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Introduction ¥ universe +

In this talk we shall discuss several examples of quantities that satisty
positivity properties across different orders in perturbation theory

A~ ) gtA®
L=0
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Motivation

* Positivity of Integrated objects: Positivity properties of integrands have
been investigated extensively, but at the level of integrated objects are far
less studied.

* Uncover patterns in perturbative data: see if these hint at some deeper
underlying structure.

* Input to Bootstraps: see if these properties can be used in numerical/
analytic bootstrap programs.
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Completely monotone functions P universe +

« A C™-function f(x), is called completely monotone (CM) in a region
R C R if it satisfies

(—0:)"f(x) >0, for n>0, VreR.

* |n particular,
n=0 = f(x) >0
n=1 = f(x) <0
n=2 = f(x)>0 = convex,

positive,

monotonically decreasing,
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* | eads to typically boring graphs for the function and all its signed derivatives In

the region

J(x)

(_ 1)997 f(997) (X)

* Taylor coefficients around any point inside the region alternate in sign.

* Property does not depend on having a convergent Taylor series.
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* The property as defined crucially depends on the choice of variable and
the region.

Examples

1
(1)

X+ Qa

is CM inR = (0,00).

(2) —logx is CM inR=(0,1).

logx+ A 1
3) ——— and are not CM on any (0,B).

x+ 1 ] —x Q
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Properties of CM functions ¥ universe +

If f,(x) and f,(x) are CMin Rthenforany 4. > 0 i = 1,2 then
the following are also CM in R

1. Convex Cone: 4, f;(x) + 4, f>(x)

2. Closed under products:  f{(x) f>(x)

3. Closed under signed derivatives: (—d,)" f.(x)

Also closed under some compositions and limits.
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Multivariate version

* Definition generalizes readily to several variables.

» If f(x;, -, x,) is Completely monotone (CM)on R C R" if it satisfies V points in R
(=0, )"+ (=0, " fxy, o) 20 V= 0,12,

Nontrivial examples are harder to construct but a simple yet important example s

1

—————————— is CM in R=RY for ¢,d,a > 0.
(cixy + - +c,x, + d)*
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Quantity Loop order

(— I)LA (L) Region
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" l-3inQCD
angle dep. cusp —F(L) (x) 0.1 n Q
| cusp x € (0, 4
R A S O ~4in GEDand SYM
4 point coloumb (L) _
branch amplitudes M (u,v) | u,v >0 L=3
- ; u,v,w > 0
MHYV 6-particle BD (L) §
ike reminder function s Vs W) 5 itvtw<l L=4
......................................................................... S S Aol et S S
Scalar Feynman ) , .
I[({s7r,m"}) —Spp > m- >0 arbitrary L

Integrals

----------------------------------------------------------------------------------------------------------------------------------------------------------
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Outline

o What?
* Why/How ?

- Elementary arguments from suitable representations.
- From causality and analyticity.

- From positive geometry.

* Applications
- S-matrix bootstrap.

- Positive geometry.

-Numerical Bootstrap of Feynman integrals
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Elementary arguments from suitable representation < ™"""¢"

* The expectation value of a Wilson loop with a cusp is UV divergent
IPolyakov 80°].

« 1 s is also related to:

- IR divergences in scattering of massive W-bosons in coulomb branch of N=4 SYM.
- anomalous dimension in correlators with high spin composite operators.

- quark-anti quark potential on the sphere etc.
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Complete monotonicity of angle dependent cusp anomalous dimension

Claim: I, (x) = Z 't (x)g*and (— DY (x) isaCMfor x € (0,1).

CUSP CUSp

L>1
S fs are by using el t ts, f e T (x) = -
- OFT:(Le) (E))FOO S dfe DY USINg elementary arguments, 10r exampie Fcusp(x) — [ x( l()g)C)
=
20

1.5l

Checked up to L=3 in QCD and

1.0l

L=4 in N=4 SYM and in QED.

