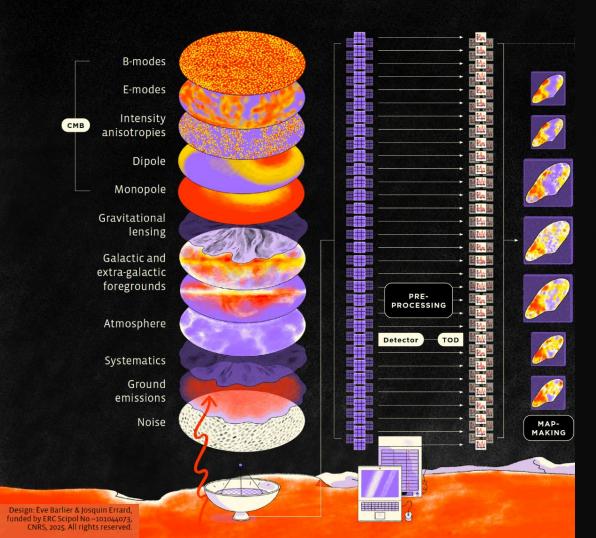
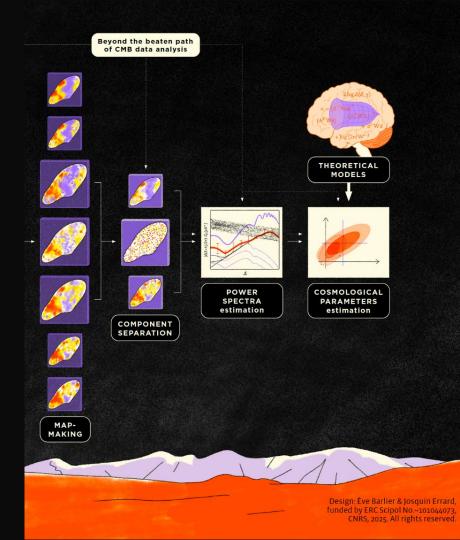
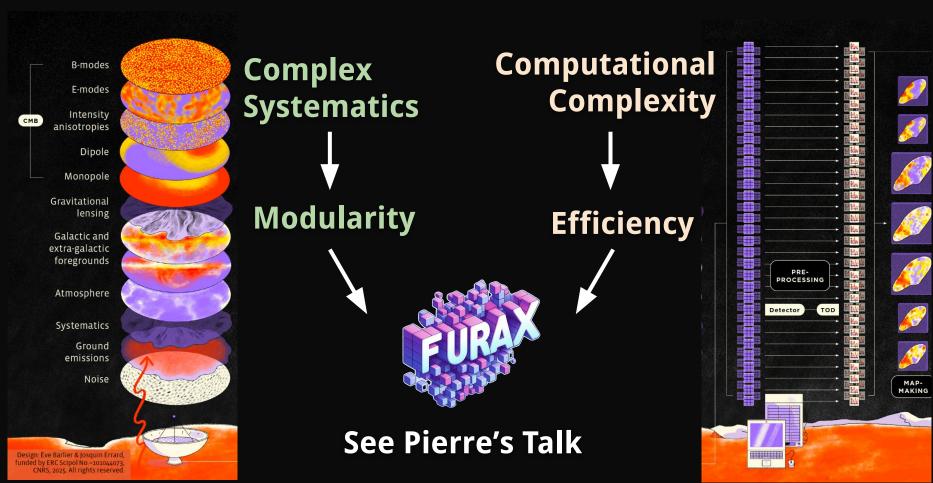

CMB Applications of FURAX

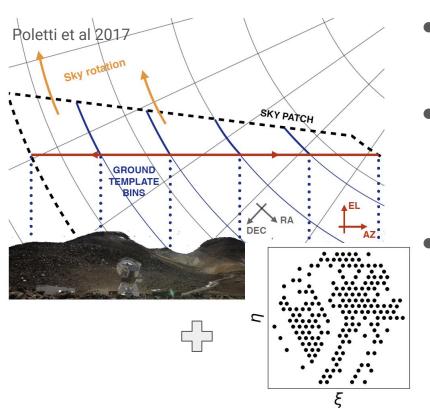

Wuhyun Sohn (APC / CNRS)
on behalf of the FURAX team

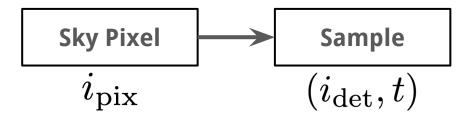



The telescopes measure the CMB and everything else on the way to them

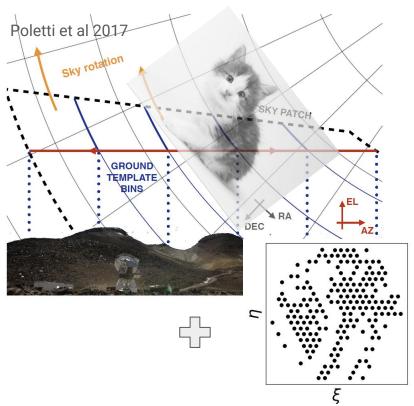
We convert the time-ordered data (TOD) to sky maps through **1 - Mapmaking**

