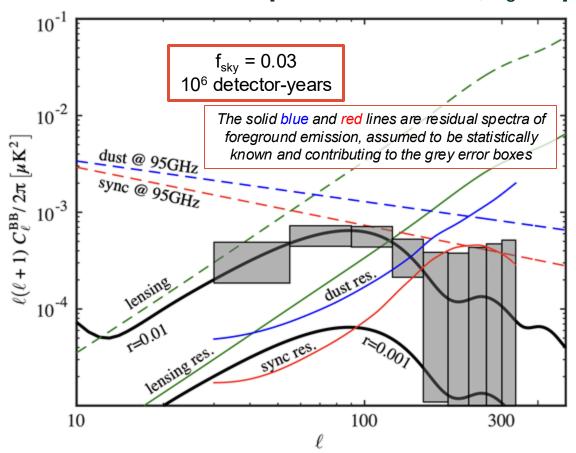


SMICA for Unbiased Primordial Gravitational Wave Inference from the CMB

Alexander Steier, Shamik Ghosh, and Jacques Delabrouille

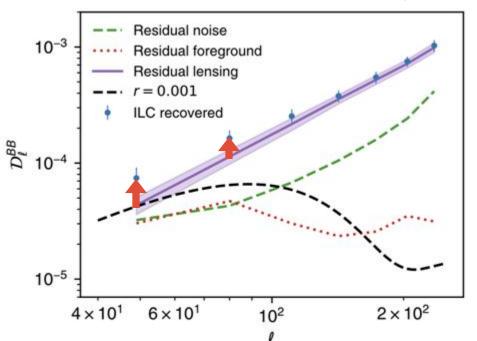
CMB-France, October 15, 2025

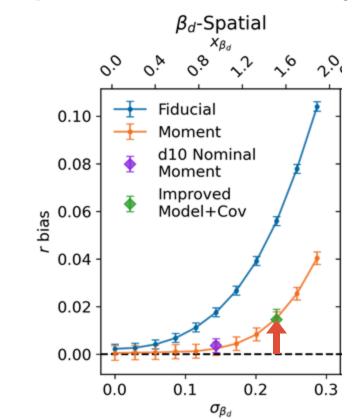


The Problem

CONTEXT: CMB-S4 forecasts

Measuring Primordial Gravitational Waves is hard!


- The theorized CMB polarization signal is very small
- Strong foregrounds
- Lensing of CMB
- Detector noise
- Instrumental systematics
- Cosmic variance


Some existing results

Foreground Bias!

[CMB-S4 Chile Optimization Report (DRAFT)]

SO-like observations, spectral fits [Liu et al. 25, arXiv 2508.00073, Figure 9]

Why are the forecasts biased?

- NILC tries to recover the lowest variance map, not the lowest foreground map.
- Spectral fits usually assume a functional form in harmonic space and frequency.

For instance:
$$\frac{I_c(\nu,\ell)}{I_c(\nu_0,\ell_0)} = \left(\frac{\ell}{\ell_0}\right)^{\alpha} \frac{F_c(\nu,T,\beta)}{F_c(\nu_0,T,\beta)}^{\text{parameters}}$$

Relax these assumptions and let the data speak for themselves: SMICA! [1][2][3]

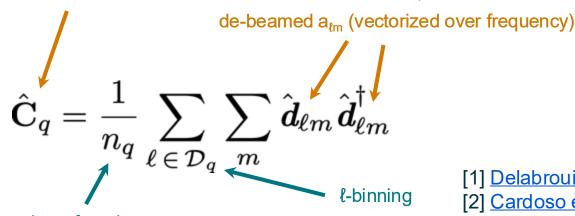
- [1] <u>Delabrouille, Cardoso, Patanchon 2003</u>
- [2] <u>Cardoso et al. 2008</u>
- [3] Steier, Ghosh, Delabrouille 2025 (in prep)

The Method

What is SMICA?

