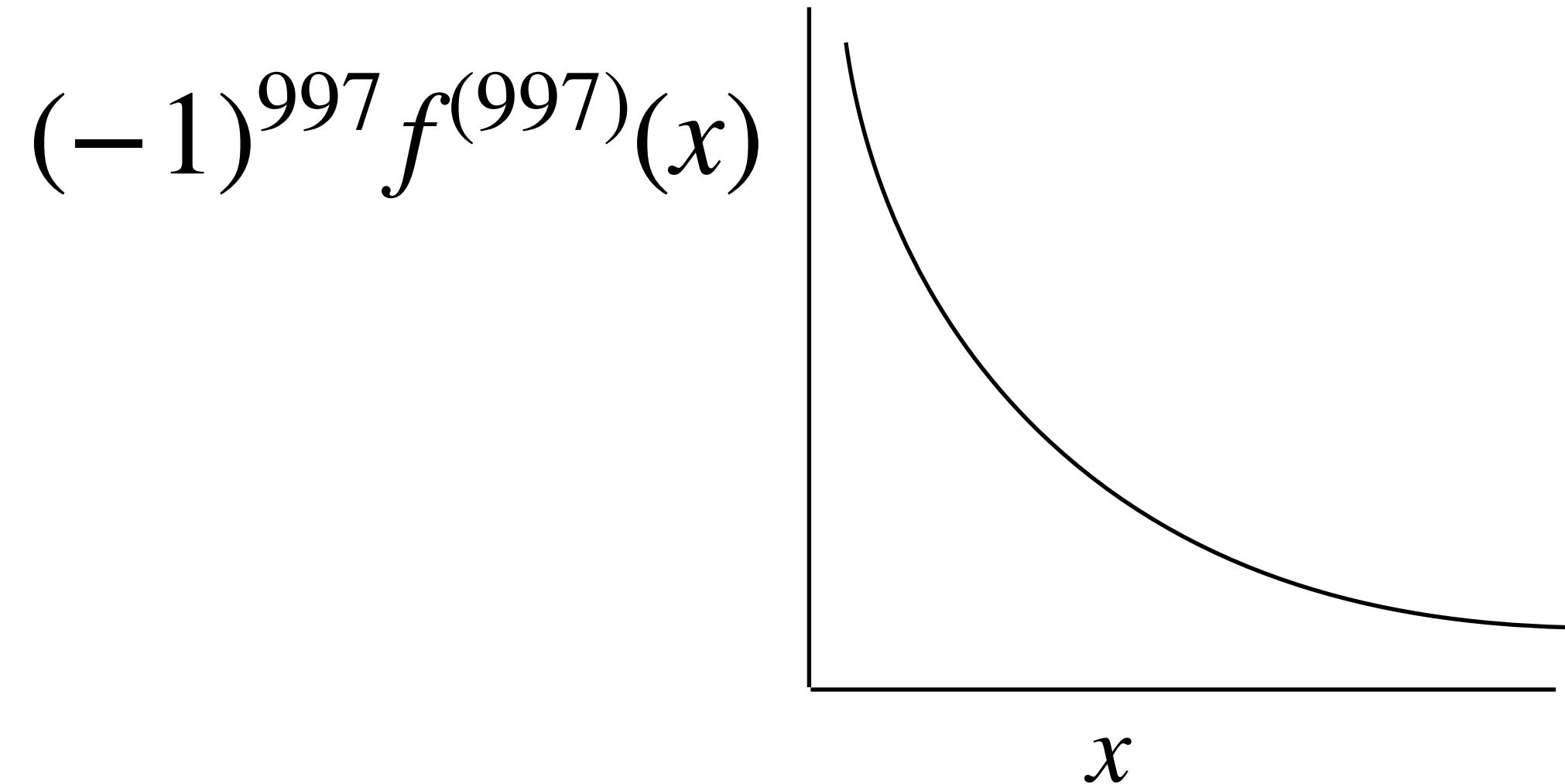
$$n = 2 \implies f''(x) \geq 0 \equiv \text{convex,}$$

⋮

- Leads to typically boring graphs for the function and all its signed derivatives in the region



...



- Taylor coefficients around any point inside the region alternate in sign.
- Property does not depend on having a convergent Taylor series.

- The property as defined crucially depends on the **choice of variable and the region**.

Examples

(1) $\frac{1}{x + \alpha}$ is CM in $R = (0, \infty)$.

(2) $-\log x$ is CM in $R = (0, 1)$.

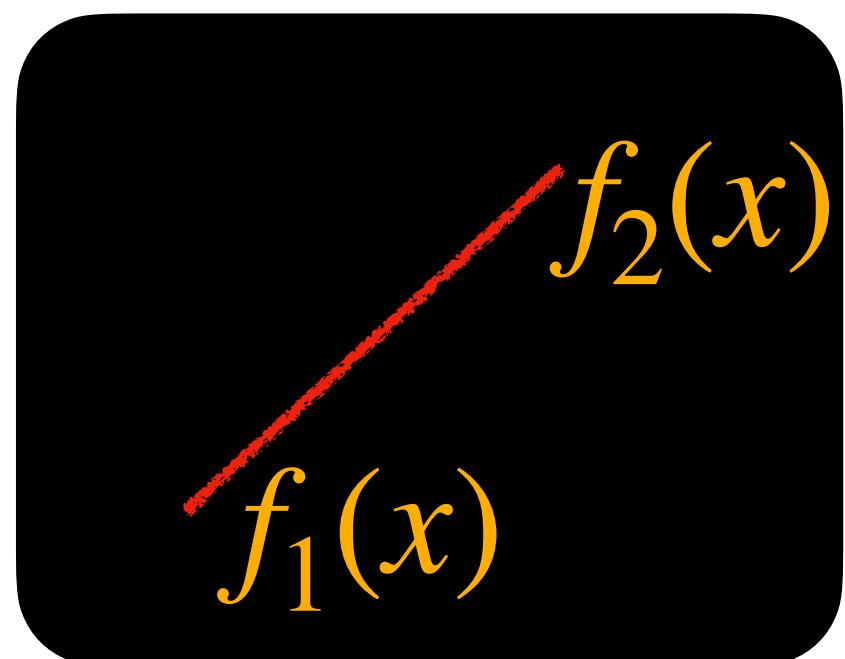
(3) $\frac{\log x + A}{x + 1}$ and $\frac{1}{1 - x}$ are not CM on any $(0, B)$.



Properties of CM functions

If $f_1(x)$ and $f_2(x)$ are CM in \mathbb{R} then for any $\lambda_i \geq 0$ $i = 1, 2$ then the following are also CM in \mathbb{R}

- 1. Convex Cone:** $\lambda_1 f_1(x) + \lambda_2 f_2(x)$
- 2. Closed under products:** $f_1(x) f_2(x)$
- 3. Closed under signed derivatives:** $(-\partial_x)^n f_i(x)$



Space of CM functions in \mathbb{R}

Also closed under some compositions and limits.