0.5

e ——— . | X

02 04 06 08 1.0
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Hausdorff theorem and Stieltjes functions

» [Hausdorff-Bernstien-Widder Thm] A function f(x;, ---, x,,) is completely
monotone for R = R’ if and only if it can representable as

f(xl’ ...’xn) — J' dy e_xlyl_"'_xnyn Iu(yl, ...’yn)
R,
>0

* A nice subclass of CM functions are when u(y) is itself CM called

f(xb "°’xn) — J' Az ; V(Zl, "°9Zn)

R” (X1 + 200 +22) ... (X, + 2,)

>0

A complex property unlike CM which is a real property.



From Analvticity/ Causalit ¥ universe +

 CM property is closely related to dispersion, Kallen-Lehmann/spectral and
Mandelstram representations.

* Consider, a function that satisfies an unsubtracted dispersion relation

o0

A(s) =J ds’ : Disc A(s’)

4m? s’ —S

A(x) = J dt e ™ J ds’ e Disc A(s’). (Forx = — )
0 4m?

G
e A(Xx)is
- Stronger (can follow from Unitarity/Optical theorem)
- Weaker
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Coulomb branch amplitudes in N=4 SYM.

* The 4-pt Coloumb branch amplitudes admits a particularly simple looking
Mandelstram representation [Caron-Huot, Henn 13’

M(u,v) = J' dfdi’]ﬂ A = 5 L
s EF W+ ) = | -
with a double spectral function p(&, 7).

» M(u,v)is .
- Stieltjes for p(&,17) >0 (L=1) Mahous, Martin 64

Correia, Sever, Zhiboedov 20’]

-CMforu,v > 0, if J dédn p(E,n) e P14 >0V p,g >0 (L=2)
A

- Remarkably the CM property also seems to hold at finite coupling.
[Alday, Armanini,Haring, Zhiboedov; 25]
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. _ o ¥ universe +
From Positive geometries (oversimplified)

* The positive geometry program associates a putative positive geometry to

certain theories and directly computes scattering amplitudes from the
geometry. [Arkani-Hamed, Trnka 12°, Arkani-Hamed, Bai,He,Yam 17°,...]

 Many radical features:

- Locality and unitary are emergent.

- Amplitudes (for tree level) and loop Integrands (for loop level) are associated
with differential forms.

 Examples:
All loop, all multiplicity — — Planar N = 4 SYM, Tr(®?) theory, ABJM.
up to 1-loop, All multiplicity —— Scalar theories with colour ®”
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Integrands as volumes and Positivit ¥ universe +

For tree level amplitudes have an interpretation as a volume of the dual
polytope. |[Hodges 13’,...]

For loop level integrands this Is a conjecture and the “dual amplituhedron” is
vet to be found. [Arkani-Hamed, Hodges, Trnka 14’]

Integrands are dual volumes = positivity inside the geometry.

Positivity of integrand — Integrated results ?
Non-trivial but empirical evidence exists. [Dixon, Hippel, Mcleod, Trnka 17’}
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CM in projective space

e Let, V be a finite dimensional vector space

A cone is defined a subset that satisfies C = {Ax € C|VA > 0,x € C} .

A dual cone C* = {y € V¥ |[(y,x) > 0V x € C} where (y, x) = in V.

l

e A function real valued function f: C — R is CM on C if for all points in C and
(=)D, D, --D, f(x) >0 Vv, -y, €C

where D, = v. V is the directional derivative.
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Choquet’s theorem

* Let, f be a real valued function then f is CM on an open cone C, then f(X) is CM iff

(x) = J e_<y’x>//t(y) with u(y) > 0 supported on the dual cone.
C’>I<

» When C = R’ then C* = R which is a Laplace transform.