linear superposition model

Spectral Matching Independent Component Analysis^{[1][2][3]}

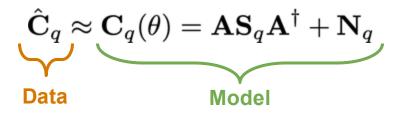

Component separation tool applied to multivariate power spectra

signals (vectorized over detectable components)

mixing matrix

beam-corrected noise (vectorized over frequency)

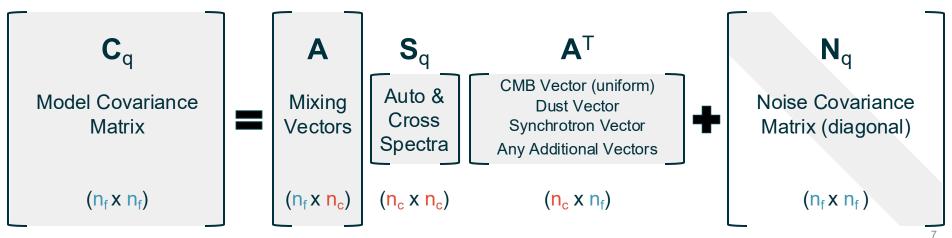
data covariance matrix



number of modes

$$n_q = \left((\ell_{\text{max}} + 1)^2 - (\ell_{\text{min}})^2 \right) f_{\text{sky}}$$

- [1] <u>Delabrouille, Cardoso, Patanchon 2003</u>
- [2] <u>Cardoso et al. 2008</u>
- [3] Steier, Ghosh, Delabrouille 2025 (in prep)


The SMICA Covariance Model

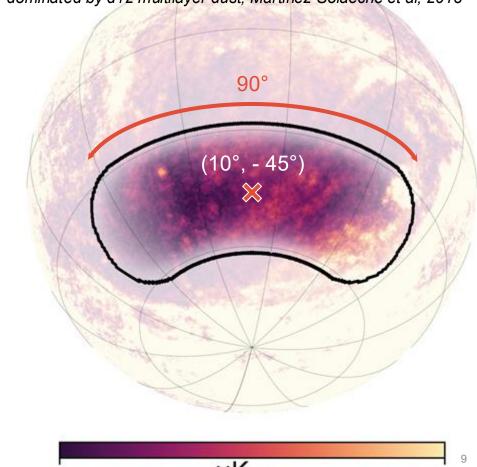
Each element in **A** and S_q is an independent parameter (except CMB power spectrum).

$$C_{\ell}^{\text{CMB}} = rC_{\ell}^{\text{tens}\,r=1} + A_{\text{lens}}C_{\ell}^{\text{lens}}$$

Any part of the model can be parameterized, we implement the most general case.