Multivariate version

- Definition generalizes readily to several variables.
- If $f(x_1, \dots, x_n)$ is Completely monotone (CM) on $R \subset \mathbb{R}^n$ if it satisfies \forall points in R

$$(-\partial_{x_1})^{m_1} \dots (-\partial_{x_n})^{m_n} f(x_1, \dots, x_n) \geq 0 \quad \forall m_i = 0, 1, 2, \dots$$

Nontrivial examples are harder to construct but a simple yet important example is

$$\frac{1}{(c_1 x_1 + \dots + c_n x_n + d)^\alpha} \text{ is CM in } R = \mathbb{R}_+^n \text{ for } c_i, d, \alpha > 0.$$

Quantity
 $(-1)^L A^{(L)}$

angle dep. cusp
anomalous
dimension

4 point coloumb
branch amplitudes

MHV 6-particle BDS
like reminder function

Scalar Feynman
Integrals

⋮

$$-\Gamma_{cusp}^{(L)}(x)$$

$$M^{(L)}(u, v)$$

$$\mathcal{E}^{(L)}(u, v, w)$$

$$I(\{s_{T,R}, m_i^2\})$$

Region

$$x \in (0,1)$$

$$u, v > 0$$

$$u, v, w > 0$$

$$u + v + w < 1$$

$$(1 - u - v - w)^2 - 4uvw \geq 0$$

$$-s_{T,R}, m_i^2 \geq 0$$

Loop order

L=3 in QCD

L=4 in QED and SYM

L=3

L=4

arbitrary L

Outline

- **What?**

- **Why/How ?**

- Elementary arguments from suitable representations.
- From causality and analyticity.
- From positive geometry.

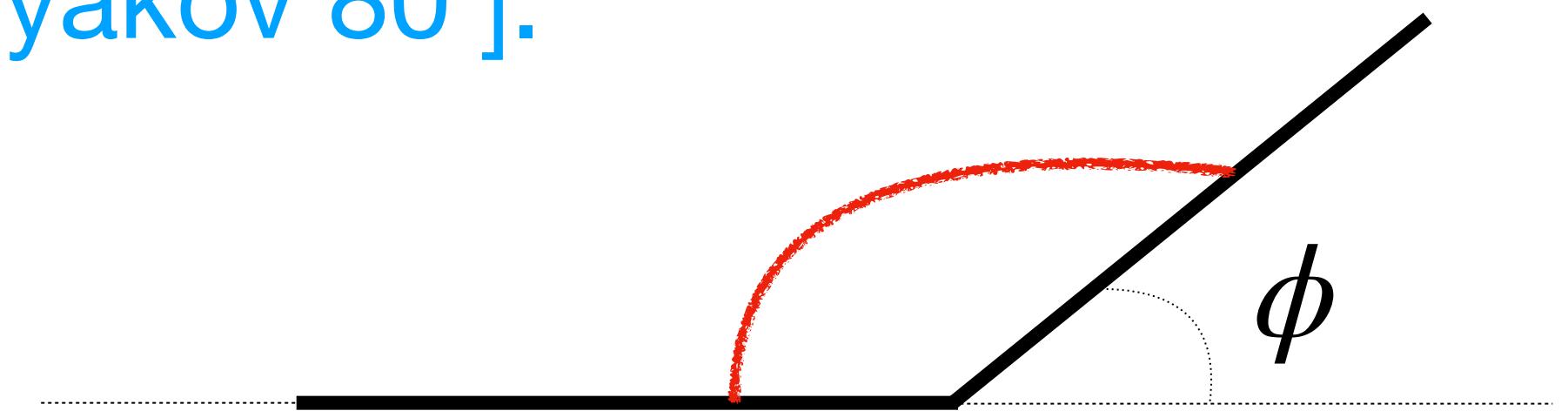
- **Applications**

- S-matrix bootstrap.
- Positive geometry.
- Numerical Bootstrap of Feynman integrals

Elementary arguments from suitable representation

- The expectation value of a Wilson loop with a cusp is UV divergent [Polyakov 80'].

$$\langle W_c \rangle \sim \frac{1}{\epsilon} \Gamma_{cusp}(\phi)$$

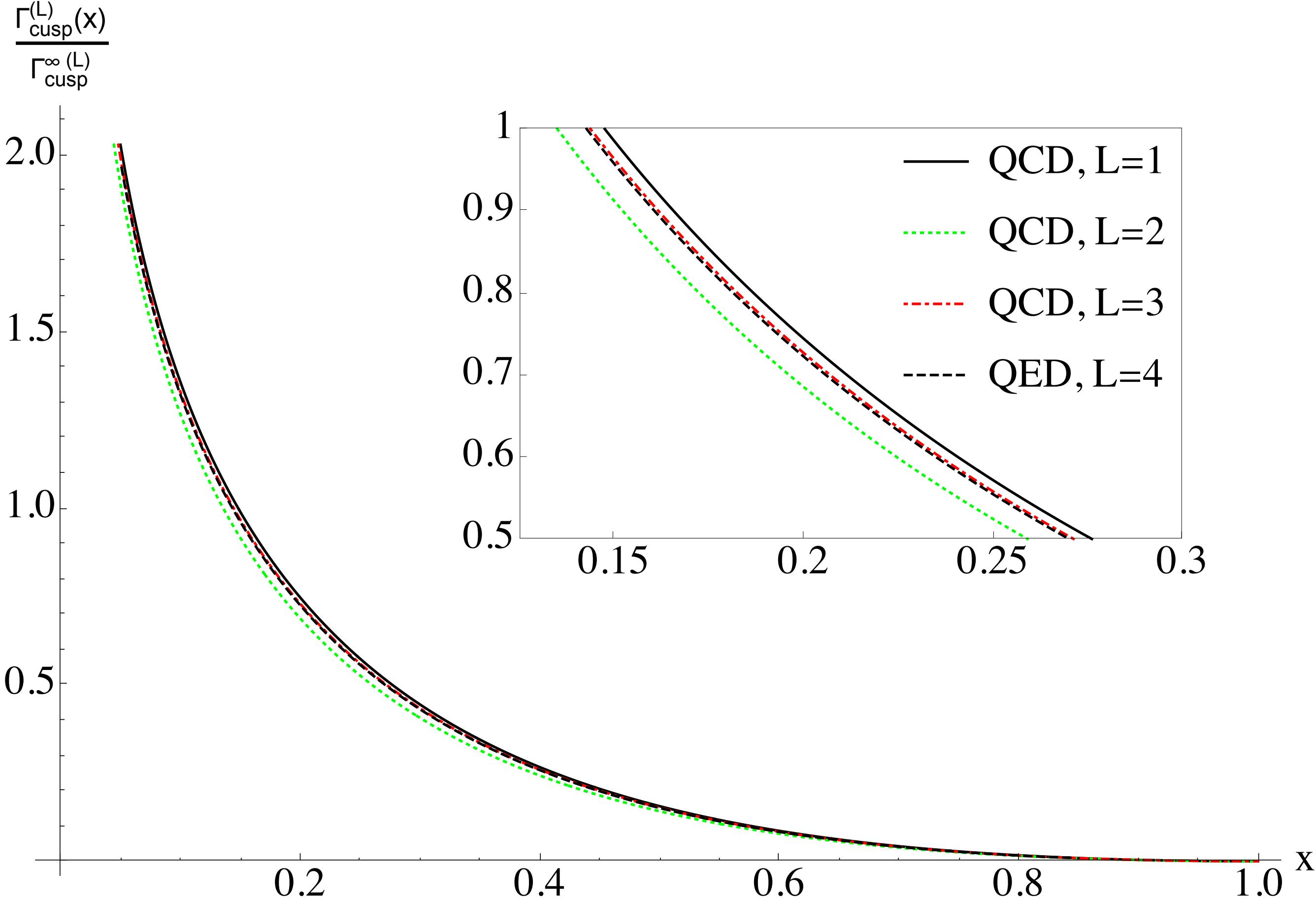


- Γ_{cusp} is also related to:
 - IR divergences in scattering of massive W-bosons in coulomb branch of N=4 SYM.
 - anomalous dimension in correlators with high spin composite operators.
 - quark-anti quark potential on the sphere etc.

Complete monotonicity of angle dependent cusp anomalous dimension

Claim: $\Gamma_{cusp}(x) = \sum_{L \geq 1} \Gamma_{cusp}^L(x) g^{2L}$ and $(-1)^{L+1} \Gamma_{cusp}^{(L)}(x)$ is a CM for $x \in (0,1)$.

