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The Challenge

- LHCDb has an ambitious program to increase the recorded integrated luminosity

The upgrade strategy
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The Challenges

- This comes with a series of challenges

Radiation dose

Pile-up, Occupancy

Bandwidth, throughput

Accumulated radiation dose [Gy] after 300 fb™? Occupancy, back section, E__ | . >50 MeV
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The Solutions

SpaCal technology Better O(10ps) Timing
granularity
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Higher pile-up, higher granularity, timing information... how will this translate to the throughput
requirements?



The general idea of this work

ML is becoming an increasingly used tool in HEP, but in past mostly for online classification, or
offline - using it in high-throughput reconstruction applications is the next step

Main candidate for LHCb’s HLT reconstruction in U2 are GPUs

But we should also not close the doors to other processors / accelerators - the market is quite
volatile at the moment, we need to benchmark different possibilities with our use case

FPGAs are particularly attractive, because we already have them for DAQ
o  potentially spare compute resources
o already exploited in Run 3 (velo RETINA clustering)

We want to study ML applications for reconstruction in a high-throughput heterogeneous
environment, benchmark different accelerators, and, in the long term understand how we can
build a DAQ - HLT system that gives the best performance, computing power and energy
efficiency

PicoCal relatively “stand-alone” detector: a good playground for this kind of study



Goals

Optimization of the PicoCal processing chain
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- Start by implementing the current HLT1 reconstruction algorithm to PicoCal
simulated data

- Explore Al models in high-throughput conditions
- Add timing
- FPGA acceleration (e.g. seeding) (more far in the future, not covered here)
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Run 3 trigger

- Two steps “real-time” reconstruction and selection

- Reminder: HLT2 performs offline-quality reconstruction, no reconstruction happening
offline!
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ECAL reconstruction in current HLT1

- Finding local maxima

- Clustering on 3x3 cells with overlap corrections




ECAL reconstruction in current HLT2

- Graph Clustering
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Upgrade |l developments

- Big interest in the community in ML implementation
- In particular GNNs

Tracking GNN: PicoCal GNN: PicoCal GNN:
Inspiration from CMS: * ----------- :.
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https://arxiv.org/abs/2406.12869
https://indico.ific.uv.es/event/8035/contributions/28788/attachments/14547/21155/CPAN_FL_GNN_ECAL_vf_fix.pdf
https://indico.cern.ch/event/1488410/contributions/6561518/attachments/3130969/5554531/UPerezHamburgACAT-export.pdf
https://arxiv.org/pdf/1902.07987
https://arxiv.org/pdf/1902.07987
https://arxiv.org/pdf/2008.03601
https://arxiv.org/pdf/2008.03601

Upgrade |l developments:
GNNs for PicoCal reconstruction

Data preprocessing

— Spacal Simulation with Single Photons (particle gun) and minbias clusters
— Raw PicoCal Data converted to KNN-based graph — node (E, position), edge (spatial links), and global
(seed position) features

Lieam = 1.5 X 10™34em 2571

y Front and Back Ave E deposits
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0.5 < Er <5GeV

Graph Inputs:

Choose 3 x 3 clusters e _
. . . odes: Etot/cell, Efront, Eback, x, y, relative position to seed
SpaCal Simulation w/ Front and Back Energies Edges: Ax, Ay, AE, dij
Global: Etot/particle
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Upgrade |l developments:
GNNs for PicoCal reconstruction Slides from

F. Souza

€ Nodes, edges, and globals are updated through aggregation and MLPs

BLUE updated by BLACK (not utilizing GREY)
Dt ~D

(a) Edge update

Update edges using
connected nodes and globals


https://indico.ific.uv.es/event/8035/contributions/28788/attachments/14547/21155/CPAN_FL_GNN_ECAL_vf_fix.pdf

Upgrade |l developments:
GNNs for PicoCal reconstruction

€ Nodes, edges, and globals are updated through aggregation and MLPs

BLUE updated by BLACK (not utilizing GREY)

O Grt

(a) Edge update (b) Node update

Update nodes
using (new) edges
and globals

Update edges using
connected nodes and globals
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https://indico.ific.uv.es/event/8035/contributions/28788/attachments/14547/21155/CPAN_FL_GNN_ECAL_vf_fix.pdf

Upgrade |l developments:
GNNs for PicoCal reconstruction Sides from

€ Nodes, edges, and globals are updated through aggregation and MLPs

BLUE updated by BLACK (not utilizing GREY)

(a) Edge update (b) Node update (¢) Global update

Update nodes Update globals
using (new) edges using (new) nodes
and globals and (new) edges

Update edges using
connected nodes and globals
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https://indico.ific.uv.es/event/8035/contributions/28788/attachments/14547/21155/CPAN_FL_GNN_ECAL_vf_fix.pdf

Upgrade |l developments:
GNNs for PicoCal reconstruction

€ Nodes, edges, and globals are updated through aggregation and MLPs

BLUE updated by BLACK (not utilizing GREY)