For Q \ell-bins with n_f frequency channels & n_c components

Implementation, tests and forecasts

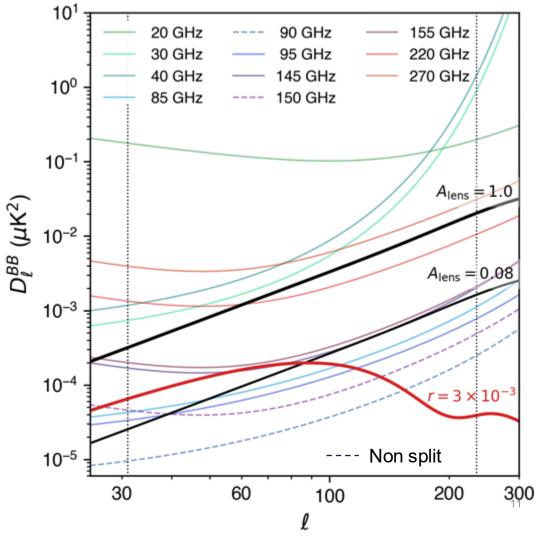

Sky Patch

Hit map based on constant dec SAT scans

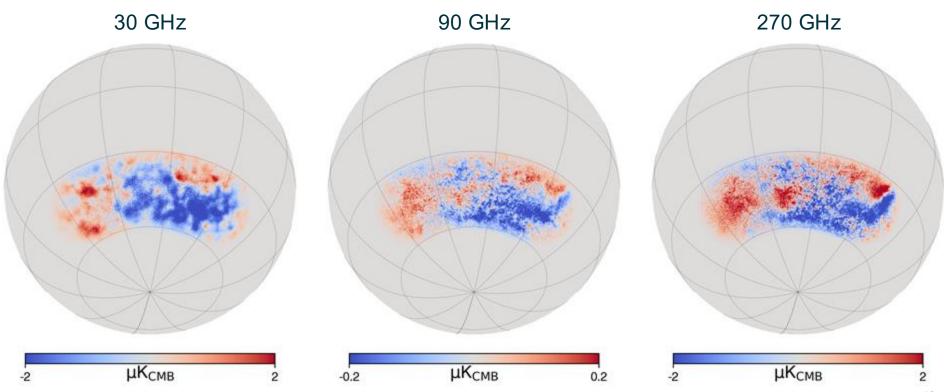
Small Sky fraction!

$$f_{\text{sky}} = \frac{1}{n_{\text{pix}}} \sum_{p} w_p^2 = 2.5\%$$

PySM3 high-complexity polarized intensity at 270 GHz dominated by d12 multilayer dust, Martinez-Solaeche et al, 2018


Experiment Configuration (Stage 4)

Frequency	θ_{FWHM}	Noise Δ_P	- / ₁		Configuration
(GHz)	(arcmin)	$(\mu \text{K-arcmin})$		$lpha_{ m knee}$	
20	11	13.6	150	2.7	
30	73	3.53	60	1.7	Both
40	73	4.46	60	1.7	
85	26	0.88	60	1.7	
95	23	0.78	60	1.7	Split
145	26	1.23	60	3.0	Spiit
155	23	1.34	60	3.0	
90	26	0.42	60	1.7	Non-Split
150	23	0.64	60	3.0	Non-spin
220	13	3.48	60	3.0	Both
270	13	5.97	60	3.0	Both


Inputs to the Pipeline

96 independent realizations of IQU maps:

- CMB lensing (and tensor) modes
- PySM3 Foregrounds (low, medium and high complexity)
- Spatially anisotropic white noise
- "Split bands" and "non-split bands" configurations
- For simplicity we use delta passbands in v, but this has little incidence on the method

Some B-mode Input Maps (high complexity, r = 0.003, $A_{lens}=0.08$)

Evaluating the SMICA Likelihood

https://healpix.sourceforge.io

https://github.com/jax-ml/jax

https://blackjax-devs.github.io/blackjax/

$$\ln \mathcal{L}(\theta) = -\frac{1}{4} \sum_{q=1}^{Q} n_q D(\hat{\mathbf{C}}_q, \mathbf{C}_q(\theta))$$

where the Kullback-Leibler divergence for two *n* x *n* matrices is

$$D(\mathbf{R}_1, \mathbf{R}_2) = \operatorname{tr}\left(\mathbf{R}_1 \mathbf{R}_2^{-1}\right) - \ln \det\left(\mathbf{R}_1 \mathbf{R}_2^{-1}\right) - n$$

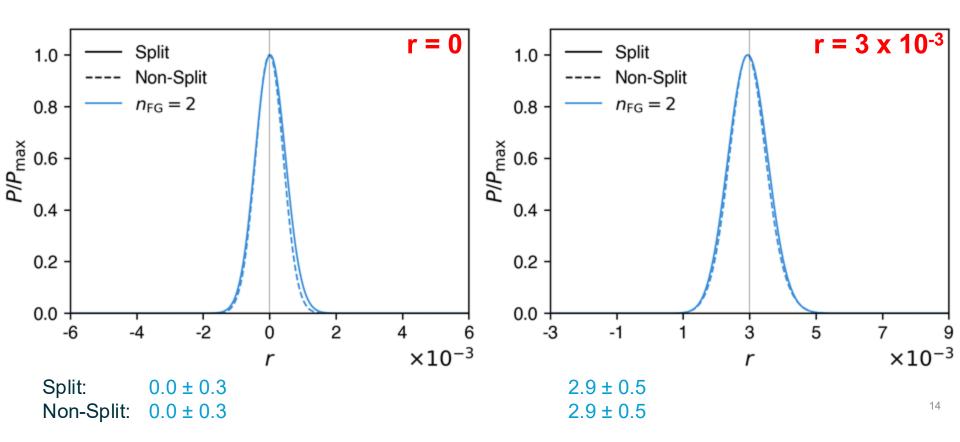
and n_a is the number of independent modes in bin q