- Some proofs are by using elementary arguments, for example $\Gamma_{cusp}^{(1)}(x) = \frac{1-x}{1+x}(-\log x)$



Checked up to $L=3$ in QCD and
 $L=4$ in $N=4$ SYM and in QED.

Hausdorff theorem and Stieltjes functions

- **[Hausdorff-Bernstien-Widder Thm]** A function $f(x_1, \dots, x_n)$ is completely monotone for $R = \mathbb{R}_+^n$ if and only if it can be represented as

$$f(x_1, \dots, x_n) = \int_{\mathbb{R}_+^n} dy \ e^{-x_1 y_1 - \dots - x_n y_n} \underbrace{\mu(y_1, \dots, y_n)}_{\geq 0}$$

- A nice subclass of CM functions are when $\mu(y)$ is itself CM called **Stieltjes functions**

$$f(x_1, \dots, x_n) = \int_{\mathbb{R}_+^n} dz \ \frac{1}{(x_1 + z_1)(x_2 + z_2) \dots (x_n + z_n)} \underbrace{\nu(z_1, \dots, z_n)}_{\geq 0}$$

A complex property unlike CM which is a real property.

From Analyticity/ Causality

- CM property is closely related to dispersion, Källen-Lehmann/spectral and Mandelstram representations.
- Consider, a function that satisfies an *unsubtracted* dispersion relation

$$A(s) = \int_{4m^2}^{\infty} ds' \frac{1}{s' - s} \text{ Disc } A(s')$$

$$A(x) = \int_0^{\infty} dt e^{-tx} \underbrace{\int_{4m^2}^{\infty} ds' e^{-ts'} \text{ Disc } A(s')}_{\mu(t)} \quad (\text{For } x = -s)$$

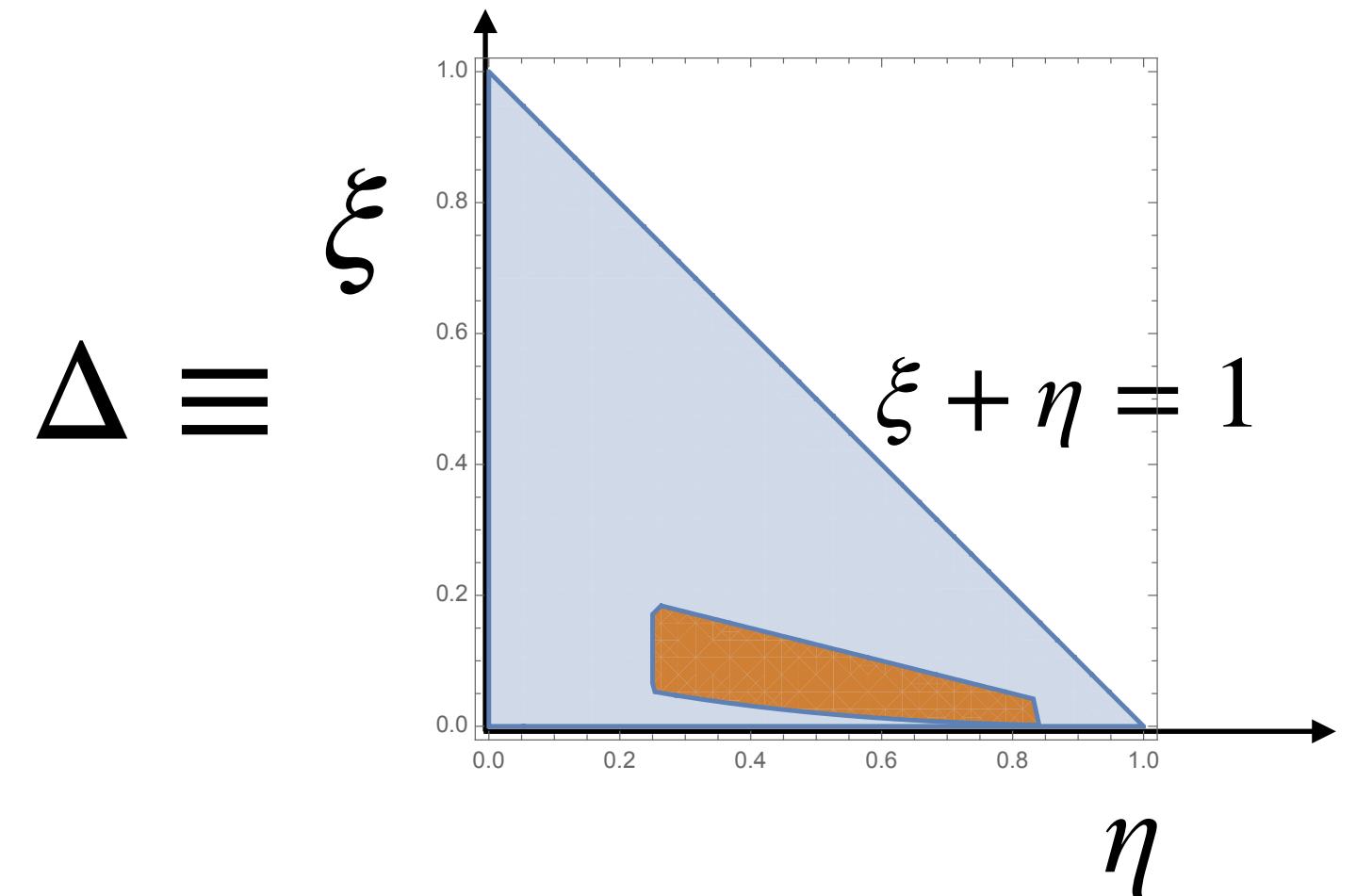
- $A(x)$ is
 - **Stieltjes if $\text{Disc } A(s') \geq 0$** , Stronger (can follow from **Unitarity/Optical theorem**)
 - **CM for $x > 0$, if $\mu(t) \geq 0$** . Weaker

Coulomb branch amplitudes in N=4 SYM.

- The 4-pt Coloumb branch amplitudes admits a particularly simple looking Mandelstram representation [Caron-Huot, Henn 13']

$$M(u, v) = \int_{\Delta} d\xi d\eta \frac{\rho(\xi, \eta)}{(\xi + u)(\eta + v)}$$

with a double spectral function $\rho(\xi, \eta)$.



- $M(u, v)$ is
 - Stieltjes for $\rho(\xi, \eta) \geq 0$ **(L=1)** [Mahoux, Martin 64']
 - CM for $u, v > 0$, if $\int_{\Delta} d\xi d\eta \rho(\xi, \eta) e^{-\xi p - \eta q} \geq 0 \forall p, q \geq 0$ **(L=2)** [Correia, Sever, Zhiboedov 20']
 - Remarkably the CM property also seems to hold at finite coupling. [Alday, Armanini, Häring, Zhiboedov; 25]

From Positive geometries (oversimplified)

- The positive geometry program associates a *putative* positive geometry to certain theories and directly computes scattering amplitudes from the geometry. [Arkani-Hamed, Trnka 12', Arkani-Hamed, Bai,He,Yam 17',...]
- Many radical features:
 - Locality and unitarity are emergent.
 - Amplitudes (for tree level) and loop Integrands (for loop level) are associated with differential forms.
- Examples:

All loop, all multiplicity	— —	Planar $N = 4$ SYM, $Tr(\Phi^3)$ theory, ABJM.
up to 1-loop, All multiplicity	— —	Scalar theories with colour Φ^p

Integrands as volumes and Positivity

- For tree level amplitudes have an interpretation as a volume of the dual polytope. [\[Hodges 13',...\]](#)
- For loop level integrands this is a conjecture and the “dual amplituhedron” is yet to be found. [\[Arkani-Hamed, Hodges, Trnka 14'\]](#)
- Integrands are dual volumes \implies positivity inside the geometry.
- Positivity of integrand \rightarrow Integrated results ?
Non-trivial but empirical evidence exists. [\[Dixon, Hippel, Mcleod, Trnka 17'\]](#)

CM in projective space

- Let, V be a finite dimensional vector space

A cone is defined a subset that satisfies $C = \{\lambda x \in C \mid \forall \lambda > 0, x \in C\}$.