(a) Edge update (b) Node update (¢) Global update
Upsdlate edpes using Update nodes Update globals
using (new) edges using (new) nodes
connected nodes and globals
and globals and (new) edges

This process can be repeated many times
Each iteration can have a unique set of NN



https://indico.ific.uv.es/event/8035/contributions/28788/attachments/14547/21155/CPAN_FL_GNN_ECAL_vf_fix.pdf
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Upgrade |l developments:

GNNs for PicoCal reconstruction
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The GNN outperforms the standard approaches over the full E; range



https://indico.ific.uv.es/event/8035/contributions/28788/attachments/14547/21155/CPAN_FL_GNN_ECAL_vf_fix.pdf

Upgrade |l developments:
GNNs for PicoCal reconstruction Sides from

GarNet
¢ A lightweight, attention-enhanced variant GNN architecture

2 Introduced for real-time particle reconstruction at CMS by liyama et al. (Eur. Phys.
J. € 79, 608 (2019); Front. Big Data 3, 598927 (2021))

2 Explicit edges are replaced by learnable aggregators connecting nodes through Z/g
latent Vertices Full Message Passing
B This reduces the number of mathematical operations, decreasing training and
inference time T
....... >®

[ GarNet has a know ONNX implementation for FPGA deployment
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https://indico.ific.uv.es/event/8035/contributions/28769/attachments/14517/21126/COMCHAPerez2025.pdf

Upgrade |l developments:
GNNs for PicoCal reconstruction

€ GarNet has similar performance, but is 6-7x faster!
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Upgrade |l developments:
GNNs for PicoCal reconstruction

Extra developments are ongoing

- Distillation and quantization
- ONNX Runtime implementation



Some lessons from tracking: ETX4VELO

Motivations

Graph Neural Network (GNN)-based track-finding pipeline based on the work of Exa.Trkx (Eur. Phys.
J. C81, 876 (2021))

Demonstrated near-linear inference time w.r.t. # hits From A. Correia’s
- Conventional algorithms are worse-than-quadratic presentation, CTD23
« Increase in instaneneous luminosity in future upgrades over the next decade
— need for even more high-throughput track-finding algorithms

High-parallelisation potential - compatible with current GPU-based Allen trigger

Future implementation in Allen = allow like-for-like comparison with conventional algorithms

Representation of tracks with a graph quite natural Pure graph representation

NI
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https://indico.cern.ch/event/1252748/contributions/5521484/attachments/2731094/4748485/etx4velo_ctd2023.pdf
https://indico.cern.ch/event/1252748/contributions/5521484/attachments/2731094/4748485/etx4velo_ctd2023.pdf

2407.12119

GPU Implementation

Inference Steps

Hits in the detector Embedding/Latent space | Graph construction> Graph
Graph @ Edge scores | Score threshold > Tracks

NVIDIA GeForce RTX 3090

Comparable or superior physics 00| SRS e — I |
performance to Allen’s velo track-finding =
algorithm, excellent electron reconstruction ‘gms. |
and low ghost rate =
§,1o4-
But throughput remains a challenge: E |~ CTCavELD o e £
In the future considering: quantisation, NN 1071+ ETX4VELD TensorkT NTs B
Optimisation VELO decoding Embedding K-NN GIT\IN VELOTtracks

Steps


https://arxiv.org/abs/2407.12119

Upgrade |l developments: Status

Both GNN and GarNet models are developed and being
studied outside Allen

Integration in Allen needed as it is the official LHCb HLT1
application

But it also provides utilities that are very useful for GPU
R&D: multi-event scheduling (batching) & streaming,
memory management, event and intra-event
parallelisation etc

Status today:

The classical approach is already implemented in Allen
and will be used as a benchmark for other models
Geometry and adequate data format of Run5 already in
place

Starting work on GarNet porting in Allen and inclusion of
timing information
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Conclusions

Including ML techniques in the calo reconstruction is attractive for dealing with U2
conditions

Both GNN and GarNet models have shown good performance in standalone
frameworks.

Timing information integration is still WIP

But the question is:

Can these models meet LHCb’s real-time constraints, and how do they compare
to the classical reconstruction in throughput?

Allen can provide a platform to answer this question for the GPU solution
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The ODISSEE project

- Online Data-Intensive Solutions for Science in the Exabytes Era
Huge (9.5M€) EU project — R&D for high-bandwidth science experiments
Both academic institutes and industry contributing (14 partners in total)

- IN2P3 contributes to LHCb through the future calo and future HLT1

Runs4 &5
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Some thoughts on the two approaches (GPU vs FPGA)

Clustering on FPGAs:
v Potentially can be performed at the same cards as for the readout

Clustering on GPUs

- PCle400? v Full event information available - no issues with
v FPGAs more energy efficient than CPU/GPUs, potentially cluster edges
greener? . )
v Potential reduction of data to be transferred from detector to J Less strict performance requ"ements
Event Builder - No data reduction between detector - Event builder

- Harsh latency requirements

- Full event information is not available - Could be more energy consuming

FE module

Encoding Comman
Decoding
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