$$n_q = ((\ell_{\text{max}} + 1)^2 - (\ell_{\text{min}})^2) f_{\text{sky}}$$

mock observations: 96 independent IQU maps healpy anafast: covariance matrices

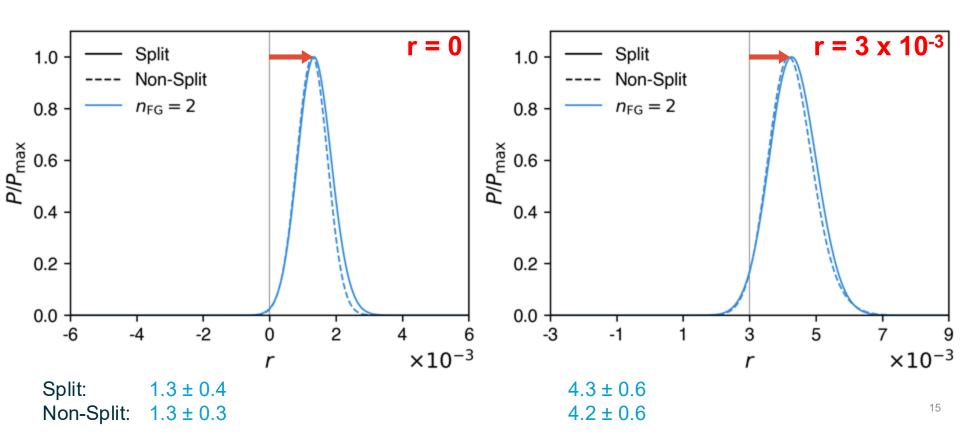
JAX framework: \
\text{ model is } \text{ differentiable } /

BlackJAX: MC sampling in parallel

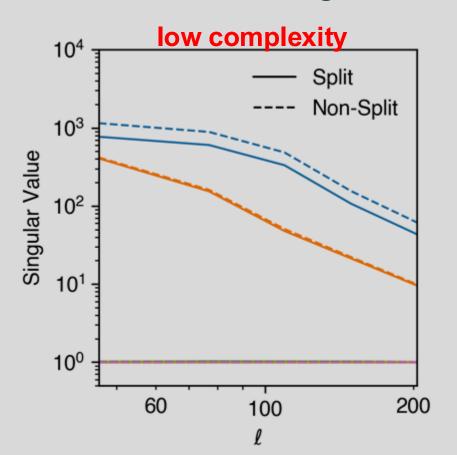

Results:
Posteriors for all parameters

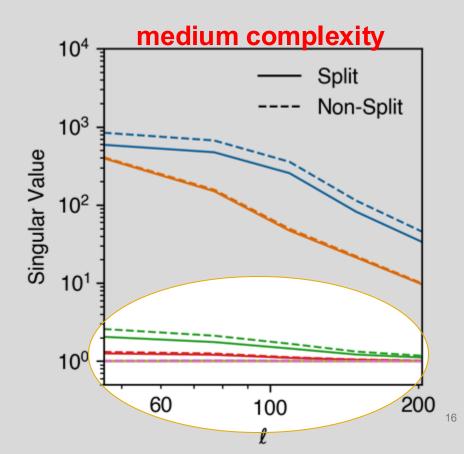
(96 realizations)

(5 spectral bins)