A dual cone $C^* = \{y \in V^* \mid \langle y, x \rangle \geq 0 \forall x \in C\}$ where $\langle y, x \rangle = \sum_i x_i y_i$.

- A function real valued function $f: C \rightarrow \mathbb{R}$ is CM on C if for all points in C and

$$(-1)^k D_{v_1} D_{v_2} \cdots D_{v_k} f(\mathbf{x}) \geq 0 \quad \forall v_1, \dots, v_k \in C$$

where $D_v = v \cdot \nabla$ is the directional derivative.

Choquet's theorem

- Let, f be a real valued function then f is CM on an open cone C , then $f(\mathbf{x})$ is CM **iff**

$$f(\mathbf{x}) = \int_{C^*} e^{-\langle \mathbf{y}, \mathbf{x} \rangle} \mu(\mathbf{y}) \text{ with } \mu(\mathbf{y}) \geq 0 \text{ supported on the dual cone.}$$

- When $C = \mathbb{R}_+^n$ then $C^* = \mathbb{R}_+^n$ which is a Laplace transform.
- If $\mu(\mathbf{y})=1$ then the integral just computes the volume of C^* .
 - Happens whenever the positive geometry is a polytope [Arkani-Hamed,Bai,Lam 17']
 - Integrands are CM (not just positive) and admit representations as dual volumes. [Henn, PR;24']
- Thus, every CM function in projective space is naturally a (generalised) dual volume.

6-particle BDS-like MHV Reminder function

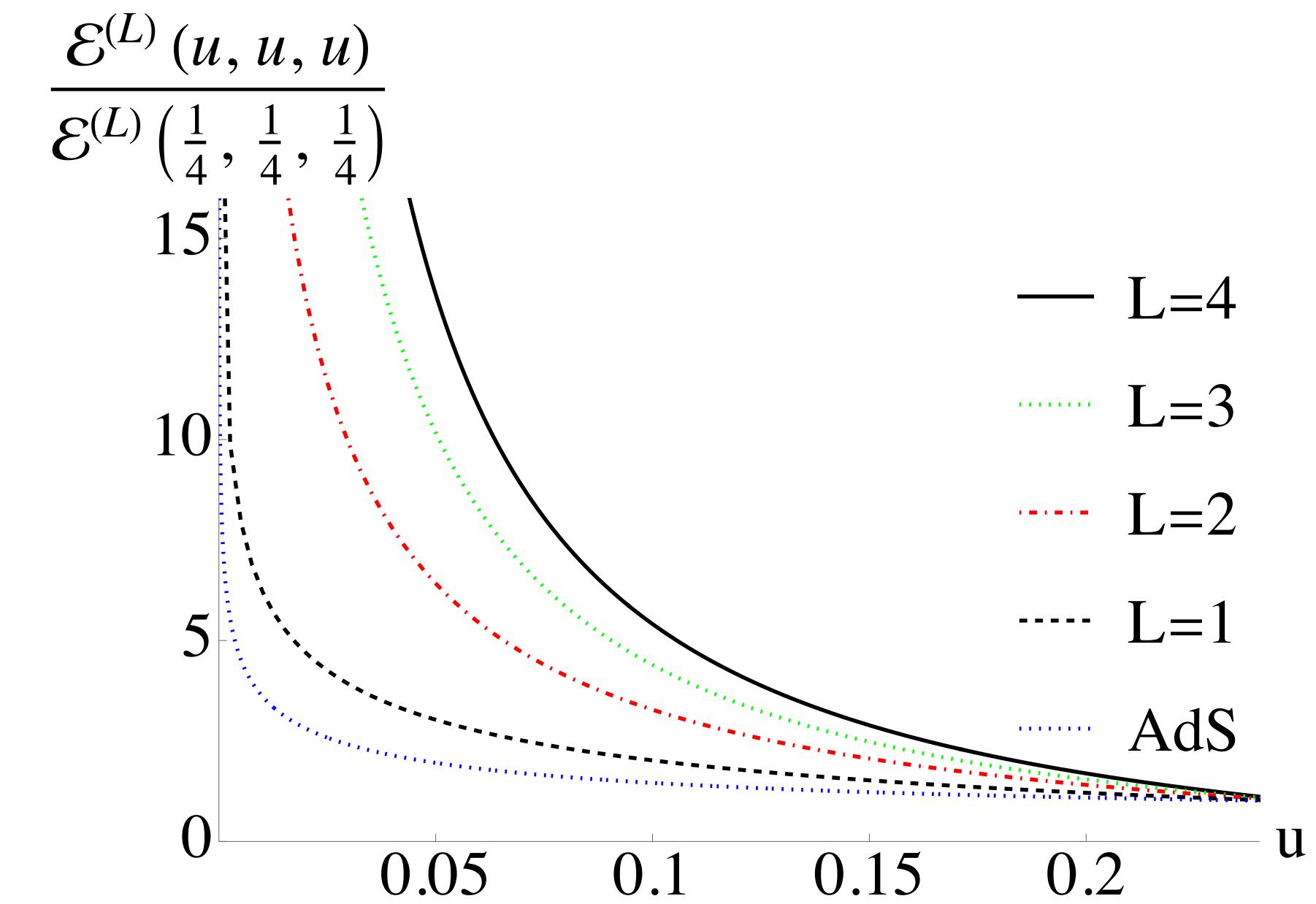
- 6-particle MHV normalised IR finite amplitude in N=4 SYM, $\mathcal{E}(u, v, w) = \sum_{L \geq 1} \left(\frac{g_{YM}}{16\pi^2} \right)^L \mathcal{E}^{(L)}(u, v, w)$

- Bootstrapped to high loop orders [Lance's talk today]

- Evidence for positivity up to $L = 4$ inside tree amplituhedron [Arkani-Hamed, Hodges, Trnka '14', Dixon, Hippel, Mcleod, Trnka; '17']

$$P_{\text{MHV}} : \left\{ \begin{array}{l} u, v, w > 0, u + v + w < 1, \\ (u + v + w - 1)^2 < 4uvw \end{array} \right\}$$

Claim: $(-1)^L \mathcal{E}^{(L)}(u, v, w)$ is CM for kinematics inside P_{MHV} .
[Henn, PR; 24']



- Proof up to $L = 2$.
- Numerical checks for $L = 3, 4$.
- Strong coupling result from AdS/CFT for $u = v = w$ slice is CM.
[Alday, Giotto, Maldacena; '09', Basso, Sever, Vieira; '14', Basso, Dixon, Papathanasiou; '20']

Scalar Feynman Integrals

- Let us consider the Feynman parametrization for a scalar Feynman graph G with L -loops in D -dimensions, in the Feynman parametrization

$$I(x) = \frac{\Gamma(\sum_i \nu_i - LD/2)}{\prod_i \Gamma(\nu_i)} \int_{\alpha_i \geq 0} \frac{\prod_i d\alpha_i \alpha_i^{\nu_i-1}}{\text{GL}(1)} \frac{U(\alpha)^{\sum_i \nu_i - (L+1)D/2}}{F(\alpha, x)^{\sum_i \nu_i - LD/2}}$$

where, U and F are the Symanzik graph polynomials and $x = \{-s_{T,R}, m_i^2\}$.

- Key point: U does not depend on external kinematics and only F depends on $\{-s_{T,R}, m_i^2\}$ but dependence is linear !