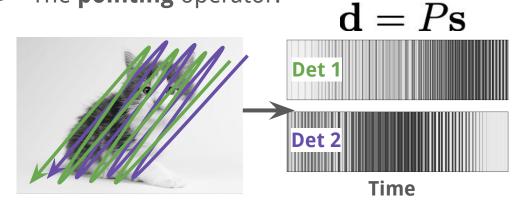
The CMB is separated from **2 - astrophysical foregrounds** and **3 - the atmosphere.**We analyse the results to draw physical insights for our universe.



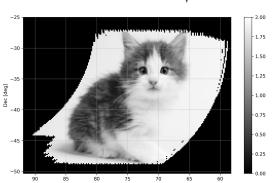

1. Mapmaking & FURAX

WS, Simon Biquard, Pierre Chanial, and the FURAX team (in prep.)


Pointing


- Telescopes scan the sky back and forth in azimuth at constant elevation (CES)
 - Determined by the boresight pointing info (azimuth, elevation, ...), focal plane info (xi, eta, ...), and site info (time, location)
 - The **pointing** operator:

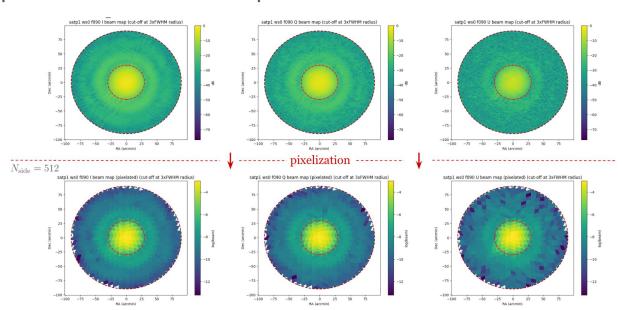
Pointing



The **pointing** operator:

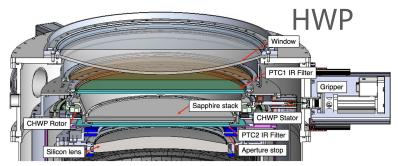
The simplest **mapmaking**:

$$\hat{\mathbf{s}} = (P^{\top}P)^{-1}P^{\top}\mathbf{d}$$



Pointing - Challenges

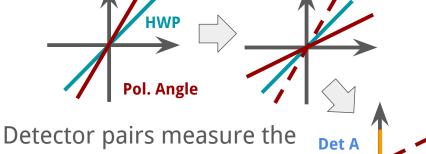
- Complex beams and pointing errors can induce inaccurate mapping between the sky pixels and the data samples
- See Artem's talk:



Artem BASYROV

Half Wave Plate

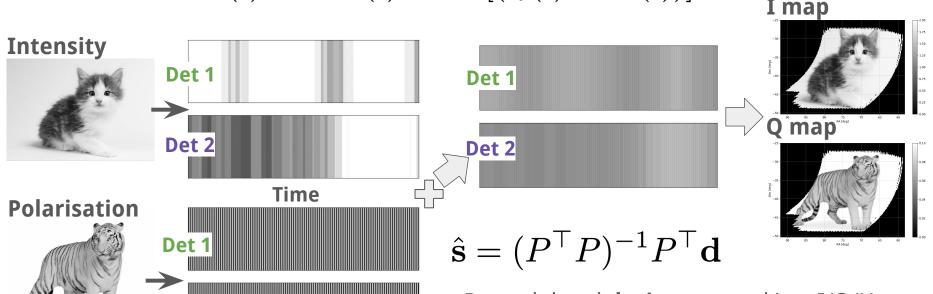
Simons Observatory SAT


Yamada et al. 2023

Detectors

Duff et al. 2024

Rotating Half Wave Plate (HWP) modulates
 the polarised signal to 4x the frequency


linear polarisation

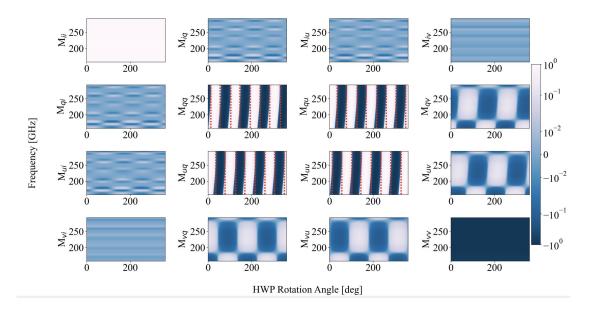
The (de-)polarizer operator:

Half Wave Plate

• Ideal HWP: $\mathbf{d}(t) = T \cdot I(t) + \epsilon \mathrm{Re}[(Q(t) + iU(t))]e^{-4i\phi_{\mathrm{HWP}}(t))}$

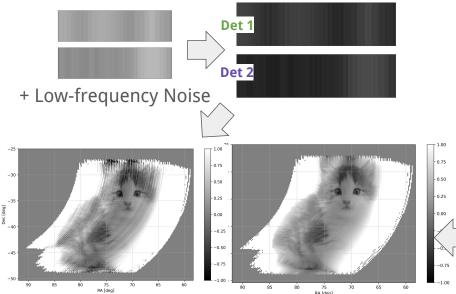
Demodulated **during** mapmaking; I/Q/U components at each pixel fitted simultaneously

Det 2


 \blacksquare (Modulated to $4f_{\rm HWP}$)

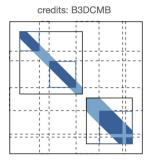
Half Wave Plate - Challenges

- Non-ideal HWP can induce frequency-dependent response on the light rays and other systematic effects
- See Ema's talk:



Ema TSANG KING SANG

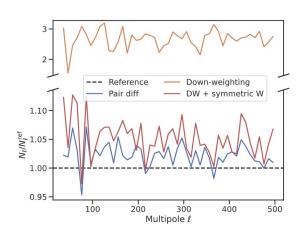
Noise & Atmosphere


- Instrumental and atmospheric noise contaminate our measurements
- Noise introduces time- and detector- correlations in the samples

The **noise covariance** operator N:

$$\mathbf{n} \sim \mathcal{N}(\mathbf{0}, N)$$

Maximum Likelihood (ML) mapmaking:


$$\hat{\mathbf{s}} = (P^{\top} N^{-1} P)^{-1} P^{\top} N^{-1} \mathbf{d}$$

Noise & Atmosphere - Challenges

- Accounting for correlations between detectors
- Accurate treatment of gaps in the data (glitch masks, turnarounds, ...)
- Computational complexity of applying Toeplitz matrices
- Utilising the (lack of) correlations between detector pairs to our advantage
- See Simon's talk:

Simon BIQUARD

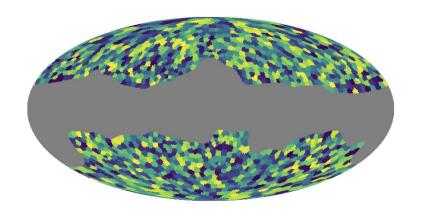
Mapmaking and FURAX

FURAX provides modular building blocks for mapmaking

$$d = Ps + n$$

$$\hat{\mathbf{s}} = (P^{\top} N^{-1} P)^{-1} P^{\top} N^{-1} \mathbf{d}$$

Using FURAX,



See FURAX git repo (CMBSciPol/furax) and an example notebook

Next steps

- The FURAX mapmaking package is evolving rapidly
- We are currently working on:
 - Full support for various templates during the mapmaking for mitigating systematics
 - Full GPU parallelisation support
 - Code optimisation and documentation
 - Applications to Simons Observatory SAT data!
- Collaborations/contributions always welcome!

Wassim KABALAN

2. Astrophysical Component Separation & FURAX

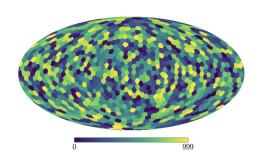
Wassim Kabalan, Arianna Rizzieri, WS, Benjamin Beringue, Artem Basyrov, Pierre Chanial, Alexandre Boucaud, Josquin Errard. 2510.xxxxx

Component Separation

- CMB observations are contaminated by significant astrophysical foregrounds
- Multi-frequency sky maps can be modeled as a superposition of components, each with distinct spectral behaviors:

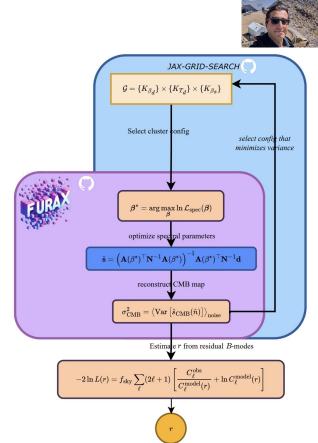
$$\mathbf{d} = \mathbf{A}(\boldsymbol{\beta})\mathbf{s} + \mathbf{n}$$

 Galactic synchrotron and thermal dust emission dominate the polarised foregrounds, both exhibiting spatially varying spectral properties
 [Planck Collaboration 2020; Meisner & Finkbeiner 2015]



 The best-fit spectral parameters are found at the map domain by maximising the spectral likelihood [Stompor et. al. 2009], which also enable new approaches such as the cluster optimization

$$\ln \mathcal{L}_{\text{spec}}(\boldsymbol{\beta}) = \text{const} + \frac{1}{2} \left(\mathbf{A}^{\top} \mathbf{N}^{-1} \mathbf{d} \right)^{\top} (\mathbf{A}^{\top} \mathbf{N}^{-1} \mathbf{A})^{-1} (\mathbf{A}^{\top} \mathbf{N}^{-1} \mathbf{d})$$


• We incorporate the spatial variability of β via spherical k-means algorithm, where the sky is partitioned into disjoint regions with

$$\boldsymbol{\beta}(\hat{n}) = \boldsymbol{\beta}_k$$
 for all C_k

- The cluster configuration is optimised together
 with the spectral parameters, powered by **FURAX**and the <u>jax-grid-search</u> package
- This JAX-based implementation is >O(10) times
 faster than the previous implementation (fgbuster
 [Poletti & Errard 2023 + Rizzieri et al. 2025])
- The formalism can also incorporate beam response as well as the observation matrix within see Amalia & Pierre's talk

Results

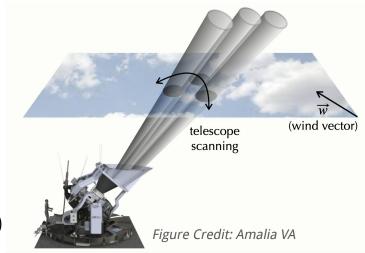
- The adaptive k-means method **effectively capture the spatial variations in** β and gives unbiased estimates of r
- Paper to come out soon... stay tuned!
- + Also see Viet's talk

Benjamin Beringue

3. Atmosphere & FURAX

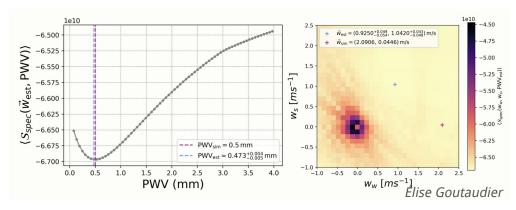
Amalia Villarrubia Aguilar, Benjamin Beringue, Élise Goutaudier and the FURAX team

Reconstructing atmospheric emission


- Driven by water vapour fluctuations, atmospheric emission introduces
 correlated noise and dominates the raw signal from CMB observations
- The atmospheric signal can be modelled using the precipitable water

vapor (PWV) level and wind speed (w):

$$\mathbf{d}_{\mathrm{atm}} = \mathbf{A}(\mathrm{PWV}) \, \mathbf{P}(\mathbf{w}) \, \mathbf{s}_{\mathrm{atm}} + \mathbf{n}$$


 The best-fit PWV and wind speed can be found by maximising the likelihood in time domain:

$$-2 \ln \mathcal{L} = \text{const.} + (\mathbf{d}_{\text{atm}} - \mathbf{A} \mathbf{P} \hat{\mathbf{s}}_{\text{atm}})^{\top} N^{-1} (\mathbf{d}_{\text{atm}} - \mathbf{A} \mathbf{P} \hat{\mathbf{s}}_{\text{atm}})$$

Modelling atmospheric emission

 Testing on 3D atmospheric simulations, the PWV level and wind direction are recovered!

- Active work in progress!
 - Studying potential degeneracies with other sky components & refining simulations
- With this framework, we could study the benefit of having external information with data from e.g. a Lidar [CosmoLidar]

Amalia VA Benjamin Beringue

Conclusion

- Modern CMB surveys are complex and require modular & efficient pipelines
- The **FURAX framework** is ideal for such task:
 - For CMB mapmaking, we developed tools to accurately account for systematic effects and accelerate the process using GPUs
 - For component separation, we used it to power general pixel-based methods via effective optimisers, accounting for spatial variability
- The code base is public and evolving fast; collaborations are always welcome!