* If u(y)=1 then the integral just computes the volume of C*.
- Happens whenever the positive geometry is a polytope [Arkani-Hamed,Bai,Lam 17’}

Integrands are CM (not just positive) and admit representations as dual volumes.
[Henn, PR;24’]

* Thus, every CM function in projective space is naturally a (generalised) dual volume.
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6-particle BDS-like MHV Reminder function ’

L
-6-particle MHV normalised IR finite amplitude in N=4 SYM, &(u, v, w) = Z ( STM ) D (u, v, w)
L>1
- Bootstrapped to high loop orders | Lance’s talk today]

-Evidence for pOSItIVIty up to L =4 Inside tree amplituhedron [Arkani-Hamed, Hodges, Trnka 14’,Dixon, Hippel, Mcleod, Trnka; 17’]

b u,vw>0, u+v+w<l,
MEIVEY w+v+w =12 < 4w

Claim: (—1)* &P (u, v, w) is CM for kinematics inside Py
[Henn, PR; 24’]

- Proof up to L = 2.

- Numerical checks for L= 3, 4.

- Strong coupling result from AdS/CFT for u = v = w slice is

[Alday,Giotto,Maldacena ; 09’, Basso, Sever, Vieira; 14°, Basso,Dixon, Papathansiou; 20]
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Scalar Feynman Intgerals ¥ universe +

* |et us consider the Feynman parametrization for a scalar Feynman graph G with L-loops
In D-dimensions, in the Feynman parametrization

L F(Zz Vi — LD/Z) Hz dOéiOé;/i_l U(a)zz v,—(L+1)D /2
— 11, I'(vi) ;>0 GL(1) F(Oé,a;)Zi vi—LD/2

I(2)
where, U and F are the Symanzik graph polynomials and x = {—s, m-}.

l

- Key point: U does not depend on external kinematics and only F depends on
L= ST R ml.2 } but dependence is linear !
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- Theregion E = {x|F(a,x) > 0V a > 0} is called the Euclidean region.

- Finite Scalar Feynman integrals (without numerators) (x) satisfy

e CMforx € E. [Henn, PR; 24]

iy LD
® Stleltjes for 0 < Z U, — T < 1. [To appear Ditsch,Henn, PR]

- Both statements can be proved by arguing the same for the integrand and
using the convexity properties of the space of CM, Stiletjes functions.
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artin inequalities for pion amplitude

 Consider, a 2-2 amplitude of identical massive scalars

o0 82 u2

/
s,t) =c — | S, U
T Jamz \ S%(s" —s) s2(s' —u

dispersion + unitarity implies the following

d’n
d—M s,t) >0 for ixed t and 2m2—t/2§s§4m2
Sn

+2 more relations due to crossing

- Result 1: M(s,t,u) > M(4m?*/3,4m?/3,4m?*/3)

- Result 2: Rigorous inequalities for partial waves.

- Result 3: -100< M(4/3.4/3.4/3)< 16. [Martin 64°, Martin and Cheung 67’]
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Numerically Bootstrapping Feynman Integrals g universe+

[To appear with Sara Ditsch and Johannes Henn]
- Feynman Integrals satisfv first order linear differential equations

d
- f(x) = A(x)f(x)

- Using IBPs one can usually choose a CM basis f(z)

(—=1)"

f(x) >0 forallneNy, Ve eR

dxm

- Higher derivatives can be obtained recursively using the DE

(—=1)"

f(z) = Qn(z)f()

dx™

Numerical Determination of Feynman Integrals using Complete Monotonicity Sara Ditsch and Prashanth Raman (MPP, Munich) 26



Preparing the CM Bootstrap ¥ universe +

- With the Q,’s being defined as
Q() — |]9 Ql — _A
Qn — = axQn—l T Qn—l ' Ql

- The CM condition now is given by

Q. (x).f(x) >0 V n>0 — Linear constraints on f(x)

£,(x)
Linear Program: Maximize/Minimize — subject to
f; (x)
0 —
X=X f; can be usually be
chosen to be some
Qn(x) . f(X) > O for O <n< i~ single scale ints /tadpoles

Numerical Determination of Feynman Integrals using Complete Monotonicity Sara Ditsch and Prashanth Raman (MPP, Munich) 27



Simple Example: The Massive Bubble Integral in D=2 2 universe+
= 2 log(\/1+4/x+1),

x=-2  x=0 V(4 + x) V1+4/x -1

1. Obtain DE:

0 0
Az = — ( 2 2+a )
(4+z)xz (44x)x

2. Compute Derivatives
recursively

----- Lower bound n=5

Upper bound n=5

— Exact

3. Linear Program:
fix first Integral

1 2 3
-Region 2 has very strong constraints with rapid convergence.
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Padé approximations $universe+

- The Padé approximation (PA) is simple and useful alternative to polynomial
approximation of analytic functions.