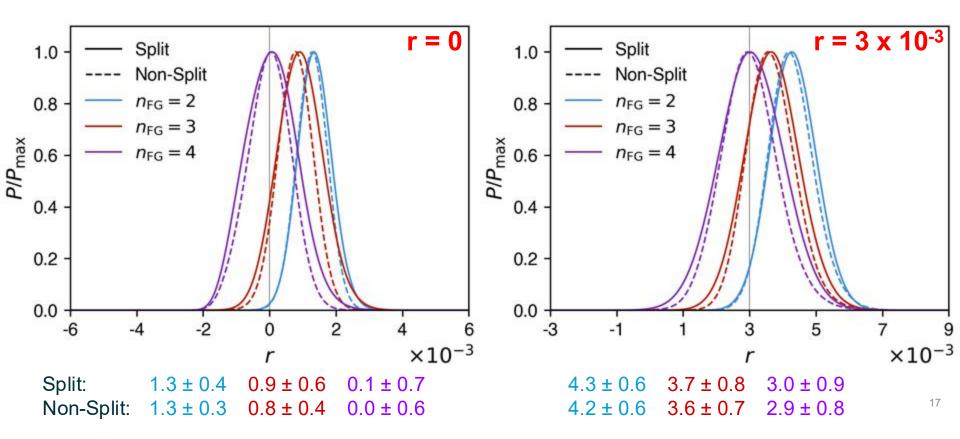

No-U-Turn-Sampler (NUTS)

r-Posterior - Low Complexity ("perfect" test case)

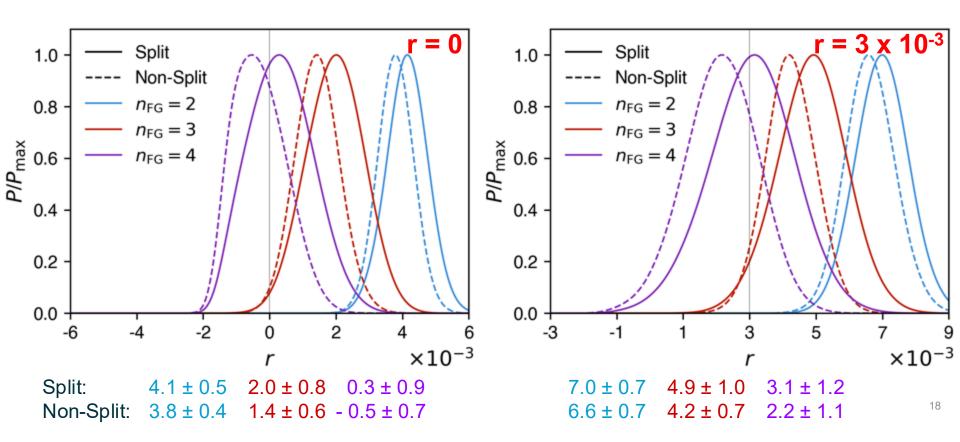



r-Posterior - Medium Complexity

Foreground Bias!

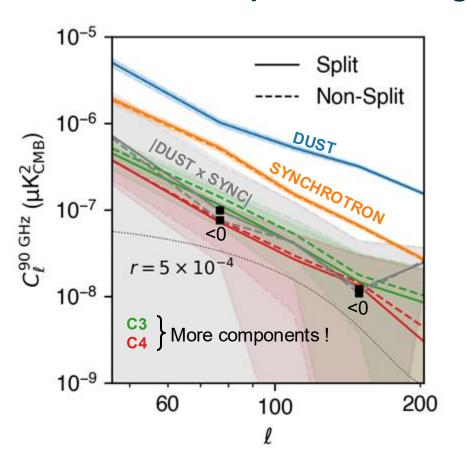


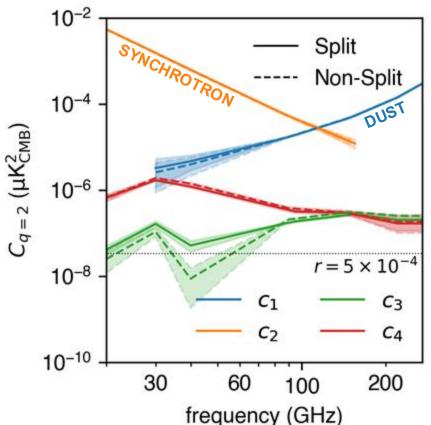
Noise Whitened Foreground SVD - Low & Medium Complexity