- The region $\mathbb{E} = \{x \mid F(\alpha, x) > 0 \ \forall \alpha > 0\}$ is called the Euclidean region.
- Finite Scalar Feynman integrals (without numerators) $I(x)$ satisfy
 - CM for $x \in \mathbb{E}$. [Henn, PR; 24]
 - Stieltjes for $0 < \sum_i \nu_i - \frac{LD}{2} \leq 1$. [To appear Ditsch,Henn, PR]
 - Both statements can be proved by arguing the same for the integrand and using the convexity properties of the space of CM, Stieltjes functions.

Applications

Martin inequalities for pion amplitudes

- Consider, a 2-2 amplitude of identical massive scalars

$$M(s, t) = c(t) + \frac{1}{\pi} \int_{4m^2}^{\infty} \left(\frac{s^2}{s'^2(s' - s)} + \frac{u^2}{s'^2(s' - u)} \right) A(s', t)$$

dispersion + unitarity implies the following

$$\frac{d^n}{ds^n} M(s, t) > 0 \quad \text{for fixed } t \quad \text{and} \quad 2m^2 - t/2 \leq s \leq 4m^2$$

+2 more relations due to crossing

- Result 1: $M(s, t, u) > M(4m^2/3, 4m^2/3, 4m^2/3)$

- Result 2: Rigorous inequalities for partial waves.

- Result 3: $-100 < M(4/3, 4/3, 4/3) < 16$.

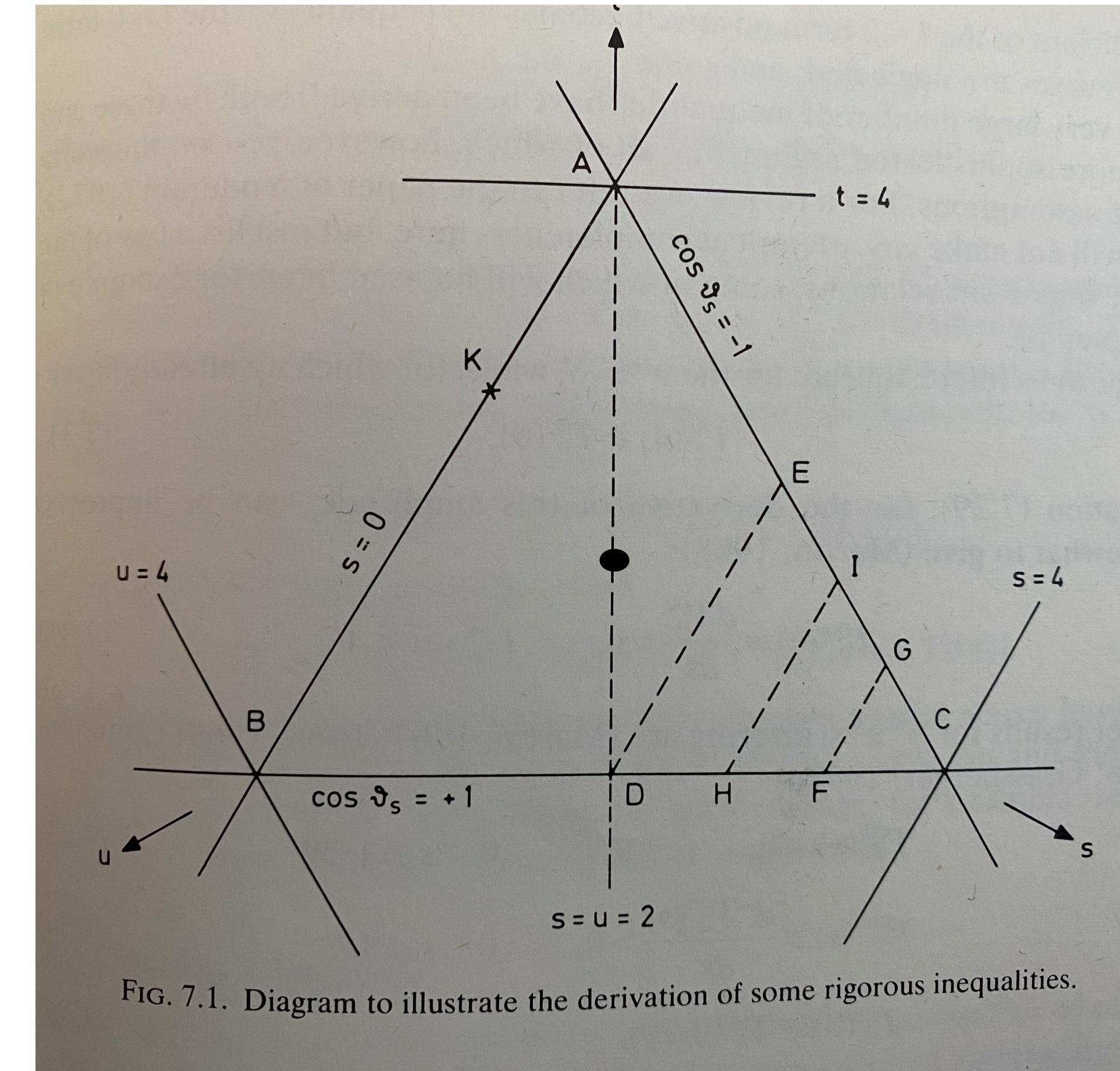


FIG. 7.1. Diagram to illustrate the derivation of some rigorous inequalities.

[Martin 64', Martin and Cheung 67']

Numerically Bootstrapping Feynman Integrals

[To appear with Sara Ditsch and Johannes Henn]

- Feynman Integrals satisfy first order linear differential equations

$$\frac{d}{dx} \mathbf{f}(x) = A(x) \mathbf{f}(x)$$

- Using IBPs one can usually choose a CM basis $\mathbf{f}(x)$

$$(-1)^n \frac{d^n}{dx^n} f(x) \geq 0 \quad \text{for all } n \in \mathbb{N}_0, \forall x \in R$$

- Higher derivatives can be obtained recursively using the DE

$$(-1)^n \frac{d^n}{dx^n} f(x) = Q_n(x) \mathbf{f}(x)$$

Preparing the CM Bootstrap

- With the Q_n 's being defined as

$$Q_0 = \mathbb{I}, \quad Q_1 = -A$$

$$Q_n = -\partial_x Q_{n-1} + Q_{n-1} \cdot Q_1$$

- The CM condition now is given by

$$Q_n(x) \cdot \mathbf{f}(x) \geq 0 \quad \forall n \geq 0 \rightarrow \text{Linear constraints on } \mathbf{f}(x)$$

Linear Program: Maximize/Minimize $\frac{\mathbf{f}_{i_0}(x)}{\mathbf{f}_{i_0}(x)} \Big|_{x=x_0}$ subject to