» Suppose, we are given a Taylor expansion of a function convergent in |z| < R,

f(2) = ay + a,(z — xp) + ax(z — x)* + --a,(z — xp)"

- Find a rational function Pﬁ(z;xo) with numerator degree N and denominator degree M
that agrees with the truncated Taylor expansion N+ M < K i.e.,

P
Py(z; xp) = QZ((ZZ)) = f(z) + O (xN*M*1),

- Very useful for applications, but still not understood why they work for generic functions.
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roximations 2 universe+

S

tieltjes functions and Padeé a

- The Padé approximants of Stieltjes functions:

- Convergence on the real axis: P]]\\,’_l(x; Xo) < f(x) < P]]\,V(x; Xo), X = Xg-

- Convergence in the cut plane: The Padé approximants P]]\,V_l(x; Xp) and P]]\\,’(x; Xq) both converge in
the cut plane to the function f(z) . e

- Errorbounds: Foranyz€ Y,.and VJ/2> -1 M2>1,

( ) J+1 y i 2 N /

l— X ptrIT—Xyg—4/P , L

‘f(z)_P]\Aj_H(Z;X())‘ <c . . 9 - > Re 2z
P VP +Hz—xg+4/p _p

where, p = R + X, — A and c is a constant.
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Stieltjes bootstra ¥ universe +

Idea: Combine results from CM bootstrap with Padé, (quaranteed to
work well for Stieltjes functions)

-Step 1: Select a starting point: In the subset of the Euclidean region where CM bootstrap works very well.
-Step 2: Compute the basis integrals at the starting point: Using the CM bootstrap.

-Step 3: Compute the Taylor expansion: To a given order with the required precision.

-Step 4: Construct the Padé approximants and store them.

-Step 5: Evaluate the Padé approximants.

-As a proof of principle we can apply it Sunset/Banana integrals, which are Stieltjes in D=2.
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One-loop massive bubble example 2.0 ¥ universe +

-Comparison between Padé approximants P19O(z; — 0.1), Pll(())(z; — 0.1) and
the actual function for real and complex points.

10

f(x) 5 B
025 : 18
| 16
0.20 | 14
— f(x) ‘N 0 12
151 o N=2: M=2 -
Pl = N=10; M=10 o 10
010l * N=1; M=2 8
- A N=9; M=10 6
0.05 - -5 4
ﬁ 2
-10¢L
-10
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Example without using DE ¥ universe +

- The interplay between Padé and Stieltjes functions does not depend on the knowledge
of a DE, provided we can obtain the Taylor coefficients using another method.

- We can do this for L-loop banana type integrals using representation as a Bessel

integral valid in the Euclidean region l.e., for x > — (L 4+ 1)? and computing the Bessel
moments numerically. [Groote,Korner, Pivovarov 05°; Vanhove 14’}

7 Upper bound Actual value Lower bound ‘ 18 # of digits
16 agreement
10° 1.53585 x 10'? | 1.53585 x 10'? | 1.53585 x 10" “ Between
o the Pade
10 1.53489 x 10" | 1.53489 x 10" | 1.53489 x 101’

10° 152272 % 1013 | 1.52272 x 10" | 1.52272 x 10"

N B~ O 0
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Conclusion and Outlook ¥ universe+

* We looked a novel kind of positivity properties on a function and all it derivatives

called complete monotonicity and Stieltjes property which several physical

quantltles and bUIIdlng blocks (like generic scalar Feynman integrals) satisfy in the
“Euclidean region”.

* We discussed why these functions are natural from the perspective of volumes and

In the positive geometry program and also saw it can be used for efficiently for
numerical bootstrap.

* These properties also holds seems to hold in the coupling for some exact
observables (admit Fredholm determinants) [Talk to Maximilian Haensch]
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