r-Posterior - Medium Complexity

r-Posterior - High Complexity


Chi Squared per DOF as Goodness of Fit


		Low Complexity		Medium Complexity		High Complexity	
	$n_{ m FG}$	$r_{\rm MAP} \pm \sigma_r $ (10^{-3})	$\chi^2/n_{ m dof}$	$r_{\rm MAP} \pm \sigma_r $ (10 ⁻³)	$\chi^2/n_{ m dof}$	$r_{\rm MAP} \pm \sigma_r $ (10 ⁻³)	$\chi^2/n_{ m dof}$
Split	2	0.0 ± 0.3	1.27	1.3 ± 0.4	1.16	4.1 ± 0.5	1.37
	3	-	-	0.9 ± 0.6	1.17	2.0 ± 0.8	1.27
	4	-	-	0.1 ± 0.7	1.16	0.3 ± 0.9	1.19
Non-Split	2	0.0 ± 0.3	1.19	1.3 ± 0.3	1.24	3.8 ± 0.4	1.73
	3	-	-	0.8 ± 0.4	1.16	1.4 ± 0.6	1.33
	4	-	-	0.0 ± 0.6	1.10	-0.5 ± 0.7	1.26

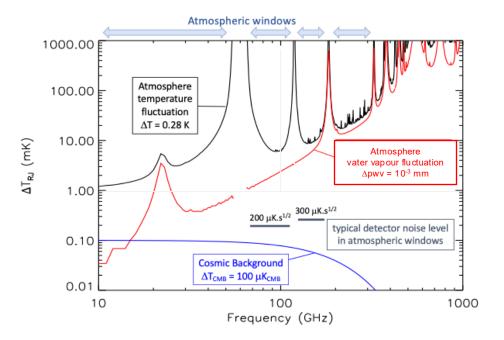
$$\chi^2/n_{\text{dof}} = \frac{-2\ln\mathcal{L}(\theta_{\text{MAP}})}{\frac{1}{2}n_f(n_f+1)Q - n_{\text{params}}}$$

Chi Squared per DOF is *not* a good indicator of r-bias

Best Fit Power Spectra & Mixing Vectors - High Complexity

Summary on SMICA

- SMICA offers unbiased *r*-measurement (within 1σ) even for high complexity foregrounds
- The method does not rely on a parametric model of foregrounds (no assumption on emission laws, harmonic spectrum, correlation between synchrotron and dust, frequency decorrelation)


The data "speaks for itself" !!

- Non-split bands offer much needed sensitivity better results than with split bands
- <u>Market Squared per DOF</u> is not a good indicator of *r*-bias

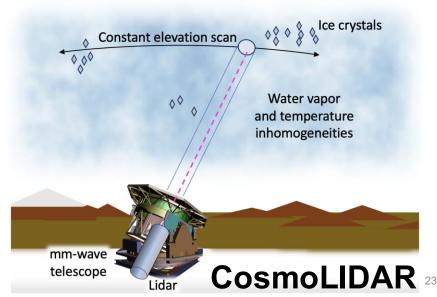
The next component separation challenge

ATMOSPHERE — One of the biggest foregrounds!

- (Time domain...)
- Can we reduce its impact by a combination of map-making and component separation methods?

We can think of using extra frequency channels, but the atmosphere is multi-dimensional...


Already struggling with astrophysical components, we need **more channels**!


Why not dedicated channels ??

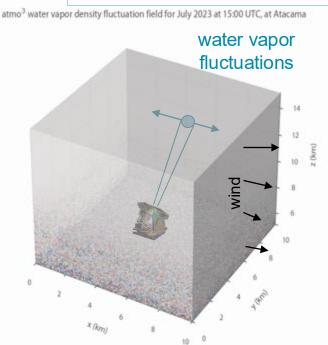
The next component separation challenge

ATMOSPHERE — One of the biggest foregrounds!

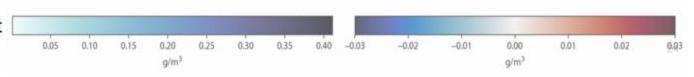
- (Time domain...)
- Can we reduce its impact by a combination of map-making and component separation methods?
- With the help of **DEDICATED observation channels**?