$$Q_n(x) \cdot \mathbf{f}(x) \geq 0 \text{ for } 0 \leq n \leq n_0.$$

\mathbf{f}_{i_0} can be usually be chosen to be some single scale ints /tadpoles

Simple Example: The Massive Bubble Integral in D=2

$$x=-2 \quad x=0$$

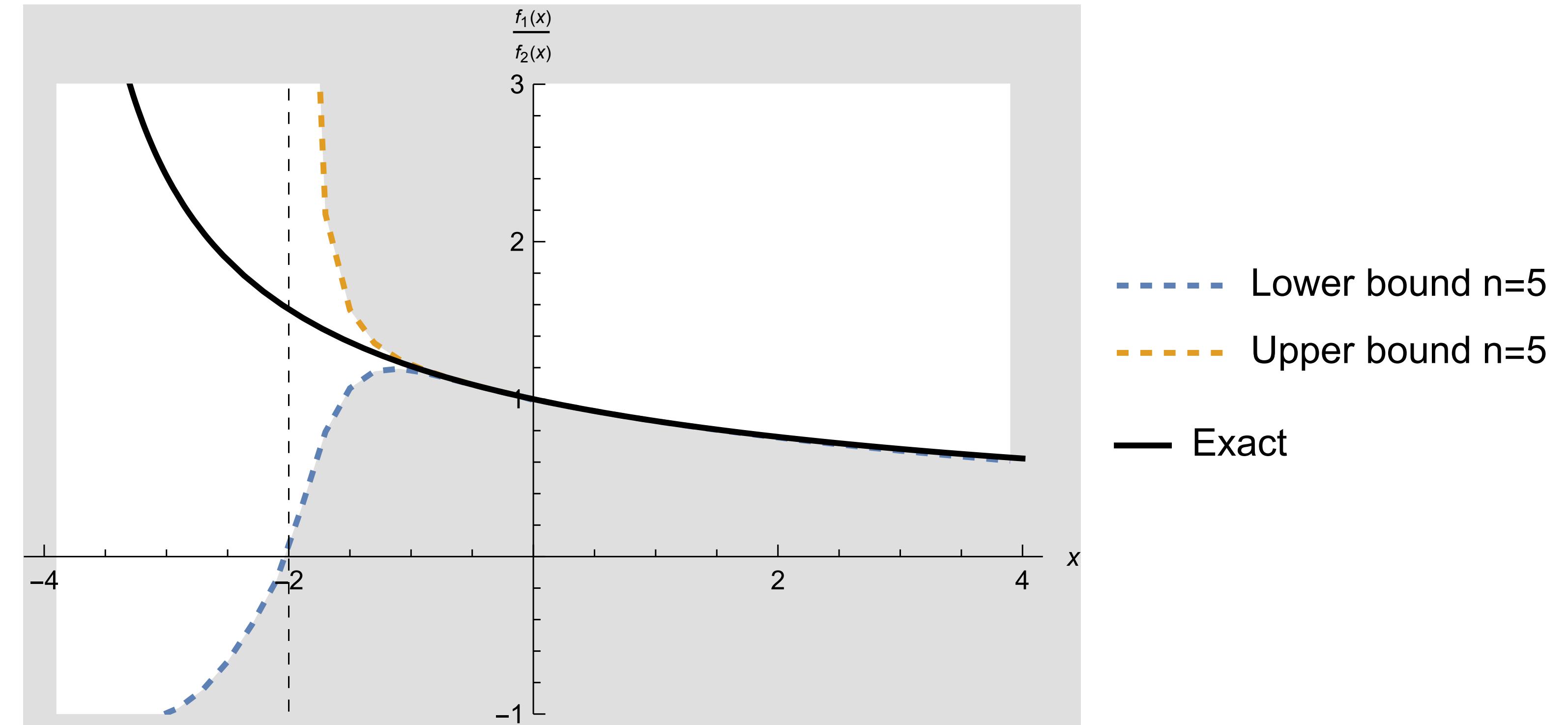
$$f(x) = \frac{2}{\sqrt{x(4+x)}} \log \left(\frac{\sqrt{1+4/x} + 1}{\sqrt{1+4/x} - 1} \right),$$

1. Obtain DE:

$$A_x = - \begin{pmatrix} 0 & 0 \\ -\frac{2}{(4+x)x} & \frac{2+x}{(4+x)x} \end{pmatrix}$$

2. Compute Derivatives recursively

3. Linear Program: fix first Integral



-Region 2 has very strong constraints with rapid convergence.

Padé approximations

- The Padé approximation (PA) is simple and useful alternative to polynomial approximation of analytic functions.
- Suppose, we are given a Taylor expansion of a function convergent in $|z| \leq R$,

$$f(z) = a_0 + a_1(z - x_0) + a_2(z - x_0)^2 + \cdots a_n(z - x_0)^K$$

- Find a rational function $P_M^N(z; x_0)$ with numerator degree N and denominator degree M that agrees with the truncated Taylor expansion $N + M \leq K$ i.e.,

$$P_M^N(z; x_0) \equiv \frac{P_N(z)}{Q_M(z)} = f(z) + O(x^{N+M+1}),$$

- Very useful for applications, but still not understood why they work for generic functions.

Stieltjes functions and Padé approximations

- The Padé approximants of Stieltjes functions:

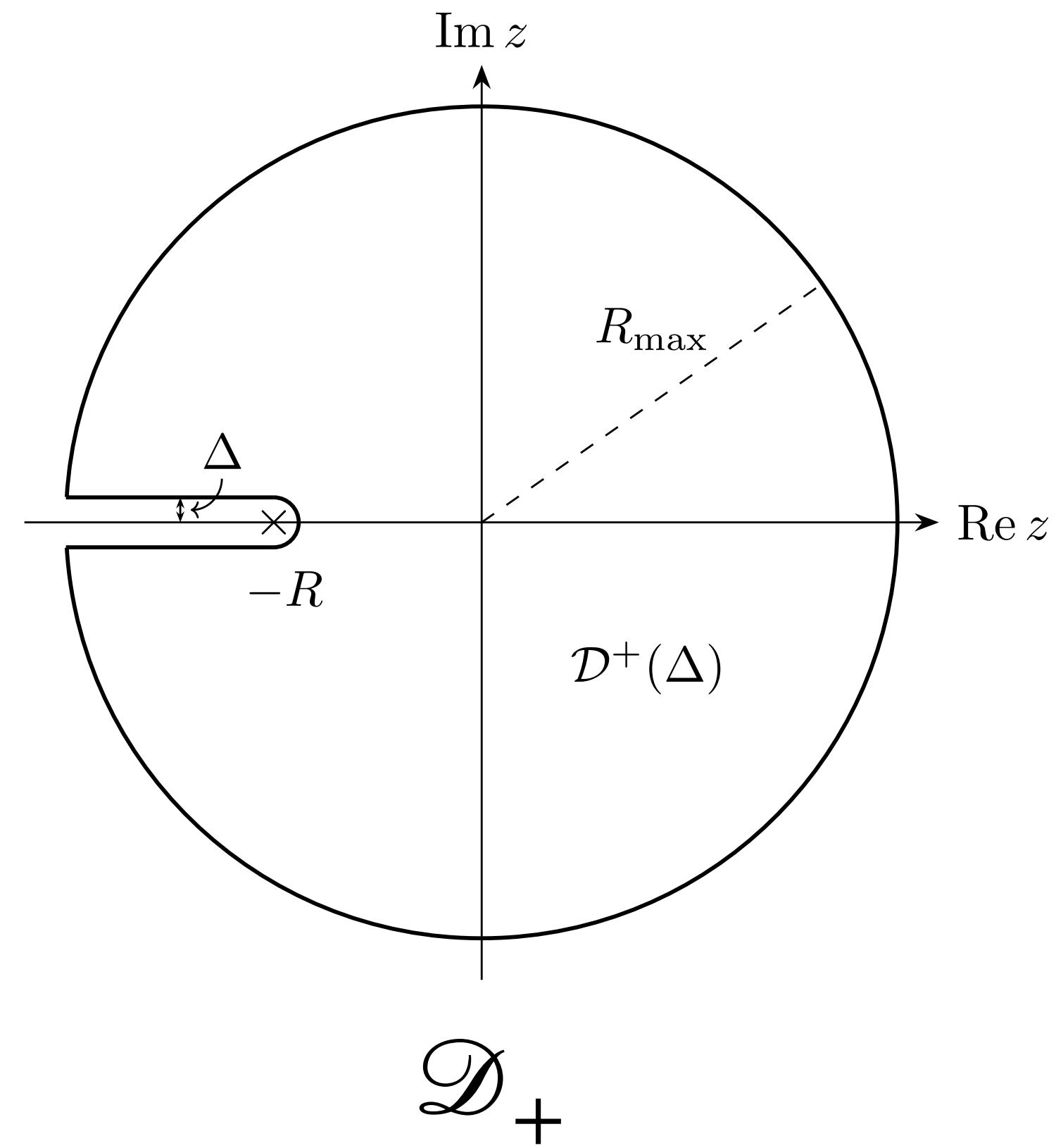
- **Convergence on the real axis:** $P_N^{N-1}(x; x_0) \leq f(x) \leq P_N^N(x; x_0), \quad x \geq x_0.$

- **Convergence in the cut plane:** The Padé approximants $P_N^{N-1}(x; x_0)$ and $P_N^N(x; x_0)$ both converge in the cut plane to the function $f(z)$.