Shamik Ghosh and CPB / LBNL-C3 / APC / CEA groups

Simulations ongoing:


Atmo³

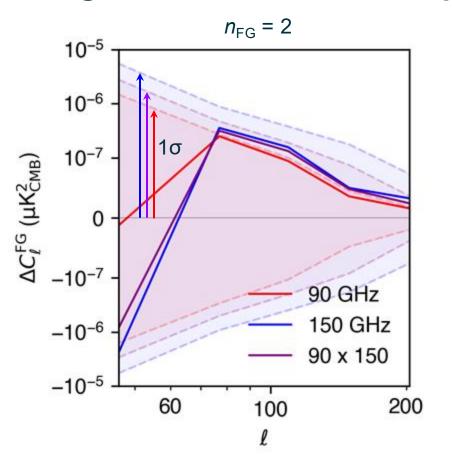
Forecasts next ...

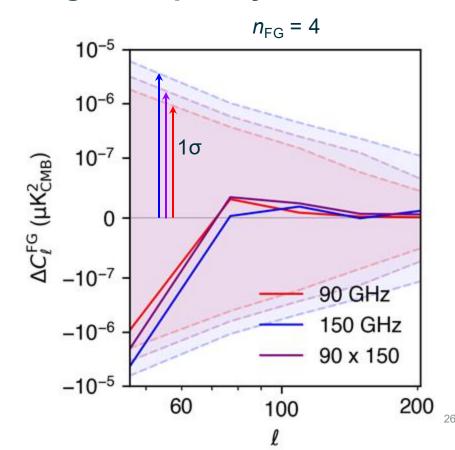

 Could we field a LIDAR in Atacama and make some tests jointly with SO data?

mean water vapor

atmo3 water vapor density field for July 2023 at 15:00 UTC, at Atacama

 Could be quite relevant for 350 GHz KAIROS





Thank You

Foreground Residuals - Non-Split High Complexity

Measurement Table (r = 0)

		Low Complexity		Medium Complexity		High Complexity	
	$n_{ m FG}$	$r_{\rm MAP} \pm \sigma_r $ (10^{-3})	$\chi^2/n_{ m dof}$	$r_{\rm MAP} \pm \sigma_r $ (10^{-3})	$\chi^2/n_{ m dof}$	$r_{\rm MAP} \pm \sigma_r $ (10 ⁻³)	$\chi^2/n_{ m dof}$
Split	2	0.0 ± 0.3	1.27	1.3 ± 0.4	1.16	4.1 ± 0.5	1.37
	3	-	_	0.9 ± 0.6	1.17	2.0 ± 0.8	1.27
	4	-	-	0.1 ± 0.7	1.16	0.3 ± 0.9	1.19
Non-Split	2	0.0 ± 0.3	1.19	1.3 ± 0.3	1.24	3.8 ± 0.4	1.73
	3	-	-	0.8 ± 0.4	1.16	1.4 ± 0.6	1.33
	4	-	-	0.0 ± 0.6	1.10	-0.5 ± 0.7	1.26

Measurement Table (r = 0.003)

		Low Complexity		Medium Complexity		High Complexity	
	$n_{ m FG}$	$r_{\rm MAP} \pm \sigma_r $ (10^{-3})	$\chi^2/n_{ m dof}$	$r_{\rm MAP} \pm \sigma_r $ (10 ⁻³)	$\chi^2/n_{ m dof}$	$r_{\rm MAP} \pm \sigma_r $ (10 ⁻³)	$\chi^2/n_{ m dof}$
Split	2	2.9 ± 0.5	1.33	4.3 ± 0.6	1.16	7.0 ± 0.7	1.28
	3	-	-	3.7 ± 0.8	1.20	4.9 ± 1.0	1.26
	4	-	-	3.0 ± 0.9	1.17	3.1 ± 1.2	1.21
Non-Split	2	2.9 ± 0.5	1.30	4.2 ± 0.6	1.32	6.6 ± 0.7	1.66
	3	-	-	3.6 ± 0.7	1.26	4.2 ± 0.7	1.34
	4	-	-	2.9 ± 0.8	1.21	2.2 ± 1.1	1.26