- **Error bounds:** For any $z \in \mathcal{D}_+$ and $\forall J \geq -1, M \geq 1$,

$$|f(z) - P_M^{M+J}(z; x_0)| < c \left| \frac{(z - x_0)}{\rho} \right|^{J+1} \left| \frac{\sqrt{\rho + z - x_0} - \sqrt{\rho}}{\sqrt{\rho + z - x_0} + \sqrt{\rho}} \right|^{2M},$$

where, $\rho = R + x_0 - \Delta$ and c is a constant.



Stieltjes bootstrap

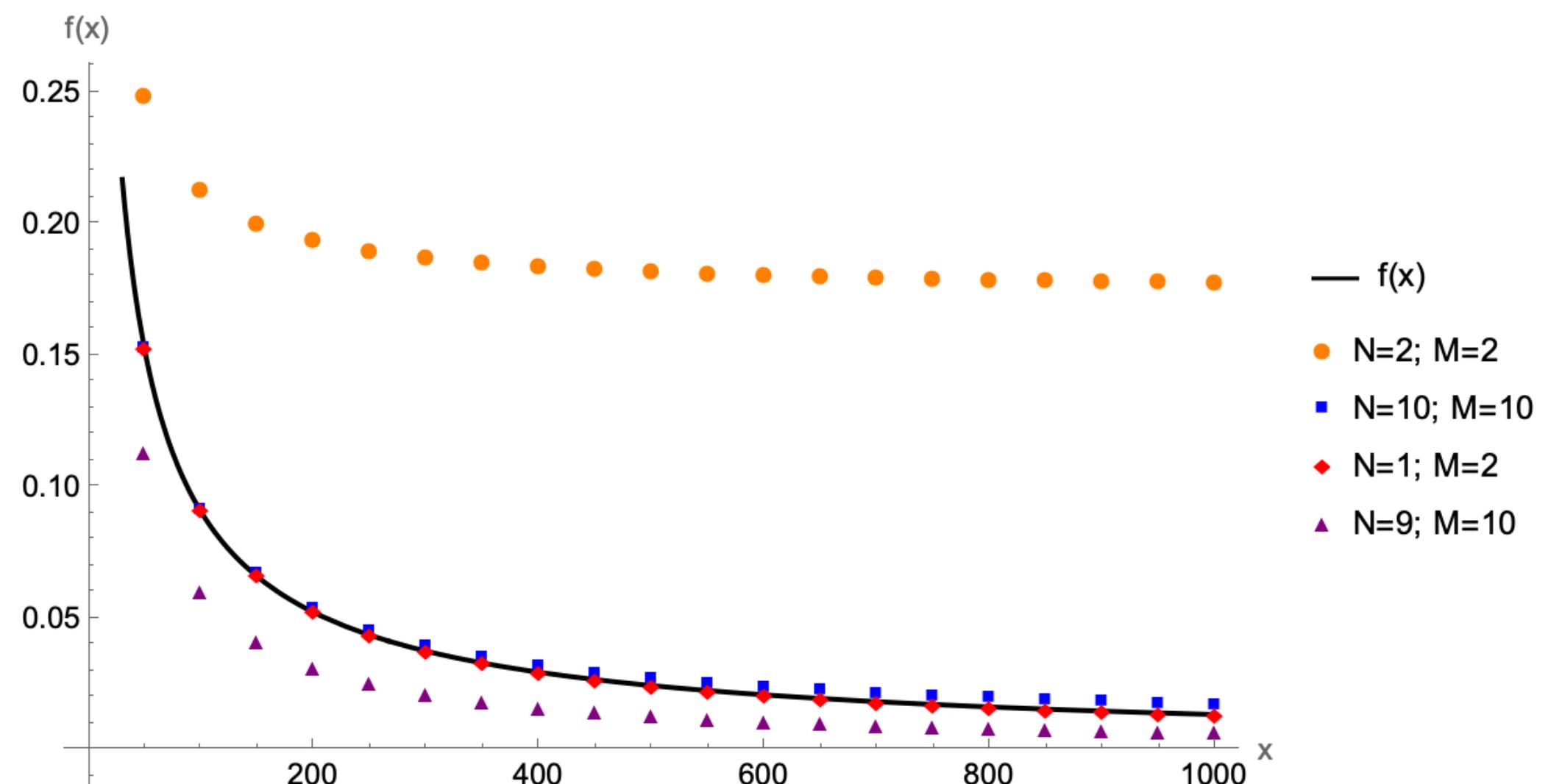
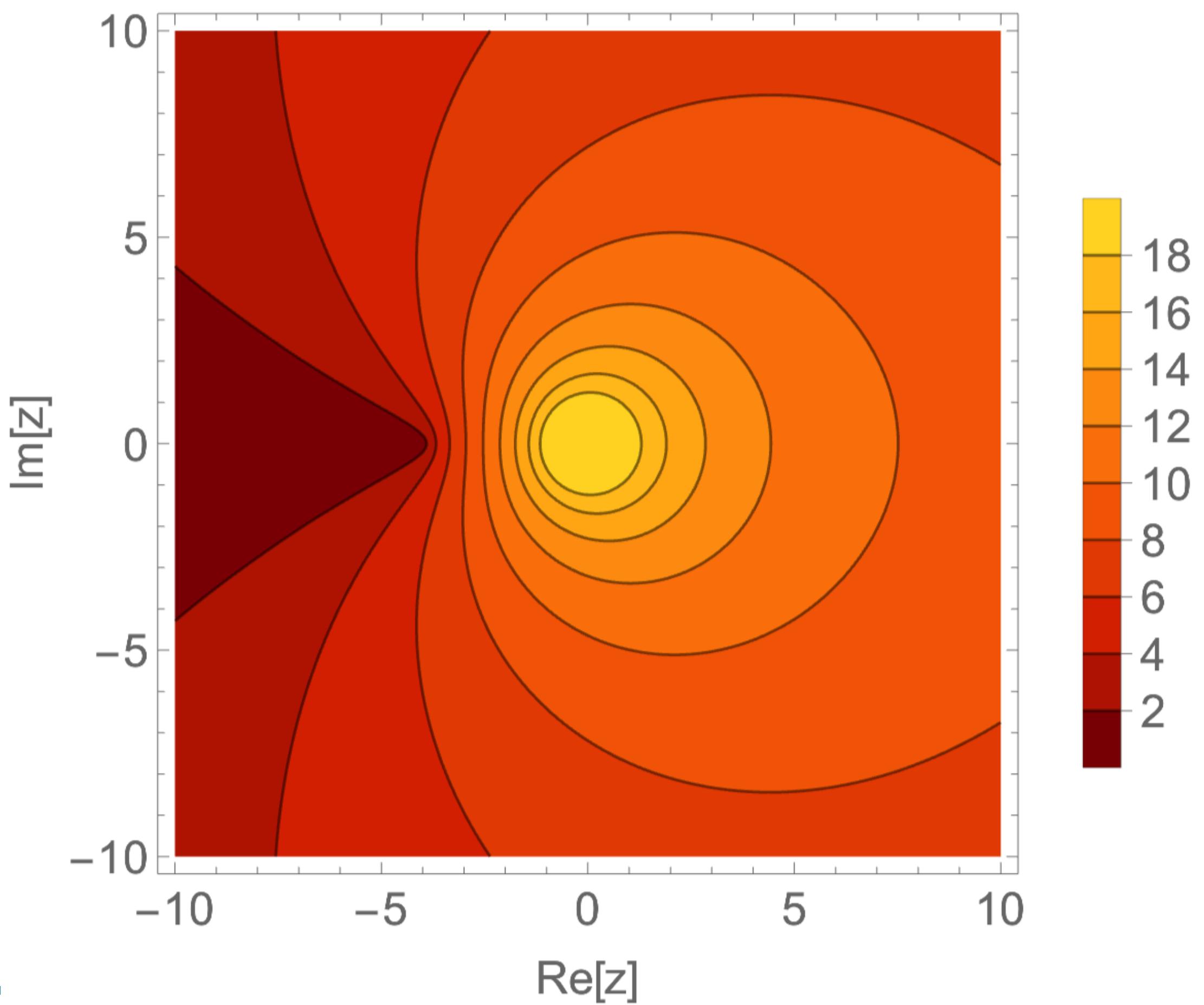
Idea: Combine results from CM bootstrap with Padé, (guaranteed to work well for Stieltjes functions)

- Step 1: Select a starting point:** In the subset of the Euclidean region where CM bootstrap works very well.
- Step 2: Compute the basis integrals at the starting point:** Using the CM bootstrap.
- Step 3: Compute the Taylor expansion:** To a given order with the required precision.
- Step 4: Construct the Padé approximants and store them.**
- Step 5: Evaluate the Padé approximants.**

- As a proof of principle we can apply it Sunset/Banana integrals, which are Stieltjes in D=2.

One-loop massive bubble example 2.0

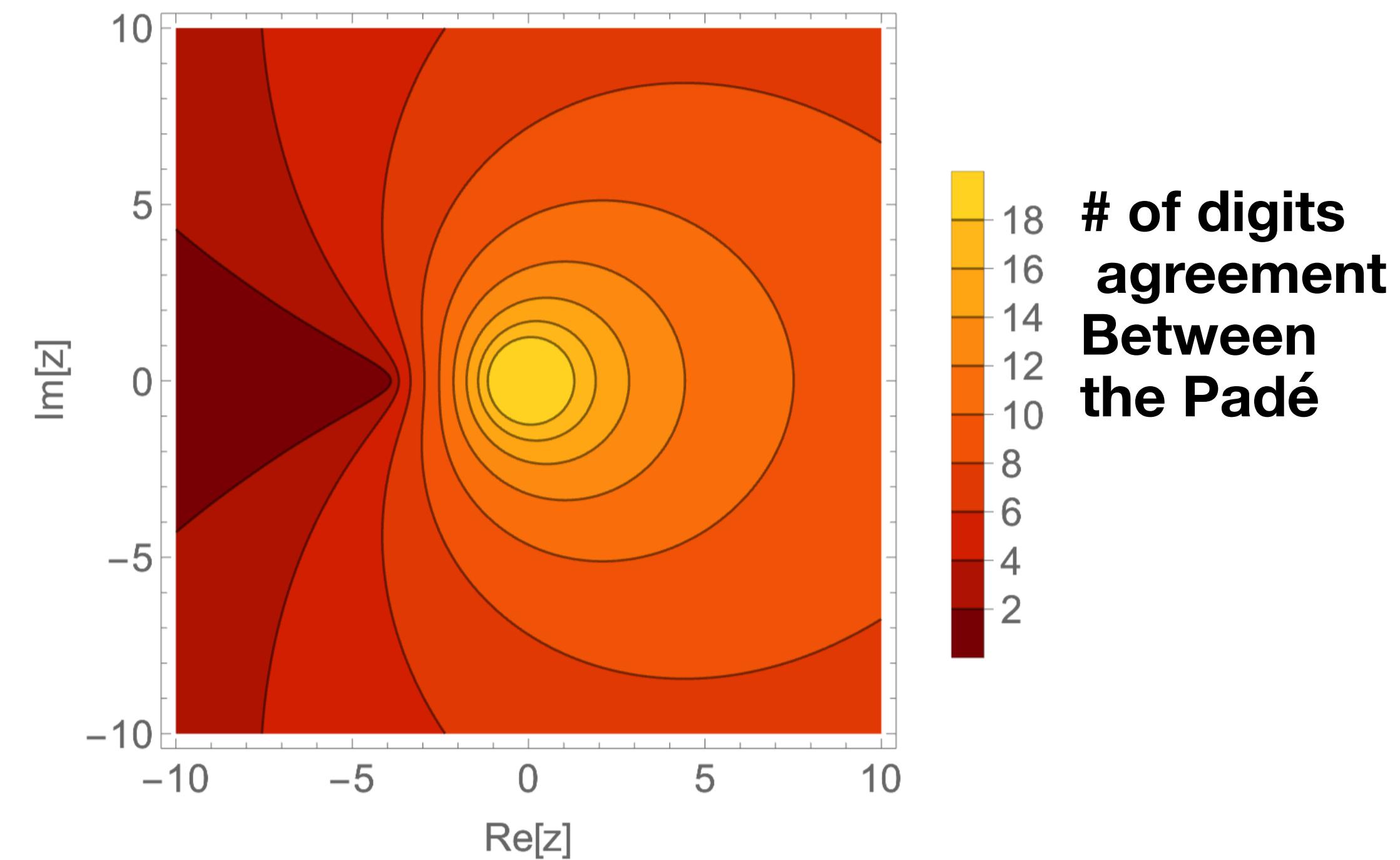
-Comparison between Padé approximants $P_{10}^9(z; -0.1)$, $P_{10}^{10}(z; -0.1)$ and the actual function for real and complex points.



Example without using DE

- The interplay between Padé and Stieltjes functions does not depend on the knowledge of a DE, provided we can obtain the Taylor coefficients using another method.
- We can do this for **L-loop banana type integrals** using representation as a Bessel integral valid in the Euclidean region i.e., for $x \geq -(L+1)^2$ and computing the Bessel moments numerically. [\[Groote,Korner, Pivovarov 05'; Vanhove 14'\]](#)

z	Upper bound	Actual value	Lower bound
10^3	1.53585×10^{13}	1.53585×10^{13}	1.53585×10^{13}
10^4	1.53489×10^{13}	1.53489×10^{13}	1.53489×10^{13}
10^5	1.52272×10^{13}	1.52272×10^{13}	1.52272×10^{13}



Conclusion and Outlook

- We looked a novel kind of positivity properties on a function and all its derivatives called complete monotonicity and Stieltjes property which several physical quantities and building blocks (like generic scalar Feynman integrals) satisfy in the ‘Euclidean region’.
- We discussed why these functions are natural from the perspective of volumes and in the positive geometry program and also saw it can be used for efficiently for numerical bootstrap.
- These properties also holds seems to hold in the coupling for some exact observables (admit Fredholm determinants) [\[Talk to Maximilian Haensch\]](#)

Thanks for Listening!

Funded by
the European Union

European Research Council
Established by the European Commission

UNIVERSE+ is funded by the European Union (ERC, UNIVERSE PLUS, 101118787). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Council Executive Agency. Neither the European Union nor the granting authority can be held responsible for them.

universe+ is a cooperation of

MAX PLANCK INSTITUTE
FOR PHYSICS

IAS

INSTITUTE FOR
ADVANCED STUDY

MAX PLANCK INSTITUTE
FOR MATHEMATICS IN THE SCIENCES

UNIVERSITY OF AMSTERDAM